
Semantic Web 12 (2021) 711–740 711
DOI 10.3233/SW-200401
IOS Press

Recursion in SPARQL
Juan Reutter a, Adrián Soto b,* and Domagoj Vrgoč c

a Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile and IMFD Chile, Chile
E-mail: jreutter@ing.puc.cl
b Faculty of Engineering and Sciences Universidad Adolfo Ibáñez, Data Observatory Foundation and IMFD Chile,
Chile
E-mail: adrian.soto@uai.cl
c Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile and IMFD Chile,
Chile
E-mail: dvrgoc@ing.puc.cl

Editor: Oscar Corcho, Universidad Politécnica de Madrid, Spain
Solicited review: Three anonymous reviewers

Abstract. The need for recursive queries in the Semantic Web setting is becoming more and more apparent with the emergence
of datasets where different pieces of information are connected by complicated patterns. This was acknowledged by the W3C
committee by the inclusion of property paths in the SPARQL standard. However, as more data becomes available, it is becoming
clear that property paths alone are not enough to capture all recursive queries that the users are interested in, and the literature
has already proposed several extensions to allow searching for more complex patterns.

We propose a rather different, but simpler approach: add a general purpose recursion operator directly to SPARQL. In this
paper we provide a formal syntax and semantics for this proposal, study its theoretical properties, and develop algorithms for
evaluating it in practical scenarios. We also show how to implement this extension as a plug-in on top of existing systems, and
test its performance on several synthetic and real world datasets, ranging from small graphs, up to the entire Wikidata database.

Keywords: SPARQL, recursive queries, property paths

1. Introduction

The Resource Description Framework (RDF) has
emerged as the standard for describing Semantic Web
data and SPARQL as the main language for querying
RDF [28]. After the initial proposal of SPARQL , and
with more data becoming available in the RDF for-
mat, users found use cases that asked for more com-
plex querying features that allow exploring the struc-
ture of the data in more detail. In particular queries that
are inherently recursive, such as traversing paths of ar-
bitrary length, have lately been in demand. This was
acknowledged by the W3C committee with the inclu-
sion of property paths in the latest SPARQL 1.1. stan-

*Corresponding author. E-mail: adrian.soto@uai.cl.

dard [26], allowing queries to navigate paths connect-
ing two objects in an RDF graph.

However, in terms of expressive power, several au-
thors have noted that property paths fall short when
trying to express a number of important properties re-
lated to navigating RDF documents (cf. [10,11,17,20–
22,40]), and that a more powerful form of recursion
needs to be added to SPARQL to address this issue.
Consequently, this realization has brought forward a
good number of extensions of property paths that of-
fer more expressive recursive functionalities (see e.g.
[3,16] for a good overview of languages and exten-
sions). However, none of these extensions have yet
made it to the language, nor are they supported on any
widespread SPARQL processor.

Looking for a recursive extension of SPARQL that
can be easily implemented and adopted in practice, we

1570-0844 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:jreutter@ing.puc.cl
mailto:adrian.soto@uai.cl
mailto:dvrgoc@ing.puc.cl
mailto:adrian.soto@uai.cl
https://creativecommons.org/licenses/by/4.0/

712 J. Reutter et al. / Recursion in SPARQL

Fig. 1. RDF database of Wikipedia traces. The abbreviation wAssocWith is used instead of wasAssociatedWith and the prov:prefix is
omitted from all the properties in this graph.

turn to the option of adding a general recursion opera-
tor to SPARQL in a similar way to what has been done
in SQL. To illustrate the need for such an operator we
consider the case of tracking provenance of Wikipedia
articles presented by Missier and Chen in [34]. They
use the PROV standard [48] to store information about
how a certain article was edited, whom was it edited
by and what this change resulted in. Although they
store the data in a graph database, all PROV data is
easily representable as RDF using the PROV-O ontol-
ogy [49]. The most common type of information in this
RDF graph tells us when an article A1 is a revision
of an article A2. This fact is represented by adding a
triple of the form (A1, prov:wasRevisionOf, A2) to
the database. These revisions are associated to user’s
edits with the predicate prov:wasGeneratedBy and
the edits can specify that they used a particular arti-
cle with a prov:used link. Finally, there is a triple
(E, prov:wasAssociatedWith, U) if the edit E was
made by the user U . A snapshot of the data, showing
provenance of articles about Edinburgh, is depicted in
Fig. 1.

A natural query to ask in this context is the history
of revisions that were made by the same user: that is all
pairs of articles (A,A′) such that A is linked to A′ by
a path of wasRevisionOf links and where all of the
revisions along the way were made by the same user.
For instance, in the graph of Fig. 1 we have that the
article 145 “Edinburgh” is a revision of the article 72
“Edinburgh” and all the intermediate edits were made
by User1. Such queries abound in any version control
system (note that the PROV traces of Wikipedia ar-
ticles are the same as tracking program development
in SVN or Git) and can be used to detect which user
introduced errors or bugs, when the data is reliable,
or to find the latest stable version of the data. Since
these queries can not be expressed with property paths

[11,32], nor by using standard SPARQL functionali-
ties (as provenance traces can contain links of arbitrary
length), the need for a general purpose recursive oper-
ator seems like a natural addition to the language.

One possible reason why recursion was not previ-
ously considered as an integral operator of SPARQL
could be the fact that in order to compute recursive
queries we need to apply the query to the result of
a previous computation. However, typical SPARQL
queries do not have this capability as their inputs are
RDF graphs but their outputs are mappings. This hin-
ders the possibility of a fixed point recursion as the
result of a SPARQL query cannot be subsequently
queried. One can avoid this by using CONSTRUCT
queries, which output RDF graphs as well, and indeed
[31] has proposed a way of defining a fixed point like
extension for SPARQL based on this idea.

In this paper we extend the recursion operator of
[31] to function over a more widely used fragment
of SPARQL and study how this operator can be im-
plemented in an efficient and non-intrusive way on
top of existing SPARQL engines. The main question
we are trying to answer here is whether general pur-
pose recursion is possible in SPARQL . We begin by
showing what the general form of recursion looks like,
what type of recursions we can support, the expres-
sive power of the language, and how to evaluate it.
We then argue that any implementation of this gen-
eral form of recursion is unlikely to perform well on
real world data, so we restrict it to the so called lin-
ear recursion, which is well known in the relational
context [1,24]. We then argue that even this restricted
class of queries can express most use cases for recur-
sion found in practice. Next, we develop an elegant al-
gorithm for evaluating this class of recursive queries
and show how it can be implemented on top of an exist-
ing SPARQL system. For our implementation we use

J. Reutter et al. / Recursion in SPARQL 713

Apache Jena (version 3.7.0) framework [46] and we
implement recursive queries as an add-on to the ARQ
SPARQL query engine. We use Jena TDB (version 1),
which allows us not to worry about queries whose in-
termediate results do not fit into main memory, thus re-
sulting in a highly reliable system. Finally, we experi-
mentally evaluate the performance of our implementa-
tion. For this, we begin by evaluating recursive queries
in the context of smaller datasets such as YAGO and
LMDB. We then compare our implementation to Jena
and Virtuoso when it comes to property paths, using
the GMark graph database benchmark [9], allowing us
to gauge the effect of dataset size and query selectiv-
ity on execution times. In order to see how our solu-
tion scales, we also use the wikidata database and test
the performance of recursive queries in this setting.1

We note that our main objective is not to find an op-
timal algorithms for evaluating recursion in SPARQL,
but rather to show that recursion can be added in a non-
intrusive way to the language, while still being capable
of processing realistic workloads.

Related work As mentioned previously the most
common type of recursion implemented in SPARQL
systems are property paths. This is not surprising as
property paths are a part of the latest language standard
and there are now various systems supporting them ei-
ther in a full capacity [25,52], or with some limitations
that ensure they can be efficiently evaluated, most no-
table amongst them being Virtuoso [38]. The systems
that support full property paths are capable of return-
ing all pairs of nodes connected by a property path
specified by the query, while Virtuoso needs a starting
point in order to execute the query. From our analysis
of expressive power we note that recursive queries we
introduce are capable of expressing the transitive clo-
sure of any binary operator [31] and can thus be used
to express property paths and any of their extensions
[5,21,30,40,43]. Regarding attempts to implement a
full-fledged recursion as a part of SPARQL, there have
been none as far as we are aware. There were some
attempts to use SQL recursion to implement property
paths [51], or to allow recursion as a programming lan-
guage construct [8,35], however none of them view re-
cursion as a part of the language, but as an outside add-
on. On the other hand, there is a wide body of work
on implementing more powerful recursion in terms of
datalog or other variants of logic programming (see

1The implementation, test data, and complete formulation of all
the queries can be found at https://alanezz.github.io/RecSPARQL/.

e.g. [6,12,36]), but in this paper we are more interested
in functionalities that can be added to SPARQL with
little cost to systems in terms of extra software devel-
opment.

Remark A preliminary version of this article was pre-
sented at the International Semantic Web Conference
in 2015 [44]. The main contributions added to this
manuscript not present in the conference version can
be summarized as follows:

– Proofs of all the results. While the conference
version of the paper provides only brief sketches
of how the main results are proved, here we give
complete proofs of all the stated theorems.

– Convergence conditions for recursion. We refine
the analysis of when the recursion converges over
RDF datasets, and fix a gap present in the confer-
ence version of the paper by introducing the no-
tion of domain preserving queries.

– Analysis of expressive power. We analyse the ex-
pressive power of our language by comparing it to
previous proposals, including Datalog [1], regular
queries [43], and TriAL [32].

– Support for negation. We discuss possible exten-
sions to the semantics in order to support nega-
tion inside recursive queries, or the BIND opera-
tor, which allows creating new values.

– Extensive experimental evaluation. The confer-
ence version of the paper only showcased the
performance of our implementation over smaller
datasets. Here we do a more robust analysis us-
ing the GMark graph database benchmark and
the Wikidata dataset, in order to compare our ap-
proach to existing systems.

2. Preliminaries

Before defining our recursive operator we present
the fragment of RDF and SPARQL we support. We
first define what an RDF graph is, what operators we
support and then we define their syntax and semantics.

RDF graphs and datasets. RDF graphs can be seen
as edge-labeled graphs where edge labels can be nodes
themselves, and an RDF dataset is a collection of RDF
graphs. Formally, let I be an infinite set of IRIs and L
an infinite set of Literals.2 An RDF triple is a tuple

2For clarity of presentation we do not include blank nodes in our
definitions.

https://alanezz.github.io/RecSPARQL/

714 J. Reutter et al. / Recursion in SPARQL

(s, p, o) from (I ∪ L) × I × (I ∪ L), where s is called
the subject, p the predicate, and o the object. We recall
the definition of IRI given in [7]. An IRI is an identi-
fier of resources that extends the syntax of URIs to a
much wider repertoire of characters for international-
ization purposes. In the context of Semantic Web, IRIs
are used for denoting resources.

An RDF graph is a finite set of RDF triples, and
an RDF dataset is a set {G0, 〈u1,G1〉, . . . , 〈un,Gn〉},
where G0, . . . , Gn are RDF graphs and u1, . . . , un are
distinct IRIs. The graph G0 is called the default graph,
and G1, . . . ,Gn are called named graphs with names
u1, . . . , un, respectively. For a dataset D and IRI u we
define grD(u) = G if 〈u,G〉 ∈ D and grD(u) = ∅
otherwise. We also use G and D to denote the sets of
all RDF graphs and datasets, correspondingly.

Given two datasets D and D′ with default graphs
G0 and G′

0, we define the union D ∪ D′ as the dataset
with the default graph G0 ∪ G′

0 and grD∪D′(u) =
grD(u)∪grD′(u) for any IRI u. Unions of datasets with-
out default graphs is defined in the same way, i.e., as
if the default graph was empty. Finally, we say that
a dataset D is contained in a dataset D′, and write
D ⊆ D′ if (1) the default graph G in D is contained
in the default graph G′ in D′, and (2) for every graph
〈u,G〉 in D, there is a graph 〈u,G′〉 in D′ such that
G ⊆ G′. Now we define the syntax and semantics
of the fragment of SPARQL we will be working on
through this paper, which is based on the one presented
in [27].

SPARQL syntax. We assume a countable infinite set
V, called the set of variables, ∅ the unbound value and
a set F, called the set of functions, that consists in func-
tions of the form f : (I ∪ L ∪ {∅})n → I ∪ L ∪ {∅}.
The prefix “?” is used to denote variables (e.g., ?x).

The set of SPARQL queries is defined recursively as
follows:

– An element of (I ∪ V) × (I ∪ V) × (I ∪ L ∪ V)

is a query. Queries of this form are called triple
patterns.

– If Q1,Q2 are queries, then:

∗ (Q1 UNION Q2) is a query called a UNION
query.

∗ (Q1 AND Q2) is a query called an AND query.
∗ (Q1 OPTIONAL Q2) is a query called an OP-

TIONAL query.
∗ (Q1 MINUS Q2) is a query called a MINUS

query.

– If Q is a query and g is a variable or an IRI, then
(GRAPH g Q) is a query called a GRAPH query.

– If Q is a query and X ⊂ V is a finite set of vari-
ables, then (SELECT X WHERE Q) is a query
called a SELECT query.

– If Q is a query and ϕ is a SPARQL buit-in con-
dition (see below), then (Q FILTER ϕ) is a query
called a FILTER query.

– If Q is a query, f : (I ∪ L ∪ {∅})n → (I ∪ L ∪
{∅}) is a function in F, and ?y, ?x1, . . . , ?xn are
variables such that ?y does not occur in Q nor
in {?x1, . . . , ?xn}, then (Q BIND f (?x1, . . . , ?xn)

AS ?y) is a BIND query.
– A SPARQL built-in condition (or simply a filter-

condition) is defined recursively as follows:

∗ An equality t1 = t2, where t1, t2 are elements
of I ∪ L ∪ V, is a filter-condition.

∗ If ?x is a variable then bound(?x) is a filter-
condition.

∗ A Boolean combination of filter-conditions
(with operators ∧, ∨, and ¬) is a filter-condi-
tion.

Notably, we have chosen to rule out the EXISTS
keyword. This is because of a disagreement in the se-
mantics of this operator (see the discussion in [27]).
However, once this agreement is settled, extending
all of our results for queries with EXISTS will be a
straightforward task.

Mappings and mappings sets. Since we have all the
syntax of the language, we have to discuss the seman-
tics, but before, we need to introduce the notion of
mappings and some operators over sets of mappings.
A SPARQL mapping is a partial function μ : V →
I ∪ L. Abusing notation, for a triple pattern t we de-
note by μ(t) the triple obtained by replacing the vari-
ables in t according to μ. Additionally, when X is a set
of variables, and μ a mapping, we denote by μX the
mapping with the domain dom(μ) ∩ X , and such that
μX (?x) = μ(?x), for every ?x in its domain.

Two mappings μ1 and μ2 are said to be compati-
ble, denoted μ1 ∼ μ2 if and only if for every com-
mon variable X holds μ1(X) = μ2(X). Given two
compatible mappings μ1 and μ2, the join of μ1 and
μ2, denoted μ1 � μ2, is the mapping with domain
dom(μ1)∪dom(μ2) that is compatible with μ1 and μ2.

Let �1 and �2 be two sets of mappings. Then, the
operators ��, ∪, −, and �� are defined over sets of map-

J. Reutter et al. / Recursion in SPARQL 715

pings as follows:

�1 �� �2 = {μ1 � μ2 |
μ1 ∈ �1, μ2 ∈ �2, μ1 ∼ μ2},

�1 ∪ �2 = {μ | μ ∈ �1 or μ ∈ �2},
�1 − �2 = {μ1 | μ1 ∈ �1, and there does

not exist μ2 ∈ �2, μ1 ∼ μ2},
�1 �� �2 = (�1 �� �2) ∪ (�1 − �2).

Given a query Q we write var(Q) to denote the set
of variables occurring in Q. We use this notation also
for filter-conditions, i.e., var(ϕ) are the variables oc-
curring in the filter-condition ϕ.

SPARQL semantics. Let D = {G0, 〈u1,G1〉, . . . ,
〈un,Gn〉} be a dataset, G a graph among G0,G1, . . . ,

Gn and Q a SPARQL query. Then, the evaluation of Q

over D with respect to G, denoted �Q�D
G , is the set of

mappings recursively defined as follows:

– If t is a triple pattern, then �t �D
G is the set of all

mappings μ such that dom(μ) = dom(t) and
μ(t) ∈ G.

– If Q is (Q1 AND Q2) then �Q�D
G = �Q1 �D

G ��

�Q2 �D
G .

– If Q is (Q1 UNION Q2) then �Q�D
G = �Q1 �D

G ∪
�Q2 �D

G .
– If Q is (Q1 MINUS Q2) then �Q�D

G = �Q1 �D
G −

�Q2 �D
G .

– If Q is (Q1 OPTIONAL Q2) then �Q�D
G =

�Q1 �D
G �� �Q2 �D

G .
– If Q is (GRAPH g Q′), then �Q�D

G = �Q′�D
grD(g),

if g ∈ I, or �Q�D
G = ⋃

u∈I(�Q′�D
grD(u) �� {g �→

u}) in case of g ∈ V.
– If Q is (SELECT X WHERE Q1) then �Q�D

G =
{μX | μ ∈ �Q1 �D

G}.
– If Q is (Q1 FILTER ϕ) then �Q�D

G is the set of
mappings μ ∈ �Q1 �G such that μ(ϕ) is true.

– If Q is (Q1 BIND f (?x1, . . . , ?xn) AS ?y) then let
μ be a mapping and yμ be the value f (μ(?x1),

. . . , μ(?xn)). Then, �Q�D
G is the set of SPARQL

mappings

{μ ∈ �Q1 �D
G | yμ = ∅}

∪ {
μ � {?y �→ yμ} |

μ ∈ �Q1 �D
G and yμ �= ∅

}
.

And finally, we define the semantics of built-in con-
ditions. Let μ be a finite mapping from variables to el-
ements in I ∪ L, ϕ be a SPARQL filter-condition, and
t1, t2 be elements in V ∪ I ∪ L. Let ν : V ∪ I ∪ L →
V ∪ I ∪ L be the function defined as

ν(t) =

⎧⎪⎨
⎪⎩

μ(t) if t ∈ dom(μ),

∅ if t ∈ V \ dom(μ),

t if t /∈ V.

The truth value of μ(ϕ) is defined recursively as fol-
lows:

– If ϕ is an equality t1 = t2 then:

1. μ(ϕ) is error if ν(t1) = ∅ or ν(t1) = ∅.
2. μ(ϕ) is true if ν(t1) �= ∅, ν(t1) �= ∅, and

ν(t1) = ν(t2).
3. μ(ϕ) is false if ν(t1) �= ∅, ν(t1) �= ∅, and

ν(t1) �= ν(t2).

– If ϕ is an expression of the form bound(?x) then
μ(ϕ) is true if ?x ∈ dom(μ). Otherwise, μ(ϕ) is
false.

– If ϕ is a Boolean combination of conditions us-
ing operators ∧, ∨ and ¬, then the truth value of
μ(ϕ) is the usual for 3-valued logic (where error
is interpreted as unknown).

The CONSTRUCT operator The fragment of
SPARQL graph patterns, as well as its generalisation
to SELECT queries, has drawn most of the attention in
the Semantic Web community. However, as the results
of such queries are set of mappings instead of graphs,
we shall use the CONSTRUCT operator in order to ob-
tain a base for recursion. A SPARQL CONSTRUCT
query, or c-query for short, is an expression

CONSTRUCT H WHERE Q,

where H is a set of triples from (I ∪ V) × (I ∪ V) ×
(I ∪ V), called a template,3 and Q is a SPARQL query.

The idea behind the CONSTRUCT operator is that
the mappings resulting of evaluating Q over the dataset
are used to construct an RDF graph according to the
template H : for each such mapping μ, one replaces
each variable ?x in H for μ(?x), and add the resulting
triples to the answer. Since all the patterns in the tem-
plate are triples we will end up with an RDF graph as

3For brevity we leave out FROM named constructs, and we leave
the study of blanks in templates as future work.

716 J. Reutter et al. / Recursion in SPARQL

Fig. 2. Graphs used for Example 2.1. The prefixes foaf: and
prov: are omitted.

desired. We illustrate how they work by means of an
example.

Example 2.1. Let G be the graph in Fig. 1, and
G1 the graph in Fig. 2(a). Suppose that we want to
query both graphs to obtain a new graph where each
article is linked to the email of a user who mod-
ified it. Assuming that we have a dataset with the
default graph G and that the IRI identifying G1 is
http://db.ing.puc.cl/mail, this would be
achieved by the following SPARQL CONSTRUCT
query q:

We call ans(q,D) the result of evaluating q over
D. In this case, it is depicted in Fig. 2. Formally,
the answer ans(q,D) to a c-query of the form q =
CONSTRUCT H WHERE Q over a dataset D with

default graph G0 is the RDF graph consisting of all
triples in μ(H), for each mapping μ in �Q�D

G0
.

For readability, we will use Q to refer to SPARQL
queries using the SELECT form, and q for c-queries
whenever it is convenient to use this distinction. How-
ever, we often deal with queries that can be of either
form. In this case, we use the notation ans(q,D) to
speak of the answer of q over dataset D. it is defined
as above if q is a c-query, and we define ans(q,D) =
�q�D

G0
, for G0 the default graph of D, when q is a query

of the SELECT form.

3. Adding recursion to SPARQL

The most basic example of a recursive query in the
RDF context is that of reachability: given a resource
x, compute all the resources that are reachable from x

via a path of arbitrary length. These type of queries,
amongst others, motivated the inclusion of property
paths into the SPARQL 1.1 standard [26].

However, as several authors subsequently pointed
out, property paths fall short when trying to express
queries that involve more complex ways of navigat-
ing RDF documents (cf. [5,17,18,40]) and as a re-
sult several extensions have been brought forward to
combat this problem [2,13,21,30,32,40]. Almost all of
these extensions are also based on the idea of com-
puting paths between nodes in a recursive way, and
thus share a number of practical problems with prop-
erty paths. Most importantly, these queries need to be
implemented using algorithms that are not standard in
SPARQL databases, as they are based on automata-
theoretic techniques, or clever ways of doing Breadth-
first search over RDF documents.

3.1. A fixed point based recursive operator

We have decided to implement a different approach
and define a more expressive recursive operator that
allows us compute the fixed point of a wide range of
SPARQL queries. This is based on the recursive op-
erator that was added to SQL when considering sim-
ilar challenges. We cannot define this type of oper-
ator for SPARQL SELECT queries, since these re-
turns mappings and thus no query can be applied to
the result of a previous query, but we can do it for
CONSTRUCT queries, since these return RDF graphs.
Following [31], we now define the language of Recur-
sive Queries. Before proceeding with the formal def-
inition we illustrate the idea behind such queries by
means of an example.

http://db.ing.puc.cl/mail

J. Reutter et al. / Recursion in SPARQL 717

Example 3.1. Recall graph G from Fig. 1. In the In-
troduction we made a case for the need of a query that
could compute all pairs of articles (A,A′) such that A

is linked to A′ by a path of wasRevisionOf links and
where all of the revisions along the way were made by
the same user. We can compute this with the recursive
query of the Fig. 3.

Let us explain how this query works. The second
line specifies that a temporary graph named:

http://db.ing.puc.cl/temp

will be constructed according to the query below
which consists of a UNION of two subpatterns. The
first pattern does not use the temporary graph and it
simply extracts all triples (A,U,B) such that A was
a revision of B and U is the user generating this revi-
sion. All these triples should be added to the temporary
graph.

Then comes the recursive part: if (A,U,B) and
(B,U,C) are triples in the temporary graph, then we
also add (A,U,C) to the temporary graph.

We continue iterating until a fixed point is reached,
and finally we obtain a graph that contains all the
triples (A,U,A′) such that A is linked to A′ via a path
of revisions of arbitrary length but always generated by
the same user U . Finally, the SELECT query extracts
all such pairs of articles from the constructed graph.

As hinted in the example, the following is the syntax
for recursive queries:

Definition 3.1 (Syntax of recursive queries). A recur-
sive SPARQL query, or just recursive query, is either a
SPARQL query or an expression of the form

WITH RECURSIVE t AS {q1} q2, (1)

where t is an IRI from I, q1 is a c-query, and q2 is
a recursive query. The set of all recursive queries is
denoted rec-SPARQL.

Note that in this definition q1 is allowed to use the
temporary graph t , which leads to recursive iterations.
Furthermore, the query q2 could be recursive itself,
which allows us to compose recursive definitions.

As usual with this type of queries, semantics is given
via a fixed point iteration.

Definition 3.2 (Semantics of recursive queries). Let q

be a recursive query of the form (1) and D an RDF
dataset. If q is a non recursive query then ans(q,D)

is defined as usual. Otherwise the answer ans(q,D) is

Algorithm 1 Computing the answer for recursive c-
queries of the form (1)
Input: Query q of the form (1), dataset D

Output: Evaluation ans(q,D) of q over D

1: Set Gtemp = ∅ named after the IRI t

2: loop
3: Set GTemp = ans(q1,D ∪ {〈t,GTemp〉})
4: if ans(q1,D ∪ {〈t,GTemp〉}) = GTemp then
5: break
6: end if
7: end loop
8: return ans(q2,D ∪ {〈t,GTemp〉})

equal to ans(q2,DLFP), where DLFP is the least fixed
point of the sequence D0,D1, . . . with D0 = D and

Di+1 = D ∪ {〈
t, ans(q1,Di)

〉}
, for i � 0.

When DLFP exists and is a finite set, we say that the
recursive query q converges over D.

In this definition, D1 is the union of D with a tem-
porary graph t that corresponds to the evaluation of q1
over D, D2 is the union of D with a temporary graph
t that corresponds to the evaluation of q1 over D1, and
so on until Di+1 = Di . Note that the temporary graph
is completely rewritten after each iteration. This defini-
tion suggests the pseudocode of Algorithm 1 for com-
puting the answers of a recursive query q of the form
(1) over a dataset D.4

To clarify Definition 3.2, we show how the tem-
porary graph <http://db.ing.puc.cl/temp>
evolves during the execution of the query from Fig. 3,
when evaluated the graph in Fig. 1. The different val-
ues of temporary graph are show in Fig. 4. Here we
call Gi

Temp the instance of GTemp at the ith iteration of
the loop presented in the Algorithm 1. We have two
things to note: (1) G0

Temp is an empty graph, and (2)
since we are working with graphs, there are no dupli-
cated triples. Finally, we have G3

Temp = G4
Temp, and

thus we stop the loop at the fourth iteration.
Obviously, the semantics of recursive queries only

makes sense as long as the required fixed point exists.
Unfortunately, we show in the following section that
there are queries for which this operator indeed does
not have a fixed point. Thus, we need to restrict the

4For readability we assume that t is not a named graph in D. If
this is not the case then the pseudocode needs to be modified to meet
the definition above.

http://db.ing.puc.cl/temp
http://db.ing.puc.cl/temp

718 J. Reutter et al. / Recursion in SPARQL

Fig. 3. Example of a recursive query.

G1
Temp

s p o
:72 :user1 :79
:79 :user1 :142

:142 :user1 :145
:145 :user2 :317

G2
Temp

s p o
:72 :user1 :79
:79 :user1 :142

:142 :user1 :145
:145 :user2 :317
:72 :user2 :142
:79 :user2 :145

G3
Temp

s p o
:72 :user1 :79
:79 :user1 :142
:142 :user1 :145
:145 :user2 :317
:72 :user2 :142
:79 :user2 :145
:72 :user2 :145

Fig. 4. The step-by-step evaluation of the recursive graph <http://db.ing.puc.cl/temp>.

language that can be applied to such inner queries.5 We
also discuss other possibilities to allow us using any
operator we want.

3.2. Ensuring fixed point of queries

If we want to guarantee the termination of Algo-
rithm 1, we need to impose two conditions. The first,
and most widely studied, is that query q1 must be
monotone: a c-query q is monotone if for all pair
of datasets D1, D2 where D1 ⊆ D2 it holds that
ans(q,D1) ⊆ ans(q,D2). However, we also need to
impose that the recursive c-query q1 preserves the do-
main: we say that a c-query q preserves the domain if
there is a finite set S of IRIs such that, for every dataset
D, the IRIs in q(D) either come from S or are already
present in D. Let us provide some insight about the
need for these conditions.

5It should be noted that the recursive SQL operator has the same
problem, and indeed the SQL standard restricts which SQL features
can appear inside a recursive operator.

Monotonicity The most typical example of a prob-
lematic non-monotonic behaviour is when we use
negation to alternate the presence of some triples in
each iteration of the recursion, and therefore come up
with recursive queries where the fixed point does not
exists.

Example 3.2. Consider the following query that con-
tains a MINUS clause.

http://db.ing.puc.cl/temp

J. Reutter et al. / Recursion in SPARQL 719

Also consider a instance for the default graph with
only one triple:

:s :p "b"

In the first iteration, the graph <temp>would have the
triple:

:s :p "a"

but in the next iteration the graph <temp> will
be empty because of the MINUS clause. Then, the
<temp> graph will be alternating between an empty
graph and a graph with the triple :s :p “a”. Thus,
the fixed point does not exist for this query.

Similar examples can be obtained with other
SPARQL operators that can simulate negation, such as
MINUS or even arbitrary OPTIONAL [4,29].

Preserving the domain The BIND clause allows us to
generate new values that were not in the domain of
the database before executing a recursive query. Since
completely new values may be generated for the tem-
porary graph at each iteration, this may also imply that
a (finite) fixed point may not exists, even if the query
is monotone.

Example 3.3. Consider the following query that
makes use of the BIND clause.

The base graph stores the age for all the people in the
database. In each iteration, we will increase by one all
the objects in our graph and then we will store triples
with those new values. As we mentioned, in each it-
eration the query will try to insert new triples into the
database, and will thus never terminate adding new
triples into the dataset.

On the other hand, it is easy to verify that the query
from Example 3.3 is monotone. By the Knaster–Tarski
theorem [45], a monotone query always has a fixed
point, however, such a fixed point need not be a finite
dataset. Indeed, the fixed point for the query in Exam-
ple 3.3 would have to contain triples linking each per-
son in the original dataset with all the numbers larger
than her or his initial age. This would make the fixed
point infinite and thus not be a valid RDF graph.

One way to ensure that a fixed point of a monotone
query is necessarily finite, is to make the underlying
domain over which it operates finite. For instance, in
Example 3.3, we are assuming that the domain over
which queries operate is the set of all possible triple
over I ∪ L, and not just the ones using IRIs and liter-
als from the queried dataset. On the other hand, in the
case of domain preserving queries, when considering
the sequence (Di)i from Definition 3.2, our monotone
queries can only construct triples over a finite set of
IRIs and literals (the initial dataset, plus another finite
set), thus making the fixed point necessarily finite.

Besides the BIND operator, we can also simulate the
creation of new values by means of blanks in the con-
struct templates, or even with blanks inside queries or
subqueries.

Existence of a fixed point If we are working with
queries that are both monotone and domain preserv-
ing, we can guarantee that the sequence (Di)i from
Definition 3.2 always converges to a well defined RDF
dataset. More precisely, as an immediate consequence
of the Knaster-Tarski theorem [45], we can obtain the
following:

Proposition 3.1. Let D be a dataset and q1 and q2
two monotone queries that are domain preserving, and
let q = WITH RECURSIVE t AS {q1} q2 be a recur-
sive query. Then q converges over D, and we can use
Algorithm 1 to evaluate q.

It is important to note that the query q1 need not
be monotone over the domain of all possible RDF
datasets in order for q to converge over D. Indeed, in
order to apply the Knaster–Tarski theorem, it suffices
that q1 is monotone over the datasets that appear in the
sequence (Di)i from Definition 3.2.

Next, we study which SPARQL queries are both do-
main preserving and monotone, in order to restrict the
recursion to such queries.

3.3. Fragments where the recursion converges

We know that monotonicity and domain preserva-
tion allows us to define a class of recursive queries

720 J. Reutter et al. / Recursion in SPARQL

which will always have a least fixed point. The ques-
tion then is: how to define a fragment of SPARQL that
is both monotonic and domain preserving?

First, how can we guarantee that queries are mono-
tonic? An easy option here is to simply disallow all
the operators which can simulate negation such as
OPTIONAL, MINUS, or negative FILTER conditions.
Second, when it comes to guaranteeing that queries are
domain preserving, we can simply prohibit them to use
operators that can create new values such as BIND, or
to use blanks in construct templates, queries or sub-
queries. This leads us to a first subclass of SPARQL
queries for which can be used inside recursive queries.

Definition 3.3 (positive SPARQL and rec-SPARQL).
A SPARQL query is positive if it does not use any of
the following operators:

1. It does not use operators OPTIONAL, MINUS,
BIND;

2. Every construct (Q FILTER ϕ) is such that ϕ

uses only equalities and positive boolean combi-
nations using ∧ and ∨; and

3. In every subquery (SELECT X WHERE Q) we
have that Q is also positive.

Likewise, a positive c-query is a c-query using posi-
tive SPARQL in its definition. The language of posi-
tive rec-SPARQL comprises every positive SPARQL
query, and also queries of the form

WITH RECURSIVE t AS {q1} q2, (2)

where t is an IRI from I, q1 is a positive c-query, and
q2 is a positive rec-SPARQL query.

Given that positive SPARQL queries are both mono-
tone and domain preserving, as an easy corollary of
Proposition 3.1, we obtain the following:

Proposition 3.2. If we have a recursive query q =
WITH RECURSIVE t AS {q1} q2, where q1 a positive
query, and q2 is a positive rec-SPARQL query, then q

converges over D.

While positive queries do the trick, one might argue
that they are quite restrictive. We can therefore wonder,
whether it is possible to allow some form of negation,
or the use of OPTIONAL?

In fact, literature has pointed out some more milder
restrictions, that still do the trick. For instance, even
though we disallow OPTIONAL, we note that our frag-
ment of SPARQL is expressive enough to express rec-
SPARQL queries in which q1 is given by positive

SPARQL with well-designed optionals [40]. This is
because for CONSTRUCT queries, the fragment we
consider has been shown to contain queries defined by
union of well designed graph patterns [31]).

The second, more expressive fragment to consider,
loosens the restrictions we put on the use of negation.
The idea is that bad behaviour of negation, such as the
one shown in Example 3.2, only occurs when negation
involves the same graph that is being constructed in the
fixed point. Therefore, we will consider a fragment of
rec-SPARQL queries which allow negation whenever
it does not involve the graph being constructed in the
recursive portion of the query.

Definition 3.4 (Stratified positive rec-SPARQL).
Stratified positive rec-SPARQL extends the language
of positive rec-SPARQL by allowing queries of the
form (2) above in which q1 can use constructs of the
form (Q1 MINUS Q2), as long as every expression
(GRAPH g Q) in Q2 is such that g is an IRI different
from t .

Essentially, with stratified positive rec-SPARQL we
allow some degree of negation, but we need to make
sure this negation does not involve the temporal graph
under construction.

While stratified positive rec-SPARQL need not be
monotone with respect to the domain of all possible
RDF datasets, they are monotone in the context of the
sequence (Di)i from Definition 3.2. More precisely,
any stratified positive rec-SPARQL of the form (2) is
such that q1 is monotone with respect to the named
graph t , meaning that, for datasets D and D′ that only
differ in the named graph t , if 〈t,G〉 is the graph named
t in D, 〈t,G′〉 is the graph t in D′, and G ⊆ G′, then
ans(q1,D) ⊆ ans(q1,D

′). We can then confirm that
our semantics is well-defined for positive or stratified
positive rec-SPARQL as an easy corollary of Proposi-
tion 3.1.

Proposition 3.3. Let D be a dataset and q a stratified
positive (or just positive) recursive c-query of the form
WITH RECURSIVE t AS {q1} q2. Then q converges
over D.

3.4. Expressive power

As a way to gauge the power of our language,
we turn to the language datalog. Datalog (and ASP)
has been used to pinpoint the expressive power of
SPARQL (see e.g. [41]). For our case, it suffices to de-
fine positive Datalog, and Datalog with negation under
stratified semantics.

J. Reutter et al. / Recursion in SPARQL 721

A positive Datalog program � consists of a finite
set of rules of the form S(x̄) ← R1(ȳ1), . . . , Rm(ȳm),
where S,R1, . . . , Rm are predicate symbols, ȳ1, . . . ,

ȳm are tuples in V ∪ I and x̄ is a tuple of vari-
ables already appearing in ȳ1, . . . , ȳm. In a rule of this
form, S is said to appear in the head of the rule, and
R1, . . . , Rm in the body of the rule. A predicate that
occurs in the head of a rule is called intensional pred-
icate. The rest of the predicates are called extensional
predicates. Further, we assume that each program has
a distinguished intensional predicate called the answer
of �, and denoted by Ans.

Let P be an intensional predicate of a positive Dat-
alog program � and I a set of predicates. For i � 0,
P i

�(I) denote the collection of facts about the inten-
sional predicate P that can be deduced from I by at
most i applications of the rules in �. Let P ∞

� (I) be⋃
i�0 P i

�(I). Then, the answer �(I) of � over I is
Ans∞

� (I).
Datalog programs with negation extend positive dat-

alog with rules of the form

S(x̄) ← R1(ȳ1), . . . , Rm(ȳm),

¬P1(z̄1), . . . ,¬Pn(z̄n),

in which we require that every variable in z̄1, . . . , z̄n

is also in ȳ1, . . . , ȳm. We are interested in datalog pro-
grams with stratified negation. The dependency graph
of a program � is a directed graph whose nodes are the
predicates of � and whose edges can be labelled with
+ and −. There is a + edge from predicate Q to pred-
icate P , if Q occurs positively in the body of a rule ρ

of � and P is the predicate in the head of ρ. Likewise,
there is an edge labelled with − if Q occurs negated in
the body of a rule the body of a rule ρ of � and P is
the predicate in the head of ρ. A program � has strat-
ified negation if one can partition the set of predicates
into sets C1, . . . , C�, such that (1) for each edge from
Q to P labelled with + in the dependency graph of
�, if Q belongs to set Ci , then P belongs to Cj with
j � i, and (2) for each edge from Q to P labelled with
− in the dependency graph of �, if Q belongs to set
Ci , then P belongs to Cj with j > i.

For positive datalog programs � with stratified
negation, we can compute the answer �(I) of �

over a set I of predicates as follows. Let C1, . . . , C�

be a partition satisfying the conditions for stratified
negation. We compute sets I1, . . . , I� of predicates,
as follows. Let I = I0. For each 1 � k � �, let
�k be the set of rules mentioning a predicate in Ck

on their head. Notice that by definition of stratifica-

tion, all predicates mentioned in the head or body
of �k must belong to some Ck′ with k′ � k. Then
Ik = Ik−1 ∪ ⋃

P∈Ck
P ∞

�k
(Ik−1). Finally, the answer

�(I) is Ans∞
��

(I).
Since we are using Datalog to query RDF databases,

we only focus on programs in which all extensional
predicates are ternary predicates of the form Tg , with
g an IRI. We can then represent each dataset D as a set
I of predicates containing one ternary relation Tg per
each graph in g. We can then treat datalog programs as
c-queries: on input D, the constructed graph of a pro-
gram � contains all predicates in �(I), where I is the
representation of the dataset D we have just defined.
Abusing the notation, we will write �(D) to speak of
this RDF graph.

In order to study the expressive power of rec-
SPARQL, we first compare positive c-queries and
stratified positive c-queries with datalog. It follows
from Polleres and Wallner [41] (see Table 1) that our
fragment of positive c-queries can be translated into
positive datalog, in the following sense: For each c-
query q one can construct a positive datalog program
� such that ans(q,D) = �(D) for every dataset D.
Moreover, by inspecting the construction by Polleres
and Wallner, one also gets that stratified positive c-
queries can be translated into datalog with stratified
negation, in the same terms. From these results, we
further obtain that any positive or stratified positive
rec-SPARQL query can be translated as well into posi-
tive datalog or datalog with stratified negation, respec-
tively.

Proposition 3.4. Let q be a positive (resp. stratified
positive) rec-SPARQL query. Then one can construct a
positive (resp. stratified positive) datalog program �

such that ans(q,D) = �(D) for every dataset D.

Proof. The idea is to proceed inductively. For a query
q of the form WITH RECURSIVE t AS {q1} q2, let
�1 be the translation of q1, and let Ans1 be the answer
predicate of q1. Likewise, let �2 the translation of q2.
Our program � for q contains all rules in �1 and �2,
plus the rule

Tt (x, y, z) ← Ans1(x, y, z) (3)

Where Tt is the predicate representing all triples in
graph named t . This rule is positive, and maintains
stratification. The answer predicate of � is Ans2.

We note that the other direction is currently open:
we do not know if every stratified positive datalog
program can be translated into stratified positive rec-

722 J. Reutter et al. / Recursion in SPARQL

SPARQL. On the surface, and given the result that
SPARQL can express all stratified positive datalog
queries (see e.g. [31], it would appear that we can.
However, rules in datalog programs may incur in all
sort of simultaneous fixed points, as the dependency
graph in programs need not be a tree. In standard dat-
alog one can always flatten these simultaneous rules
so that the resulting dependency graph is tree-shaped,
but the only constructions we are aware of must incur
in predicates with more than three positions, that we
don’t currently know how to store in the graphs con-
structed by rec-SPARQL.

On the other hand, when datalog programs disallow
all sort of simultaneous fixed points, a translation is
surely possible.

Proposition 3.5. Let � be a positive (resp. stratified
positive) datalog program, and assume that the only
cicles on the dependency graph of � are self loops.
Then one can build a positive (resp. stratified positive)
rec-SPARQL query q such that �(D) = ans(q,D) for
every dataset D.

Proof. That non-recursive datalog can be expressed as
a c-query already follows from previous work [31]. By
examining that proof, we get the following result: for
each predicate S in a non-recursive program �, if we
assume that for each rule in � of the form

S(x̄) ← R1(ȳ1), . . . , Rm(ȳm),

¬P1(z̄1), . . . ,¬Pn(z̄n),

mentioning S, we have that all collections of triples
R1

∞
� (D), . . . , Rm

∞
� (D), P1

∞
� (D), . . . , Pn

∞
� (D) are

stored in named graphs tR1, . . . , tRm, tP1 , . . . , tPn (and
assuming again for simplicity that these graphs are
empty in D), then one can construct a c-query qS such
ans(qS,D) contains precisely S∞

� (D).
Thus, all that remains to do is to lift this result for

datalog programs when the only recursion is given by
rules of the form

Ri(x̄) ← R1(ȳ1), . . . , Rm(ȳm),

¬P1(z̄1), . . . ,¬Pn(z̄n).

In this case, we let qRi
be the query constructed as

explained before, but we use the recursive c-query
WITH RECURSIVE tRi

AS {qRi
} q ′, with q ′ the query

SELECT * WHERE GRAPH t {x y z} that sim-
ply selects every triple from the constructed graph.

While this result may sound narrow, it already gives
us a tool to compare again some other recursive lan-
guages proposed for graphs and RDF. For example,
the language of regular queries [43] is a datalog pro-
gram whose only cicles in its dependency graph are
self loops, so we immedately have that rec-SPARQL
can express any Regular Query. Another language with
a similar recursion structure is TriAL [32], and we
can also use that rec-SPARQL can express any TriAl
query. On the other hand, it does not give us much in
terms of more expressive languages such as [6], for
which the comparison would require more work.

3.5. Complexity analysis

Since recursive queries can use either the SELECT
or the CONSTRUCT result form, there are two decision
problems we need to analyze. For SELECT queries,
we define the problem SELECTQUERYANSWERING,
that receives as an input a recursive query q using the
SELECT result form, a tuple ā of IRIs from I and a
dataset D with default graph G0, and asks whether ā is
in ans(q,D). For CONSTRUCT queries, the problem
CONSTRUCTQUERYANSWERING receives a recursive
query q using the CONSTRUCT result form, a triple
(s, p, o) over I×I×I and a dataset D, and asks whether
this triple is in ans(q,D).

Proposition 3.6. The problem SELECTQUERYAN-
SWERING is PSPACE-complete and CONSTRUCT-
QUERYANSWERING is NP-complete. The complex-
ity of SELECTQUERYANSWERING drops to �

p

2 if one
only consider SELECT queries given by unions of well-
designed graph patterns.

Proof. It was proved in [31] that the problem CON-
STRUCTQUERYANSWERING is NP-complete for non
recursive c-queries, and Pérez et al. show in [39] that
the problem SELECTQUERYANSWERING if PSPACE-
complete for non-recursive SPARQL queries, and �

p

2
for non-recursive SPARQL queries given by unions of
well-designed graph patterns. This immediately gives
us hardness for all three problems when recursion is
allowed.

To see that the upper bound is maintained, note that
for each nested query, the temporal graph can have at
most |D|3 triples. Since we are computing the least
fixed point, this means that in every iteration we add
at least one triple, and thus the number of iterations is
polynomial. This in turn implies that the answer can
be found by composing a polynomial number of NP
problems, to construct the temporal graph correspond-

J. Reutter et al. / Recursion in SPARQL 723

ing to the fixed point, followed by the problem of an-
swering the outer query over this fixed point database,
which is in PSPACE for SELECTQUERYANSWER-
ING, in �

p

2 for SELECTQUERYANSWERING assuming
queries given by unions of well designed patterns and
in NP for CONSTRUCTQUERYANSWERING. First two
classes are closed under composition with NP, and the
last NP bound can be obtained by just guessing all
meaningful queries, triples to be added and witnesses
for the outer query at the same time.

Thus, at least from the point of view of computa-
tional complexity, our class of recursive queries are
not more complex than standard select queries [39] or
construct queries [31]. We also note that the complex-
ity of similar recursive queries in most data models is
typically complete for exponential time; what lowers
our complexity is the fact that our temporary graphs
are RDF graphs themselves, instead of arbitrary sets of
mappings or relations.

For databases it is also common to study the
data complexity of the query answering problem,
that is, the same decision problems as above but
considering the input query to be fixed. We denote
this problems as SELECTQUERYANSWERING(q) and
CONSTRUCTQUERYANSWERING(q), for select and
result queries, respectively. The following shows that
the problem remains in polynomial time for data com-
plexity, albeit in a higher class than for non recursive
queries.

Proposition 3.7. SELECTQUERYANSWERING(q) and
CONSTRUCTQUERYANSWERING(q) are PTIME-
complete. They remain PTIME-hard even for queries
without negation or optional matching.

Proof. Following the same idea as in the proof of
Proposition 3.6, we see that the number of iterations
needed to construct the fixed point database is polyno-
mial. But, if queries are fixed, the problem of evalu-
ating SELECT and CONSTRUCT queries is always in
NLOGSPACE (see again [39] and [31]). The PTIME
upper bound then follows by composing a polynomial
number of NLOGSPACE algorithms.

We prove the lower bound by a reduction from the
path systems problem, which is a well known PTIME-
complete problem (c.f. [47]). The problem is as fol-
lows. Consider a set of nodes V and a unary relation
C(x) ⊆ V that indicates whether a node is coloured
or not. Let R(x, y, z) ⊆ V × V × V be a relation of
reachable elements, and the following rule for colour-
ing additional elements: if there are coloured elements

a, b such that a triples (a, b, c) is coloured, then c

should also be coloured. Finally consider a target rela-
tion T ⊆ V . The problem of path systems is to decide
if some element in T is coloured by our rule.

For our reduction we construct a database instance
and a (fixed) recursive query according to the instance
of path systems such that the result of the query is
empty if and only if T ⊆ P for the path system prob-
lem. The construction is as follows.

The database instance contains the information of
which vertex is coloured, which vertex is part of the
target relation T and the elements of the R relation:

– We define the function u which maps every vertex
to a unique URI.

– For each element v ∈ C, we add the triple
(u(v),:p,"C") to a named graph gr:C of the
database instance.

– For each element v ∈ T , we add the triple
(u(v),:p,"T") to a named graph gr:T of the
database instance.

– For each element (x, y, z) ∈ R we add the
triple (u(x), u(y), u(z)) to the default graph of
the database instance.

Thus, the recursive query needs to compute all the
coloured elements in order to check if the target rela-
tion is covered. This can be done in the following way:

It is clear that the recursive part of the query is com-
puting all the coloured nodes according to the R rela-
tion. Then in the ASK query, its result will be false iff

724 J. Reutter et al. / Recursion in SPARQL

none of the nodes in T are reachable. Note that this re-
duction can be immediately adapted to reflect hardness
for queries using CONSTRUCT or SELECT.

From a practical point of view, and even if theoreti-
cally the problems have the same combined complex-
ity as queries without recursion and are polynomial in
data complexity, any implementation of the Algorithm
1 is likely to run excessively slow due to a high de-
mand on computational resources (computing the tem-
porary graph over and over again) and would thus not
be useful in practice. For this reason, instead of imple-
menting full-fledged recursion, we decided to support
a fragment of recursive queries based on what is com-
monly known as linear recursive queries [1,24]. This
restriction is common when implementing recursive
operators in other database languages, most notably in
SQL [42], but also in graph databases [18], as it offers
a wider option of evaluation algorithms while main-
taining the ability of expressing almost any recursive
query that one could come up with in practice. For in-
stance, as demonstrated in the following section, linear
recursion captures all the examples we have consid-
ered thus far and it can also define any query that uses
property paths. Furthermore, it can be implemented in
an efficient way on top of any existing SPARQL en-
gine using a simple and easy to understand algorithm.
All of this is defined in the following section.

4. Realistic recursion in SPARQL

Having defined our recursive language, the next step
is to outline a strategy for implementing it inside of
a SPARQL system. In this section we show how this
can be done by focusing on linear queries. While the
use of linear queries is well established in the SQL
context, here we show how this approach can be lifted
to SPARQL. In doing so, we will argue that not only
do linear queries allow for much faster evaluation al-
gorithms than generic recursive queries, but they also
contain many queries of practical interest. Addition-
ally, we outline some alternatives of recursion which
can support the use of negation or BIND operators.

4.1. Linear recursive queries

The concept of linear recursion is widely used as a
restriction for fixed point operators in relational query
languages, because it presents a good trade-off be-

tween the expressive power of recursive operators and
their practical applicability.

Commonly defined for logic programs, the idea of
linear queries is that each recursive construct can refer
to the recursive graph or predicate being constructed
only once. To achieve this, our queries are made from
the union of a graph pattern that does not use the tem-
porary IRI, denoted as pbase and a graph pattern prec
that does mention the temporary IRI. Formally, a lin-
ear recursive query is an expression of the form

WITH RECURSIVE t AS {
CONSTRUCT H (4)

WHERE pbase UNION prec } qout

with H is a construct template as usual, qout a lin-
ear recursive query, pbase and prec positive SPARQL
queries, possibly with property paths, and where only
prec is allowed to mention the IRI t . We further require
that the recursive part prec mentions the temporary IRI
only once. Consequently, we define linear positive rec-
SPARQL and linear stratified positive rec-SPARQL by
restricting the operators in pbase and prec. The seman-
tics of linear positive and stratified positive recursive
queries is inherited from Definition 3.2.

Notice that we enforce a syntactic separation be-
tween base and recursive query. This is done so that we
can keep track of changes made in the temporary graph
without the need of computing the difference of two
graphs, as discussed in Section 4.2. This simple yet
powerful syntax resembles the design choices taken in
most SQL commercial systems supporting recursion,6

and is also present in graph databases [18].
To give an example of a linear query, we re-

turn to the query from Fig. 3. First, we notice that
this query is not linear. Nevertheless, it can be re-
stated as the query from Fig. 5 that uses one level of
nesting (meaning that the query qout is again a lin-
ear recursive query). We note that the union in the
first query can obviously be omitted, and is there
only for clarity (our implementation supports queries
where either pbase or prec is empty). The idea of
this query is to first dump all meaningful triples
from the original dataset into a new graph named
http://db.ing.puc.cl/temp1, and then use
this graph as a basis for computing the required reacha-

6In SQL one cannot execute a recursive query which is not di-
vided by UNION into a base query (inner query) and the recursive
step (outer query) [42].

http://db.ing.puc.cl/temp1

J. Reutter et al. / Recursion in SPARQL 725

Fig. 5. Example of a linear recursion.

bility condition, that will be dumped into a second tem-
porary graph http://db.ing.puc.cl/temp2.7

4.2. Algorithm for linear recursive queries

The main reason why linear queries are widely used
in practice is the fact that they can be computed piece
by piece, without ever invoking the complete database
being constructed. More precisely, if a query Q =
WITH RECURSIVE t AS {q1} q2 is linear, then for ev-
ery dataset D, the answer ans(Q,D) of the query can
be computed as the least fixed point of the sequence
given by

D0 = D, D−1 = ∅,

Di+1 = Di ∪ {〈
t, ans

(
q1, (D ∪ Di \ Di−1)

)〉}
.

In other words, in order to compute the i + 1-th
iteration of the recursion, we only need the original
dataset plus the tuples that were added to the tempo-
rary graph t in the i-th iteration. Considering that the
temporary graph t might be of size comparable to the
original dataset, linear queries save us from evaluat-

7Interestingly, one can show that in this case the nesting in this
query can be avoided, and indeed an equivalent non-nested recursive
query is given in the Appendix.

ing the query several times over an ever increasing
dataset: instead we only need to take into account what
was added in the previous iteration, which is generally
much smaller.

Unfortunately, it is undecidable to check whether
a given recursive query satisfies the property outlined
above (under usual complexity-theoretic assumptions,
see [23]), so this is why we must guarantee it with
syntactic restrictions. We also note that most of the
recursive extensions proposed for SPARLQ have the
aforementioned property: from property paths [26] to
nSPARQL [40], SPARQLeR [30], regular queries [43]
or Trial [32], as well as our example.

As for the algorithm, we have decided to imple-
ment what is known as seminaive evaluation, although
several other alternatives have been proposed for the
evaluation of these types of queries (see [24] for
a good survey). In order to describe our algorithm
for evaluating a query of the shape (4), we abuse
the notation and speak of qbase to denote the query
CONSTRUCT H WHERE pbase and qrec to denote the
query CONSTRUCT H WHERE prec. Our algorithm
for query evaluation is presented in Algorithm 2.

So what have we gained? By looking at Algorithm 2
one realizes that in each iteration we only evaluate
the query over the union of the dataset and the in-
termediate graph Gtemp, instead of the previous algo-

http://db.ing.puc.cl/temp2

726 J. Reutter et al. / Recursion in SPARQL

Algorithm 2 Computing the answer for linear recur-
sive c-queries of the form (4)
Input: Query Q of the form (4), dataset D

Output: Evaluation ans(Q,D) of Q over D

1: Set Gtemp = ans(qbase,D) and Gans = Gtemp
2: Set size = |Gans|
3: loop
4: Set Gtemp = ans(qrec,D ∪ {(t,Gtemp)})
5: Set Gans = Gans ∪ Gtemp
6: if size = |Gans| then
7: break
8: else
9: size = |Gans|

10: end if
11: end loop
12: return ans(qout,D ∪ {〈t,Gans〉})

rithm where one needed the whole graph being con-
structed (in this case Gans). Furthermore, qbase is eval-
uated only once, using qrec in the rest of the iterations.
Considering that the temporary graph may be large,
and that no indexing scheme could be available, this
often results in a considerable speedup for query com-
putation.

Expressive power of linear queries In Section 3.4
we show that all stratified positive recursive SPARQL
queries can be defined in datalog, but have no match-
ing result in the other direction. When it comes to lin-
ear queries, we can mirror the same result. The defi-
nition of linear datalog is quite straightforward: a dat-
alog rule is linear if there is at most one atom in the
body of the rule that is recursive with the head. For
example, the rule E(x, y) : −R(x),E(x, y) is lin-
ear, while E(x, y) : −R(x),E(x, z), E(z, y) is not,
since it uses the head predicate recursively twice. A
datalog program is linear if all of its rules are lin-
ear.

With this in mind, we can again show that ev-
ery linear positive rec-SPARQL query can be trans-
formed into linear positive datalog, and likewise for
linear stratified positive rec-SPARQL and linear strat-
ified datalog (note that the translation outlined in the
proof of Proposition 3.4 preserves linearity). Unfortu-
nately, for the other direction we have the same prob-
lem, as we are not sure whether our recursive lan-
guages can express every linear positive or stratified
positive datalog program. Of course, we can also mir-
ror Proposition 3.5 for linear queries. Thus, linear lan-

guages such as regular queries [43] or Trial [32] can be
also translated into linear queries.

4.3. Supporting arbitrary queries in recursive clauses

Although we show in Section 3 that recursive
queries which include some form of negation can be
impossible to evaluate, there is no doubt that queries
including negation are very useful in practice. In this
section we briefly discuss how such queries can be
mixed with linear recursion.

Limiting the recursion depth In practice it could hap-
pen that an user may not be interested in having all the
answers for a recursive query. Instead, the user could
prefer to have only the answers until a certain number
of iterations are performed. We propose the following
syntax for to restrict the depth of recursion to a user
specified number k:

WITH RECURSIVE t AS {
CONSTRUCT H

WHERE pbase UNION prec (5)

} MAXRECURSION k qout

Here all the keywords are the same as when defining
linear recursion, and k � 1 is a natural number. The se-
mantics of such queries is defined using Algorithm 2,
where the loop between steps 4 and 12 is executed pre-
cisely k − 1 times.

It is easy to see that this extension is useful for han-
dling queries which include negation, or which create
values by means of blanks or a BIND clause. Namely, if
we fix the number of iterations of a recursive query, we
can ensure that these queries terminate their execution,
regardless of the existence of a fixed point.

Other ways of supporting negation Limiting the
number of iterations can also give us a way of allow-
ing more complex c-queries inside the recursive part of
recursive queries. This is not an elegant solution, but
can be made to work: since the number of iterations is
bounded, we don’t longer need queries to ensure that
our graph has a fixed point operator.

We also mention that there are other, more elegant
solutions, but we do not investigate them further as
they drive us out of what can be implemented on top
of SPARQL systems, and is out of the scope of this pa-
per. For example, a possible solution to support BIND
and negation is to extend the semantics by borrowing

J. Reutter et al. / Recursion in SPARQL 727

the notion of stable models from logic programs (see
e.g. [37]). Moreover, one could redefine rec-SPARQL
to consider a partial fixed point in Definition 3.2 in-
stead of the least-fixed point. This approach simply as-
sumes a query that does not converge gives an empty
result. It is a clean theoretical solution, but it is not a
good approach for practice.

Studying these extensions to rec-SPARQL is an im-
portant topic for future work, and in particular the sta-
ble model semantics approach may require an inter-
esting combination of techniques from both databases
and logic programming.

5. Experimental evaluation

In this section we will discuss how our implemen-
tation performs in practice and how it compares to
alternative approaches that are supported by existing
RDF Systems. Though our implementation has more
expressive power, we will see that the response time of
our approach is similar to the response time of existing
approaches, and also our implementation outperforms
the existing solutions in several use cases.

Technical details Our implementation of linear re-
cursive queries was carried out using the Apache Jena
framework (version 3.7.0) [46] as an add-on to the
ARQ SPARQL query engine. It allows the user to run
queries either in main memory, or using disk stor-
age when needed. The disk storage was managed by
Jena TDB (version 1). As previously mentioned, since
the query evaluation algorithms we develop make use
of the same operations that already exist in current
SPARQL engines, we can use those as a basis for the
recursive extension to SPARQL we propose. In fact,
as we show by implementing recursion on top of Jena,
this capability can be added to an existing engine in an
elegant and non-intrusive way.8

Datasets We test our implementation using four dif-
ferent datasets. The first one is Linked Movie Database
(LMDB) [33], an RDF dataset containing information
about movies and actors. The second dataset we use is
a part of the YAGO ontology [50] and consists of all
the facts that hold between instances. For the experi-
ments the version from May 2018 was used. In order
to test the performance of our implementation on syn-
thetic data, we turn to the GMark benchmark [9], and
generate data with different characteristics using this

8The implementation we use is available at https://alanezz.github.
io/RecSPARQL/.

tool. Finally, we use the Wikidata “truthy” dump from
2018/11/15 containing over 3 billion triples, in or-
der to test whether our implementation scales. All the
datasets apart from Wikidata can be found at https://
alanezz.github.io/RecSPARQL/.

Experiments The experiments we run are divided
into four batches:

– Common use cases. In the first round of exper-
iments we turn to YAGO and LMDB datasets,
which allow defining recursive queries rather nat-
urally. The main objective of these experiments is
to show that our implementation can handle com-
plex recursive patterns in reasonable time over
real world datasets.

– Comparison with SPARQL engines. In order to
compare with the recursive properties supported
by SPARQL, we turn to the GMark [9] property
path benchmark, and compare our implementa-
tion with pache Jena and Openlink Virtuoso, two
popular SPARQL systems.

– Performance over large datasets. To verify
whether our solution scales, we run a sequence of
recursive queries over the Wikidata dataset con-
taining over 3 billon triples, and compare our re-
sponse times with the ones provided by the Wiki-
data endpoint.

– Limiting recursion depth. Finally, we test the
solution proposed in Section 4.3, which stops the
recursive iteration after a predetermined number
of steps. Here we show that this approach is not
only useful fro dealing with recursion, but also
when evaluating repeated joins.

The experiments involving smaller datasets (LMDB,
YAGO, and GMark) were run on a MacBook Pro with
an Intel Core i5 2.6 GHz processor and 8 GB of main
memory. To handle the size of Wikidata, we used a
server Devuan GNU/Linux 3 (beowulf) with an Intel
Xeon Silver 4110 CPU @ 2.10 GHz processor and
120 GB of memory.

Next, we elaborate on each batch of experiments, as
specified above.

5.1. Evaluating real use cases

The first thing we do is to test our implementation
against realistic use cases. As we have mentioned, we
do not aim to obtain the fastest possible algorithms
for these particular use cases (this is out of the scope
of this paper), but rather aim for an implementation

https://alanezz.github.io/RecSPARQL/
https://alanezz.github.io/RecSPARQL/
https://alanezz.github.io/RecSPARQL/
https://alanezz.github.io/RecSPARQL/

728 J. Reutter et al. / Recursion in SPARQL

Table 1

Specifications for the LMDB and Yago datasets

Graph Number of triples Size

LMDB 6147996 1.09 Gb

Yago 6215350 1.54 Gb

whose execution times are reasonable. For this, we
took the LMDB and the YAGO datasets, and built a
series of queries asking for relationships between en-
tities. Since YAGO also contains information about
movies, we have the advantage of being able to test
the same queries over different datasets (their ontol-
ogy differs). The specifications for each database can
be found in the Table 1. Note that the size is the one
used by Jena TDB to store the datasets.

To the best of our knowledge, it is not possible to
compare the full scope of our approach against other
implementations. While it is true that our formalism
is similar to the recursive part of SQL, all of the RDF
systems that we checked were either running RDF na-
tively, or running on top of a relational DBMS that did
not support the recursion with common table expres-
sions functionality, that is part of the SQL standard.
OpenLink Virtuoso does have a transitive closure op-
erator that can be used with its SQL engine, but this
operator is quite limited in the sense that it can only
compute transitivity when starting in a given IRI. Our
queries were more general than this, and thus we could
not compare them directly. For this reason, in this set
of experiments we will only discuss about the practical
applicability of the results.

Our round of experiments consists of three movie-
related queries, which will be executed both on LMDB
and YAGO, and two additional queries that are only
run in YAGO, because LMDB does not contain this
information. All of these queries are similar to that
of Example 3.1 (precise queries are given in the Ap-
pendix). The queries executed in both datasets are the
following:

– QA: the first query returns all the actors in the
database that have a finite Bacon number,9 mean-
ing that they co-starred in the same movie with
Kevin Bacon, or another actor with a finite Bacon
number. A similar notion, well known in mathe-
matics, is that of an Erdős number.

– QB: the second query returns all actors with a fi-
nite Bacon number such that all the collaborations
were done in movies with the same director.

9http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon.

– QC: the third query tests if an actor is connected
to Kevin Bacon through movies where the direc-
tor is also an actor (not necessarily in the same
movie).

The queries executed only in the YAGO dataset
where the following:

– QD: the fourth query answers with the places
where the city Berlin is located in from a tran-
sitive point of view, starting from Germany, then
Europe and so forth.

– QE: the fifth query returns all the people who
are transitively related to someone, through the
isMarriedTo relation, living in the United
States or some place located within the United
States.

Note that QA, QD and QE are also expressible as
property paths. To fully test recursive capabilities of
our implementation we use another two queries, QB
and QC, that apply various tests along the paths com-
puting the Bacon number. Recall that the structure of
queries QB and QC is similar to the query from Exam-
ple 3.1 and cannot be expressed in SPARQL 1.1 either.

The results of the evaluation can be found in
Figs 6(a) and 6(b). As we can see the running times,
although high, are reasonable considering the size of
the datasets and the number of output tuples (Figs 6(c)
and 6(d)). The query QE is the only query with a small
size in its output and a high time of execution. This
fact can be explained because the query is a combina-
tion of 2 property paths that required to instantiate 2
recursive graphs before computing the answer.

5.2. Comparison with property paths using the
GMark benchmark

As mentioned previously, since to the best of our
knowledge no SPARQL engine implements general re-
cursive queries, we cannot really compare the perfor-
mance of our implementation with the existing sys-
tems. The only form of recursion mandated by the lat-
est language standard are property paths, so in this sec-
tion we show the results of comparing the execution
of property paths queries in our implementation using
our recursive language against the implementation of
property paths in popular systems.

We used the GMark benchmark [9] to measure the
running time of property paths queries using Recursive
SPARQL, and to compare such times with respect to
Apache Jena and Openlink Virtuoso.

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

J. Reutter et al. / Recursion in SPARQL 729

(a) Query times on LMDB dataset

(b) Query times on YAGO dataset

QA QB QC
37349 1172 14568

(c) The number of output tuples for LMDB queries

QA QB QC QD QE
29930 85 3617 7 44

(d) The number of output tuples for Yago queries

Fig. 6. Running times and the number of output tuples for the three
datasets.

The GMark benchmark allows generating queries
and datasets to test property paths, and one of its ad-
vantages is that the size of the datasets and the pat-
terns described by the queries are parametrized by the
user. Using the benchmark we generated three dif-
ferent graphs of increasing size, named G1,G2 and
G3. The specifications for each graph can be found
in Table 2. We also generated 10 SPARQL queries
that could have one or more property paths of differ-
ent complexities. The queries can be found in the Ap-
pendix. The run times our queries are presented in the
Fig. 7 for the graph G1, in Fig. 8 for G2, and in Fig. 9
for G3.

Note first that every property path query is easily ex-
pressible using linear recursion. With this observation

Table 2

Specifications for the graphs generated by GMark

Graph Number of triples Size

G1 220564 271 mb

G2 447851 535 mb

G3 671712 605 mb

in mind we must also remark that we are comparing
the performance of our more general recursive engine
with property paths, which are a much less expressive
language. For this reason highly efficient systems like
Virtuoso should run property paths queries faster: they
do not need to worry about being able to compute more
recursive queries. Of course, it would also be interest-
ing to compare our engine with specific ad-hoc tech-
niques for computing property paths.

Comparison with Virtuoso Virtuoso cannot run
queries 2, 6, 7 and 8, because the SPARQL engine
requires an starting point for property paths queries,
which was not possible to give for such queries. We
can see that Virtuoso outperforms Jena and the Recur-
sive implementation in almost all the queries that they
can run, except for Query 1, where the running time
goes beyond 25 seconds. As we will discuss later, this
can be explained because of the semantic they use to
evaluate property paths, which makes Virtuoso to have
many duplicated answers. For the remaining queries,
we can see that the execution time is almost equals.

Comparison with Jena Apache Jena can also answer
all queries. However, our recursive implementation is
only clearly outperformed in Query 2 and Query 6.
This is mainly because those queries have patterns of
the form:

?x <:p1|:p2>* ?z

and our system is not optimized for working with
unions of predicates. Remarkably, and even though all
of the generated queries are relatively simple, our im-
plementation reports a faster running time in half of
the queries we test. Note that Q7, Q8 and Q9 have an
answer time considerably worse in Jena than in our re-
cursive implementation, where the time goes beyond
the 25 seconds. We can only speculate that this is be-
cause the property paths has many paths of short length
and because Apache Jena cannot manage properly the
queries with two or more star triple patterns.

When we increase the size of the graph, the results
have the same behaviour. It is also more evident which
queries are easier and harder to evaluate for the exist-
ing systems. The result for the increased size of the
graph can be found in the Figs 8 and 9.

730 J. Reutter et al. / Recursion in SPARQL

Fig. 7. Times for G1.

Fig. 8. Times for G2.

Fig. 9. Times for G3.

Number of outputs As we said before, one interest-
ing thing that we note from the previous experiments
is the time that Virtuoso took to answer the query Q1
in the three dataset. We suspect that this could oc-
cur because Virtuoso generates many duplicate results,
thus the output should be higher with respect to rec-

SPARQL and Jena. We count the number of outputs
for the queries ran over the first graph. The results can
be seen in Table 3.

The first thing to note is that we avoid duplicate an-
swers in our language, mainly because of the UNION
operator used in lineal recursion, which deletes the du-

J. Reutter et al. / Recursion in SPARQL 731

Table 3

Number of outputs for the GMark queries over the graph G1

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

RecSPARQL 24723 3964 1455 9 169 3964 2604 126 2 906

Jena 103814 90398 89128 198 802 90398 10838 94638 89523 5373

Virtuoso 1849915 – 2267 198 804 – – – 454 6345

plicates answers. Also we do not consider paths of
length 0, because those results do not give us any rel-
evant information about the answer. Then we can see
that Apache Jena has always more results than us, this
is mainly because they consider paths of length 0. We
did not rewrite the queries because we wanted keep
them as close as possible to the benchmark. In Virtuoso
one needs a starting point for property path queries, so
this system does not consider paths of length 0 and for
that reason in some queries they have less outputs than
Apache Jena. However, in most of the queries they give
more results than Apache Jena and RecSPARQL, be-
cause they produce many duplicate answers and thus,
the answer time becomes considerably worse. This
happen mainly in the first query, which is the simplest
one. The same effect happen for the 2 bigger graphs.
The number of outputs for the bigger graphs can be
found in the Appendix (Tables 5 and 6).

5.3. Tests over large datasets

We wanted to know how our recursive opera-
tor works when the queries are executed over large
datasets. Thus, we decided to try our implementation
with queries over the graph of Wikidata, so we load the
“truthy” dump from 2018/11/15. This dump contains
3,303,288,386 triples. For this set of experiments we
use a server Devuan GNU/Linux 3 (beowulf) with an
Intel Xeon Silver 4110 CPU @ 2.10 GHz processor
and 120 GB of memory.

We create property paths queries based on (1) the
example queries showed at the Wikidata Endpoint and
(2) the LMDB queries from Section 5.1. The queries
are the following:

– Q1: Sub-properties of property P276.
– Q2: All the instances of horse or a subclass of

horse.
– Q3: Parent taxon of the Blue Whale.
– Q4: Metro stations reachable from Palermo Sta-

tion in Metro de Buenos Aires.
– Q5: Actors with finite Bacon number:

Queries Q1, and Q4 are simple star * queries, while
Q3 is a star query where in each iteration only one
triple is added to the recursive graph. Q2 is a query of

Table 4

Time in seconds taken by the queries over the Wikidata Graph

Query RecSPARQL Endpoint

Q1 2.23 0.28

Q2 2.45 1.02

Q3 2.15 0.56

Q4 2.11 0.73

Q5 101.60 Timeout

the form (wdt:p1/wdt:p2*), while Q5 combines
two properties within a star.

We rewrote the property paths as WITH
RECURSIVE queries and we ran them on our server
setup. We display the results in Table 4. As a refer-
ence, we also put the time that the queries took at the
Wikidata endpoint https://query.wikidata.org/. We note
that this is not an exact comparison as the endpoint
dataset might slightly differ from the one we use, and
the server running the endpoint is likely different from
ours. The values are expressed in seconds.

As we see, the trend shown with the previous ex-
periments is repeated again with a large dataset: Re-
cursive SPARQL is competitive against existing solu-
tions. Since the dataset of Wikidata is larger than pre-
vious datasets and our solution implies to do several
joins, we expected easier queries to have better run-
ning times in the endpoint than in our implementation.
However, the running times our solution displays are
still competitive. Finally, we remark the result for Q5,
where our implementation could answer the query in a
reasonable time, and the endpoint times out.

5.4. Limiting the number of iterations

In Section 4.3 we presented a way of limiting the
depth of the recursion. We argue that this functional-
ity should find good practical uses, because users are
often interested in running recursive queries only for
a predefined number of iterations. For instance, very
long paths between nodes are seldom of interest and in
a wast majority of use cases we will be interested in
using property paths only up to depth four or five.

It is straightforward to see that every query defined
using recursion with predefined number of iterations
can be rewritten in SPARQL by explicitly specifying

https://query.wikidata.org/

732 J. Reutter et al. / Recursion in SPARQL

each step of the recursion and joining them using the
concatenation operator. The question then is, why is
specifying the recursion depth beneficial?

One apparent reason is that it makes queries much
easier to write and understand (as a reference we in-
clude the rewritings of the query QA, QB and QC from
Section 5.1 using only SPARQL operators in the online
Appendix). The second reason we would like to argue
for is that, when implemented using Algorithm 2, re-
cursive queries with a predetermined number of steps
result in faster query evaluation times than evaluating
an equivalent query with lots of joins. The intuitive
reason behind this is that computing qbase, although
expensive initially, acts as a sort of index to iterate
upon, resulting in fast evaluation times as the number
of iterations increases. On the other hand, for even a
moderately complex query using lots of joins, the ex-
ecution plan will seldom be optimal and will often re-
sort to simply trying all the possible matchings to the
variables, thus recomputing the same information sev-
eral times.

We substantiate this claim by running two rounds
of experiments on LMDB and YAGO datasets, using
queries QA, QB and QC from Section 5.1 and running
them for an increasing number of steps. We evaluate
each of the queries using Algorithm 2 and run it for
a fixed number of steps until the algorithm saturates.
Then we use a SPARQL rewriting of a recursive query
where the depth of recursion is fixed and evaluate it in
Jena and Virtuoso.

Figure 10 shows the results over LMDB and Fig. 11
shows the results over YAGO. The time out here is
again set to two minutes. As we can see, the initial
cost is much higher if we are using recursive queries,
however as the number of steps increases we can see
that they show much better performance and in fact,
the queries that use only SPARQL operators time out
after a small number of iterations. Note that we did not
run the second query over the YAGO dataset, because
it ends in two iterations, and it would not show any
trend. We also did not run queries QD and QE. Query
QD was timing out also after two iterations on Jena and
Virtuoso, and query QE is composed of two property
paths, so there is no straightforward way to transform
it in a query with unions.

6. Conclusions and looking ahead

As illustrated by several use cases, there is a need for
recursive functionalities in SPARQL that go beyond
the scope of property paths. To tackle this issue we pro-

Fig. 10. Limiting the number of iterations for the evaluation of QA,
QB and QC over LMDB.

pose a recursive operator to be added to the language
and show how it can be implemented efficiently on top
of existing SPARQL systems. We concentrated on lin-
ear recursive queries which have been well established
in SQL practice and cover the majority of interesting
use cases and show how to implement them as an ex-
tension to Jena framework. We then test on real world
datasets to show that, although very expressive, these
queries run in reasonable time even on a machine with
limited computational resources. Additionally, we also
include the variant of the recursion operator that runs
the recursive query for a limited number of steps and

J. Reutter et al. / Recursion in SPARQL 733

Fig. 11. Limiting the number of iterations for the evaluation of QA

and QC over Yago.

show that the proposed implementation outperforms
equivalent queries specified using only SPARQL 1.1
operators.

Given that recursion can express many requirements
outside of the scope of SPARQL 1.1, coupled with the
fact that implementing the recursive operator on top of
existing SPARQL engines does not require to change
their core functionalities, allows us to make a strong
case for including recursion in the future iterations of
the SPARQL standard. Of course, such an expressive
recursive operator is not expected to beat specific al-
gorithms for smaller fragments such as property paths.
But nothing prevents the language to have both a syn-
tax for property paths and also for recursive queries,
with different algorithms for each operator.

There are several other areas where a recursive op-
erator should bring immediate impact. To begin with,
it has been shown that a wide fragment of recursive
SHACL constraints can be compiled into recursive
SPARQL queries [19], and a similar result should hold
for ShEx constraints [15]. Another interesting direc-
tion is managing ontological knowledge. Indeed, it was
shown that even a mild form of recursion is sufficient
to capture RDFS entailment regimes [40] or OWL2
QL entailment [14], and it stands open to which ex-
tent can rec-SPARQL help us capture more complex

ontologies, and evaluate them efficiently. Furthermore,
rec-SPARQL may also be used for other applications
such as Graph Analytics or Business Intelligence.

Looking ahead, there are several directions we plan
to explore. We believe that the connection between
recursive SPARQL and RDF shape schemas should
be pursued further, and so is the connection with
more powerful languages for ontologies. There is also
the subject of finding the best semantics for recur-
sive SPARQL queries involving non-monotonic defi-
nitions. Stable model semantics may or may not be the
best option, and even if it is, it would be interesting to
see if one can obtain a good implementation by lever-
aging techniques developed for logic programming, or
provide tools to compile recursive SPARQL queries
into a logic program. Regarding blanks and numbers,
perhaps one can also find a reasonable fragment, or
a reasonable extension to the semantics of recursive
queries, that can deal with numbers and blanks, but
that can still be evaluated under the good properties we
have showcase for linear recursion.

Finally, there is also the question of what is the best
way of implementing these languages. In this paper
we have explored the idea of implementing recursive
SPARQL on top of a database system, as is done in
SQL. As we discussed, this approach has numerous ad-
vantages, and it shows that recursion can be added to
SPARQL with little overhead for the companies pro-
viding SPARQL processors. However, another option
would be to use more powerful engines capable of
running full datalog or similarly powerful languages
(see e.g. [36] or [12]), which may provide better run-
ning times than our on-top-of-system implementation,
and should be able to run non-linear queries. This is
another source of questions that would require closer
work between database and logic programming com-
munities.

Acknowledgements

This work was supported by the Millennium In-
stitute for Foundational Research on Data (IMFD)
and by CONICYT-PCHA Doctorado Nacional 2017-
21171731.

Appendix

Here we present some of the queries that we ran
throughout this work. Note that here we declare the
queries using the clauses FROM and FROM NAMED.
This is because some systems need the declaration of
the graphs that are used in GRAPH clauses.

734 J. Reutter et al. / Recursion in SPARQL

Queries in Section 4.2

Query from Section 4.2 stated without nesting:

Queries from Section 5.1

The query QA is represented by the following recursive query:

The following is the formulation of the query QB :

J. Reutter et al. / Recursion in SPARQL 735

The following is the formulation of the query QC :

The following is the formulation of the query QD:

736 J. Reutter et al. / Recursion in SPARQL

The following is the formulation of the query QE :

J. Reutter et al. / Recursion in SPARQL 737

Queries from Section 5.2

The following are the queries generated by the GMark benchmark:

The same queries written in Recursive SPARQL can be found at https://alanezz.github.io/RecSPARQL.

Queries from Section 4.3

The following is SPARQL rewriting of the query Q1 computing Bacon number of length at most 5:

https://alanezz.github.io/RecSPARQL

738 J. Reutter et al. / Recursion in SPARQL

Other rewritings are similar and can be found at https://alanezz.github.io/RecSPARQL.

Queries over the wikidata endpoint

– Q1: Sub-properties of property P276:

– Q2: Horse lineages:

– Q3: Parent taxon of the Blue Whale:

– Q4: Metro stations reachable from Palermo Station in Metro de Buenos Aires:

– Q5: Actors with finite Bacon number:

Number of outputs for the bigger graphs in GMark

The number of outputs for the bigger graphs can be found in Tables 5 and 6.

https://alanezz.github.io/RecSPARQL

J. Reutter et al. / Recursion in SPARQL 739

Table 5

Number of outputs for the GMark queries over the graph G2

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

RecSPARQL 50190 8153 3188 7 345 8153 6116 308 4 2134

Jena 208437 181043 178465 409 1547 181043 16730 189628 179168 11022

Virtuoso 3624482 – 5256 409 1561 – – – 968 13002

Table 6

Number of outputs for the GMark queries over the graph G3

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

RecSPARQL 74967 12015 4719 17 533 12015 16040 487 4 2942

Jena 311559 270506 266777 766 2674 270506 – – – 15951

Virtuoso – – 7743 766 2716 – – – 1384 18726

References

[1] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases,
Addison-Wesley, 1995.

[2] F. Alkhateeb, J.-F. Baget and J. Euzenat, Extending SPARQL
with regular expression patterns (for querying RDF), J. Web
Sem. 7(2) (2009), 57–73. doi:10.1016/j.websem.2009.02.002.

[3] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter and
D. Vrgoč, Foundations of modern query languages for graph
databases, ACM Computing Surveys (CSUR) 50(5) (2017), 1–
40. doi:10.1145/3104031.

[4] R. Angles and C. Gutierrez, The multiset semantics of
SPARQL patterns, in: International Semantic Web Conference,
Springer, 2016, pp. 20–36. doi:10.1007/978-3-319-46523-
4_2.

[5] K. Anyanwu and A.P. Sheth, ρ-Queries: Enabling querying for
semantic associations on the semantic web, in: 12th Interna-
tional World Wide Web Conference (WWW), 2003.

[6] M. Arenas, G. Gottlob and A. Pieris, Expressive languages
for querying the semantic web, in: Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, 2014, pp. 14–26. doi:10.1145/2594538.
2594555.

[7] M. Arenas, C. Gutierrez and J. Pérez, On the semantics
of SPARQL, in: Semantic Web Information Management: A
Model-Based Perspective, R. de Virgilio, F. Giunchiglia and
L. Tanca, eds, Springer, Berlin Heidelberg, Berlin, Heidelberg,
2010, pp. 281–307. ISBN 978-3-642-04329-1. doi:10.1007/
978-3-642-04329-1_13.

[8] M. Atzori, Computing recursive SPARQL queries, in: ICSC,
2014, pp. 258–259. doi:10.1109/ICSC.2014.54.

[9] G. Bagan, A. Bonifati, R. Ciucanu, G.H.L. Fletcher, A. Lemay
and N. Advokaat, gMark: Schema-driven generation of graphs
and queries, IEEE Transactions on Knowledge and Data En-
gineering 29(4) (2017), 856–869. doi:10.1109/TKDE.2016.
2633993.

[10] P. Barceló, G. Fontaine and A.W. Lin, Expressive path queries
on graphs with data, in: Logic for Programming, Artificial In-
telligence, and Reasoning, Springer, 2013, pp. 71–85. doi:10.
1007/978-3-642-45221-5_5.

[11] P. Barceló, J. Pérez and J.L. Reutter, Relative expressiveness
of nested regular expressions, in: AMW, 2012, pp. 180–195.

[12] L. Bellomarini, E. Sallinger and G. Gottlob, The vadalog sys-
tem: Datalog-based reasoning for knowledge graphs, Proceed-
ings of the VLDB Endowment 11(9) (2018), 975–987. doi:10.
14778/3213880.3213888.

[13] M. Bienvenu, D. Calvanese, M. Ortiz and M. Simkus, Nested
regular path queries in description logics, in: KR 2014, Vienna,
Austria, July 20–24, 2014, 2014.

[14] S. Bischof, M. Krötzsch, A. Polleres and S. Rudolph, Schema-
agnostic query rewriting in SPARQL 1.1, in: International Se-
mantic Web Conference, Springer, 2014, pp. 584–600. doi:10.
1007/978-3-319-11964-9_37.

[15] I. Boneva, J.E.L. Gayo and E.G. Prud’hommeaux, Seman-
tics and validation of shapes schemas for RDF, in: Interna-
tional Semantic Web Conference, Springer, 2017, pp. 104–120.
doi:10.1007/978-3-319-68288-4_7.

[16] A. Bonifati, G. Fletcher, H. Voigt and N. Yakovets, Querying
graphs, Synthesis Lectures on Data Management 10(3) (2018),
1–184. doi:10.2200/S00873ED1V01Y201808DTM051.

[17] P. Bourhis, M. Krötzsch and S. Rudolph, How to best nest reg-
ular path queries, in: Informal Proceedings of the 27th Interna-
tional Workshop on Description Logics, 2014.

[18] M. Consens and A.O. Mendelzon, GraphLog: A visual formal-
ism for real life recursion, in: 9th ACM Symposium on Princi-
ples of Database Systems (PODS), 1990, pp. 404–416. doi:10.
1145/298514.298591.

[19] J. Corman, F. Florenzano, J.L. Reutter and O. Savkovic, Vali-
dating shacl constraints over a sparql endpoint, in: The Seman-
tic Web – ISWC 2019 – 18th International Semantic Web Con-
ference, Proceedings, Part I, Auckland, New Zealand, October
26–30, 2019, Lecture Notes in Computer Science, Vol. 11778,
Springer, 2019, pp. 145–163. doi:10.1007/978-3-030-30793-
6_9.

[20] V. Fionda and G. Pirrò, Explaining graph navigational queries,
in: European Semantic Web Conference, Springer, 2017,
pp. 19–34. doi:10.1007/978-3-319-58068-5_2.

[21] V. Fionda, G. Pirrò and M.P. Consens, Extended property
paths: Writing more SPARQL queries in a succinct way,
in: Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[22] V. Fionda, G. Pirrò and C. Gutierrez, NautiLod: A formal lan-
guage for the web of data graph, ACM Transactions on the Web
(TWEB) 9(1) (2015), 5. doi:10.1145/2697393.

https://doi.org/10.1016/j.websem.2009.02.002
https://doi.org/10.1145/3104031
https://doi.org/10.1007/978-3-319-46523-4_2
https://doi.org/10.1007/978-3-319-46523-4_2
https://doi.org/10.1145/2594538.2594555
https://doi.org/10.1145/2594538.2594555
https://doi.org/10.1007/978-3-642-04329-1_13
https://doi.org/10.1007/978-3-642-04329-1_13
https://doi.org/10.1109/ICSC.2014.54
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.1007/978-3-642-45221-5_5
https://doi.org/10.1007/978-3-642-45221-5_5
https://doi.org/10.14778/3213880.3213888
https://doi.org/10.14778/3213880.3213888
https://doi.org/10.1007/978-3-319-11964-9_37
https://doi.org/10.1007/978-3-319-11964-9_37
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1145/298514.298591
https://doi.org/10.1145/298514.298591
https://doi.org/10.1007/978-3-030-30793-6_9
https://doi.org/10.1007/978-3-030-30793-6_9
https://doi.org/10.1007/978-3-319-58068-5_2
https://doi.org/10.1145/2697393

740 J. Reutter et al. / Recursion in SPARQL

[23] H. Gaifman, H. Mairson, Y. Sagiv and M.Y. Vardi, Undecid-
able optimization problems for database logic programs, Jour-
nal of the ACM (JACM) 40(3) (1993), 683–713. doi:10.1145/
174130.174142.

[24] T.J. Green, S.S. Huang, B.T. Loo and W. Zhou, Datalog
and recursive query processing, Foundations and Trends in
Databases 5(2) (2013), 105–195. doi:10.1561/1900000017.

[25] A. Gubichev, S.J. Bedathur and S. Seufert, Sparqling kleene:
Fast property paths in RDF-3X, in: GRADES, 2013. doi:10.
1145/2484425.2484443.

[26] S. Harris and A. Seaborne, SPARQL 1.1 query language, W3C
Recommendation 21 (2013).

[27] D. Hernández, A core SPARQL fragment, 2020, https://users.
dcc.uchile.cl/~dhernand/reports/Ei6iutheb1.html.

[28] P. Hitzler, M. Krotzsch and S. Rudolph, Foundations of Seman-
tic Web Technologies, CRC Press, 2011.

[29] M. Kaminski and E.V. Kostylev, Beyond well-designed
SPARQL, in: 19th International Conference on Database The-
ory (ICDT 2016), Schloss Dagstuhl-Leibniz-Zentrum Fuer In-
formatik, 2016. doi:10.4230/LIPIcs.ICDT.2016.5.

[30] K.J. Kochut and M. Janik, SPARQLeR: Extended SPARQL
for semantic association discovery, in: The Semantic Web: Re-
search and Applications, Springer, 2007, pp. 145–159. doi:10.
1007/978-3-540-72667-8_12.

[31] E.V. Kostylev, J.L. Reutter and M. Ugarte, CONSTRUCT
queries in SPARQL, in: ICDT, 2015, pp. 212–229. doi:10.
4230/LIPIcs.ICDT.2015.212.

[32] L. Libkin, J.L. Reutter, A. Soto and D. Vrgoč, TriAL: A nav-
igational algebra for RDF triplestores, ACM Trans. Database
Syst. 43(1) (2018), 5–1546. doi:10.1145/3154385.

[33] Linked movie database.
[34] P. Missier and Z. Chen, Extracting PROV provenance traces

from Wikipedia history pages, in: Proceedings of the Joint
EDBT/ICDT 2013 Workshops, 2013, pp. 327–330. doi:10.
1145/2457317.2457375.

[35] B. Motik, Y. Nenov, R. Piro, I. Horrocks and D. Olteanu, Par-
allel materialisation of datalog programs in centralised, main-
memory RDF systems, in: AAAI, 2014.

[36] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu and J. Baner-
jee, RDFox: A highly-scalable RDF store, in: International

Semantic Web Conference, Springer, 2015, pp. 3–20. doi:10.
1007/978-3-319-25010-6_1.

[37] I. Niemelä, Logic programs with stable model semantics as
a constraint programming paradigm, Ann. Math. Artif. Intell.
25(3–4) (1999), 241–273. doi:10.1023/A:1018930122475.

[38] Open Link Virtuoso, 2015.
[39] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complex-

ity of SPARQL, ACM Transactions on Database Systems 34(3)
(2009). doi:10.1145/1567274.1567278.

[40] J. Pérez, M. Arenas and C. Gutierrez, nSPARQL: A naviga-
tional language for RDF, J. Web Sem. 8(4) (2010), 255–270.
doi:10.1016/j.websem.2010.01.002.

[41] A. Polleres and J.P. Wallner, On the relation between
SPARQL1.1 and answer set programming, Journal of Applied
Non-Classical Logics 23(1–2) (2013), 159–212. doi:10.1080/
11663081.2013.798992.

[42] PostgreSQL documentation.
[43] J.L. Reutter, M. Romero and M.Y. Vardi, Regular queries on

graph databases, Theory of Computing Systems 61(1) (2017),
31–83. doi:10.1007/s00224-016-9676-2.

[44] J.L. Reutter, A. Soto and D. Vrgoč, Recursion in SPARQL, in:
The Semantic Web – ISWC 2015 – 14th International Seman-
tic Web Conference, Proceedings, Part I, Bethlehem, PA, USA,
October 11–15, 2015, 2015, pp. 19–35. doi:10.1007/978-3-
319-25007-6_2.

[45] A. Tarski, A lattice-theoretical fixpoint theorem and its appli-
cations, 1955. doi:10.2307/2963937.

[46] The Apache Jena Manual, 2015.
[47] M.Y. Vardi, On the complexity of bounded-variable queries,

in: PODS, Vol. 95, 1995, pp. 266–276. doi:10.1145/212433.
212474.

[48] W3C, PROV Model Primer, 2013.
[49] W3C, PROV-O: The PROV Ontology, 2013.
[50] YAGO: A High-Quality Knowledge Base.
[51] N. Yakovets, P. Godfrey and J. Gryz, Evaluation of SPARQL

property paths via recursive SQL, in: AMW, 2013.
[52] N. Yakovets, P. Godfrey and J. Gryz, WAVEGUIDE: evalu-

ating SPARQL property path queries, in: EDBT 2015, 2015,
pp. 525–528. doi:10.5441/002/edbt.2015.49.

https://doi.org/10.1145/174130.174142
https://doi.org/10.1145/174130.174142
https://doi.org/10.1561/1900000017
https://doi.org/10.1145/2484425.2484443
https://doi.org/10.1145/2484425.2484443
https://users.dcc.uchile.cl/~dhernand/reports/Ei6iutheb1.html
https://users.dcc.uchile.cl/~dhernand/reports/Ei6iutheb1.html
https://doi.org/10.4230/LIPIcs.ICDT.2016.5
https://doi.org/10.1007/978-3-540-72667-8_12
https://doi.org/10.1007/978-3-540-72667-8_12
https://doi.org/10.4230/LIPIcs.ICDT.2015.212
https://doi.org/10.4230/LIPIcs.ICDT.2015.212
https://doi.org/10.1145/3154385
https://doi.org/10.1145/2457317.2457375
https://doi.org/10.1145/2457317.2457375
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1016/j.websem.2010.01.002
https://doi.org/10.1080/11663081.2013.798992
https://doi.org/10.1080/11663081.2013.798992
https://doi.org/10.1007/s00224-016-9676-2
https://doi.org/10.1007/978-3-319-25007-6_2
https://doi.org/10.1007/978-3-319-25007-6_2
https://doi.org/10.2307/2963937
https://doi.org/10.1145/212433.212474
https://doi.org/10.1145/212433.212474
https://doi.org/10.5441/002/edbt.2015.49

	Introduction
	Preliminaries
	Adding recursion to SPARQL
	A fixed point based recursive operator
	Ensuring fixed point of queries
	Fragments where the recursion converges
	Expressive power
	Complexity analysis

	Realistic recursion in SPARQL
	Linear recursive queries
	Algorithm for linear recursive queries
	Supporting arbitrary queries in recursive clauses

	Experimental evaluation
	Evaluating real use cases
	Comparison with property paths using the GMark benchmark
	Tests over large datasets
	Limiting the number of iterations

	Conclusions and looking ahead
	Acknowledgements
	Appendix
	Queries in Section 4.2
	Queries from Section 5.1
	Queries from Section 5.2
	Queries from Section 4.3
	Queries over the wikidata endpoint
	Number of outputs for the bigger graphs in GMark

	References

