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Abstract. Searching for similar documents and exploring major themes covered across groups of documents are common activi-
ties when browsing collections of scientific papers. This manual knowledge-intensive task can become less tedious and even lead
to unexpected relevant findings if unsupervised algorithms are applied to help researchers. Most text mining algorithms represent
documents in a common feature space that abstract them away from the specific sequence of words used in them. Probabilistic
Topic Models reduce that feature space by annotating documents with thematic information. Over this low-dimensional latent
space some locality-sensitive hashing algorithms have been proposed to perform document similarity search. However, thematic
information gets hidden behind hash codes, preventing thematic exploration and limiting the explanatory capability of topics to
justify content-based similarities. This paper presents a novel hashing algorithm based on approximate nearest-neighbor tech-
niques that uses hierarchical sets of topics as hash codes. It not only performs efficient similarity searches, but also allows extend-
ing those queries with thematic restrictions explaining the similarity score from the most relevant topics. Extensive evaluations
on both scientific and industrial text datasets validate the proposed algorithm in terms of accuracy and efficiency.
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1. Introduction

Huge amounts of documents are publicly avail-
able on the Web offering the possibility of extracting
knowledge from them (e.g. scientific papers in digital
journals). Document similarity comparisons in many
information retrieval (IR) and natural language pro-
cessing (NLP) areas are too costly to be performed in
such huge collections of data and require more effi-

*Corresponding author. E-mail: cbadenes@fi.upm.es.

cient approaches than having to calculate all pairwise
similarities.

In this paper we address the problem of program-
matically generating annotations for each of the items
inside big collections of textual documents, in a
way that is computationally affordable and enables a
semantic-aware exploration of the knowledge inside it
that state-of-the-art methods relying on topic models
are not able to materialize.

Most text mining algorithms represent documents in
a common feature space that abstracts the specific se-
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quence of words used in each document and, with ap-
propriate representations, facilitate the analysis of re-
lationships between documents even when written us-
ing different vocabularies. Although a sparse word or
n-gram vectors are popular representational choices,
some researchers have explored other representations
to manage these vast amounts of information. Latent
Semantic Indexing (LSI) [12], Probabilistic Latent Se-
mantic Indexing (PLSI) [20] and more recently, Latent
Dirichlet Allocation (LDA) [8], which is the simplest
probabilistic topic model (PTM) [7], are algorithms fo-
cused on reducing feature space by annotating docu-
ments with thematic information. PLSI and PTM also
allow a better understanding of the corpus through the
topics discovered, since they use probability distribu-
tions over the complete vocabulary to describe them.
However, only PTM’s are able to identify topics in pre-
viously unseen texts.

One of the greatest advantages of using PTM in
large document collections is the ability to represent
documents as probability distributions over a small
number of topics, thereby mapping documents into
a low-dimensional latent space (the K-dimensional
probability simplex, where K is the number of top-
ics). A document, represented as a point in this sim-
plex, is said to have a particular topic distribution. This
brings a lot of potential when applied over different
IR tasks, as evidenced by recent works in different do-
mains such as scholarly [14,18], health [30,36], legal
[15,33], news [19] and social networks [10,35]. This
low-dimensional feature space could also be suitable
for document similarity tasks, especially on big real-
world data sets, since topic distributions are continu-
ous and not as sparse as discrete-term feature vectors.

Exact similarity computations for most topic distri-
butions require to have complexity O(n2) for neigh-
bours detection tasks or O(kn) computations when k

queries are compared against a dataset of n documents.
Computation can be an approximate nearest neighbor
(ANN) search problem. ANN search is an optimiza-
tion problem that finds nearest neighbors of a given
query q in a metric space of n points [22]. Due to the
low storage cost and fast retrieval speed, hashing is one
of the most popular solutions for ANN search [29,43].
This technique transforms data points from the origi-
nal feature space into a binary-code space, so that sim-
ilar data points have larger probability of collision (i.e.
having the same hash code). This type of formulation
for the document similarity comparison problem has
proven to yield good results in the metric space due
to the fact that ANN search has been designed to han-

dle distance metrics (e.g. cosine, Euclidean, Manhat-
tan) [24,34], even in high-dimensional simplex spaces
handling information-theoretically motivated metrics
(e.g. Hellinger, Kullback–Leibler divergence, Jensen–
Shannon divergence) as demonstrated by [31].

However, the smaller space created by existing
hashing methods loses the exploratory capabilities of
topics to support document similarity. The notion of
topics is lost and therefore the ability to make thematic
explorations of documents. Moreover, metrics in sim-
plex space are difficult to interpret and the ability to
explain the similarity score on the basis of the topics
involved in the exploration can be helpful. While other
models based on vector representations of documents
are simply agnostic to the human concept of themes,
topic models can help finding the reasons why two
documents are similar.

Semantic knowledge can be thought of as knowl-
edge about relations among several types of ele-
ments, including words, concepts, and percepts [17].
Since topic models create latent themes from word
co-occurrence statistics in corpus, a topic (i.e. latent
theme) reflects the knowledge about the word-word
relations it contains. This abstraction can be extended
to cover the knowledge derived from sets of topics.
The topics obtained via state-of-the art methods (LDA)
are hierarchically divided into groups with different
degrees of semantic specificity in a document. Doc-
uments can then be annotated with the semantic in-
ferred from the topics detected, and from their rela-
tion between topics inside each hierarchy level. Let’s
look at a practical example to clarify this idea. A topic
model is created from texts labeled with Eurovoc1 cat-
egories. This model2 annotates texts with categories
inferred from their topic distributions. For the docu-
ment “Commission Decision of 23 December 2003..
on seeds and propagating material of gramineae,
Triticum aestivum..”,3 the top5 categories are: (1) re-
search, (2) sugar, (3) fats, (4) textile_industry and
(5) marketing. In contrast to these categories that stan-
dard topic modelling methods are able to offer, a 3-
level hierarchical set of topics would be: (1) research,
(2) sugar and fats, and (3) textile_industry and market-
ing. The knowledge provided by each of these annota-
tions is derived from the relations between the topics
that compose it. Based on these semantic annotations,
the content-based similarity among documents is cal-

1http://publications.europa.eu/resource/dataset/eurovoc
2http://librairy.linkeddata.es/jrc-en-model/
3https://eur-lex.europa.eu/eli/dec/2004/57(1)/oj
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culated and the exploration of large document collec-
tions is performed following an ANN search.

Thus, in this paper, we propose a hashing algorithm
that (1) groups similar documents, (2) preserves their
topic distributions, and (3) works over unseen docu-
ments. Therefore our contributions are:

– a novel hashing algorithm based on topic mod-
els that not only performs efficient searches, but
also introduces semantic in the hierarchy of con-
cepts as a way to restrict those queries and pro-
vide explanatory information

– an optimized and easily customizable open-
source implementation of the algorithm [6]

– data-sets and pre-trained models to facilitate
other researchers to replicate our experiments and
validate and test their own ideas [6].

2. Document similarity

In the probability simplex space created from topic
models, documents are represented as vectors con-
taining topic distributions. Distance metrics based on
vector-type data such as Euclidean distance (l2), Man-
hattan distance (l1), and angular metric (θ ) are not
optimal in this space [31]. Information-theoretically
motivated metrics such as Kullback–Leibler (KL) di-
vergence (Eq. (1)) (also known as relative entropy),
Jensen–Shannon (JS) divergence (Eq. (2)) (as its sym-
metric version) and Hellinger (He) distance (Eq. (3))
are often more reasonable [31]:

KL(P,Q) =
K∑
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p(xi)
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where P and Q are two known distributions, K is the
dimensionality of P and Q, and pi and qi are the val-
ues of the ith component of P and Q, respectively.

He distance is also symmetric and, along with JS
divergence, are usually used in various fields where
a comparison between two probability distributions

is required. However, all these metrics are not well-
defined distance metrics, that is, they do not sat-
isfy triangle inequality [9]. This inequality considers
d(x, z) � d(x, y) + d(y, z) for a metric d [17]. It
places strong constraints on distance measures and on
the locations of points in a space given a set of dis-
tances. As a metric axiom the triangle inequality must
be satisfied in order to take advantage of the inferences
that can be deduced from it. Thus, if similarity is as-
sumed to be a monotonically decreasing function of
distance, this inequality avoids the calculation of all
pairs of similarities by considering that if x is similar
to y and y is similar to z, then x must be similar to z.

S2JSD was introduced by [13] to satisfy the trian-
gle inequality. It is the square root of two times the JS
divergence:

S2JSD(P,Q) = √
2 ∗ JS(P,Q) (4)

However, making sense out of the similarity score is
not easy. As shown in Figs 1 to 4, given a set of pairs
of documents, their similarity scores vary according to
the number of topics. So the distances between those
pairs fluctuate from being more to less distant when
changing the number of topics.

Distances between documents generally increase as
the number of dimensions of the space increases. This
is due to the fact that as the number of topics describing
the model increases, the more specific the topics will
be. Topics shared by a pair of documents can be bro-
ken down into more specific topics that are not shared
by those documents. Thus, similarity between pairs of
documents is dependent on the model used to repre-
sent them when considering this type of metrics. We
know that absolute distances between documents vary
when we tune hyperparameters differently [5], but in
this study we also see that “relative distances” also
change: e.g. for model M1, A is closer to B than C,
but according to a M2 trained in the same corpora with
different parameters, A is closer to C than B (cross-
lines in Figs 1–4). This behaviour highlights the diffi-
culty of establishing absolute similarity thresholds and
the complexity to measure distances taking into ac-
count all dimensions. Distance thresholds should be
model-dependent rather than general and metrics flexi-
ble enough to handle dimensional changes. These chal-
lenges are tackled through the proposed hashing algo-
rithms by means of clusters of topics to measure simi-
larity, instead of directly using their weights.
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Fig. 1. Distance values based on KL-divergence between 10 pair of documents from topic models with 100-to-2000 dimensions.

Fig. 2. Distance values based on JS-divergence between 10 pair of documents from topic models with 100-to-2000 dimensions.

3. Hashing topic distributions

Hashing methods transform the data points from
the original feature space into a binary-code Ham-
ming space, where the similarities in the original
space are preserved. They can learn hash functions
(data-dependent) or use projections (data-independent)

from the training data [41]. Data-independent meth-
ods unlike data-dependent ones do not need to be re-
calculated when data changes, i.e. adding or removing
documents to the collection. Taking large-scale scenar-
ios into account (e.g. Document clustering, Content-
based Recommendation, Duplicate Detection), this is
a key feature along with the ability to infer hash codes
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Fig. 3. Distance values based on He-divergence between 10 pair of documents from topic models with 100-to-2000 dimensions.

Fig. 4. Distance values based on S2JSD between 10 pair of documents from topic models with 100-to-2000 dimensions.

individually (for each document) rather than on a set
of documents.

Data-independent hashing methods depend on two
key elements: (1) data type and (2) distance metric.
For vector-type data, as introduced in Section 2, based
on lp distance with pε[0, 2) lots of hashing meth-
ods have been proposed, such as p-stable Locality-

Sensitive Hashing (LSH) [11], Spherical LSH [37],
and Beyond LSH [3]. Based on the θ distance many
methods have been developed such as Kernel LSH
[26] and Hyperplane hashing [40]. But only few meth-
ods handle density metrics in a simplex space. A first
approach transformed the He divergence into an Eu-
clidean distance so that existing ANN techniques, such
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Fig. 5. Hash method based on hierarchical set of topics from a given topic distribution.

as LSH and k-d tree, could be applied [25]. But this
solution does not consider the special attributions of
probability distributions, such as Non-negative and
Sum-equal-one. Recently, a hashing schema [31] tak-
ing into account the symmetry has been proposed,
non-negativity and triangle inequality features of the
S2JSD metric for probability distributions. For set-
type data, Jaccard Coefficient is the main metric used.
Some examples are K-min Sketch [28], Min-max hash
[23], B-bit minwise hashing [27] and Sim-min-hash
[42].

All of them have demonstrated efficiency in the
search for similar documents, but none of them al-
lows the search for documents (1) by thematic areas
or (2) by similarity levels, nor they offer (3) an expla-
nation about the similarity obtained beyond the vec-
tors used to calculate it. Binary-hash codes drop a very
precious information: the topic relevance.

A new hierarchical set-type data is proposed. Each
level of the hierarchy indicates the importance of the
topic according to its distribution. Level 0 contains
the topics with the highest score. Level 1 contains
the topics with highest score once the first ones have
been eliminated, and so on (Fig. 5). From a vec-
tor of components, where each of the components is
the score of topic t , a vector containing set of topics
is proposed, where each of the dimensions means a
topic relevance. Thus, for the topic distribution q =
[0.3, 0.15, 0.4, 0.15], a hierarchical set of topics may
be h = {(t2), (t0), (t1, t3)}. It means that topic t2
(0.4) is the most relevant, then topic t0 (0.3) and, fi-
nally, topics t1 (0.15) and t3 (0.15). This is just an
example about the data structure that will support the
different hashing strategies. In Section 3.3 some ap-
proaches to create hash codes based on this data struc-
ture are described.

3.1. Data type

A traditional approach to text representation usu-
ally requires encoding of documents into numerical
vectors. Words are extracted from a corpus as fea-
ture candidates and based on a certain criterion they
are assigned values to describe the documents: term-
frequency, TF-IDF, information gain, and chi-square
are typical measures. But this causes two main prob-
lems: huge number of dimensions and sparse distri-
bution. The use of topics as feature space has been
extended to mapping documents into low-dimensional
vectors. However, as shown in Figs 1 to 4, the distance
metrics based on probability densities vary according
to the dimensions of the model and reveal the difficulty
of calculating the similarity values using the vectors
with the topic distributions.

Since hashing techniques can transform both vector
and set-based data [23,31] into a new space where the
similarity (i.e. closeness of points) in the original fea-
ture space is preserved, a new set-based data structure
is proposed in this paper. It is created from clusters of
topics organized by relevance levels and it aims to ex-
tend the ability of building queries with topic-based re-
strictions over the searching space while maintaining
high level of accuracy.

The new hierarchical set-type data describes each
document as a sequence of sets of topics sorted by rel-
evance. Each level of the hierarchy expresses how im-
portant those topics are in that document. In the first
level (i.e. level 0) are the topics with the highest score.
In the second level (i.e. level 1) are the topics with the
highest score once the first ones have been removed,
and so on. In this work, several clustering approaches
have been considered to assign topics to each level.

In a feature space created from a PTM with eight
topics, for example, each data point p is described by
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a eight-dimensional vector with the topic distributions:
vp = [t0, t1, t2, t3, t4, t5, t6, t7]. Then, given a point
q1 = [0.18, 0.15, 0.2, 0.05, 0.14, 0.11, 0.09, 0.08],
the three-level hierarchical set of topics may be h =
[{t2}, {t0}, {t1, t4}]. It means that t2 is the most rele-
vant topic, then topic t0 and finally topics t1 and t4.
This is just an example about the data structure that
will support the hashing strategies. In Section 3.3 some
approaches to create hash codes based on this data
structure are described.

Domain-specific features such as vocabulary, writ-
ing style, or speech type, have a major influence on
the topic models, but not in the hashing algorithms de-
scribed in this article. The methods for creating hash
codes are agnostic of these particularities since they
are only based on the topic distributions generated by
the models.

3.2. Distance metric

Since documents are described by set-type data, the
proposed distance metric is based on the Jaccard co-
efficient. This metric computes the similarity of sets
by looking at the relative size of their intersection as
follows:

J (A,B) = |A ∩ B|
|A ∪ B| (5)

where A and B are set of topics.
More specifically, dJ is based on the Jaccard dis-

tance, which is obtained by subtracting the Jaccard co-
efficient J from 1:

dJ (A,B) = 1 − J (A,B) (6)

The proposed distance measure dH used to compare
hash codes created from set of topics is the sum of the
Jaccard distances dj for each hierarchy level, i.e. for
each set of topics:

dH (H1,H2) =
L∑

l=1

(
dJ

(
H1(xl),H2(xl)

))
(7)

where H1 and H2 are hash codes, H1(xl) and H2(xl)

are the set of topics up to level l for each hash code H

and L is the maximum hierarchy level. A corner case is
L = T , where T is the number of topics in the model.

3.3. Hash function

The hash function clusters topics based on rele-
vance levels. Three approaches are proposed depend-
ing on the criteria used to group topics: threshold-
based, centroid-based and density-based.

3.3.1. Threshold-based hierarchical hashing method
This approach is just an initial and naive way of

grouping topics by threshold values into each rele-
vance level. They can be manually defined or automat-
ically generated by thresholds dividing the topic distri-
butions as follows:

thinc = 1

(L + 1) · T
(8)

where L is the number of hierarchy levels, and T the
number of topics.

If L = 3 and T = 10 for a topic distribution td
defined as follows:

td = [0.017, 0.141, 0.010, 0.172, 0.030,

0.090, 0.199, 0.133, 0.031, 0.171] (9)

Then, a threshold-based hierarchical hash HT , with
an automatically created threshold defined by equa-
tion (8), is equals to HT = {(t1, t3, t5, t6, t7, t9), (),

(t4, t8)} with thinc = 0.025 (Fig. 6).

3.3.2. Centroid-based hierarchical hashing method
This approach assumes topic distributions can be

partitioned into k clusters where each topic belongs to
the cluster with the nearest mean score. It is based on
the k-Means clustering algorithm, where k is obtained
by adding 1 to the number of hierarchy levels. Unlike

Fig. 6. Threshold-based hierarchical hash (L = 3).
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Fig. 7. Centroid-based hierarchical hash (L = 3).

the previous method, threshold values used to define
the hierarchy levels may vary between documents, i.e.
for each topic distribution, since they are calculated for
each distribution separately.

Following the previous example, if L = 3 and T =
10 for a topic distribution td defined in equation (9),
then a centroid-based hieararchical hash HC equals to
HC = {(t6), (t9, t7, t3, t1), (t5)} (Fig. 7).

3.3.3. Density-based hierarchical hashing method
This approach also considers relative hierarchical

thresholds for each relevance level. Now, a topic distri-
bution is described by points in a single dimension. In
this space, topics closely packed together are grouped
together. This approach does not require a fixed num-
ber of groups. It only requires a maximum distance
(eps) to consider two points close and grouped to-
gether. This value can be estimated from the own dis-
tribution of topics (e.g. variance).

Following the above example, if L = 3 and td is
the topic distribution defined in equation (9), then a
density-based hierarchical hash HD is equals to HD =
{(t6), (t9, t3), (t1)} when eps equals to the variance of
the topic distribution (Fig. 8).

3.4. Online-mode hashing

Hashing methods are batch-mode learning models
that require huge data for learning an optimal model
and cannot handle unseen data. Recent work address
online mode by learning algorithms [21] that get hash-
ing model accommodate to each new pair of data. But
these approaches require the hashing model to be up-
dated during each round based on the new pairs of data.

Fig. 8. Density-based hierarchical hash (L = 3).

Our methods rely on topic models to build hash
codes. These models do not require to be updated to
make inferences about data not seen during training. In
this way, the proposed hashing algorithms can work on
large-scale and real-time data, as the size and the nov-
elty of the collection does not influence the annotation
process.

4. Experiments

As mentioned above (Section 2), it is difficult to
interpret the similarity score calculated by metrics in
a probability space. Since all of them are based on
adding the distance between each dimension of the
model (Eq. (1), (2) and (3)), distributions that share a
fair amount of the less representative topics may still
get higher similarity values than those that share the
most representative ones specially if the model has a
high number of dimensions.

Figures 9 and 10 show overlapped topic distribu-
tions of two pairs of documents. In the first case
(Fig. 9), none of the most representative topics of each
document is shared between them. However, the sim-
ilarity score calculated from divergence-based metrics
(Eq. (2)) is higher than in the second case (Fig. 10),
where the most representative topic is shared (topic
26). This behavior is due to the sum of the distances
between the less representative topics (i.e. topics with
a low weight value) being greater than the sum of the
distances between the most representative ones (i.e.
topic with a high weight value). In high-dimensional
models, that sum may be more representative than the
one obtained with the most relevant topics, which are
fewer in number than the less relevant ones.
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Fig. 9. Topic distribution of two documents. Similarity score, based on JSD, is equals to 0.74.

Fig. 10. Topic distribution of two documents. Similarity score, based on JSD, is equals to 0.71.

The following experiments aim to validate that

hash codes based on hierarchical set of topics not
only make it possible to search for similar doc-
uments with high accuracy, but also to extend
queries with new restrictions and to offer informa-
tion that helps explaining why two documents are
similar.

4.1. Datasets and evaluation metrics

Three datasets [6] are used to validate the proposed
approach. The OPEN-RESEARCH4 dataset consist of
500k research papers in Computer Science, Neuro-

4https://labs.semanticscholar.org/corpus/

https://labs.semanticscholar.org/corpus/
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science, and Biomedical randomly selected from the
Open Research Corpus [2]. The CORDIS5 dataset con-
tains 100k documents describing research and inno-
vation projects funded by the European Union under
a framework programme since 1990. The PATENTS
dataset consists of 1M patents randomly selected from
the USPTO6 collection. For each dataset, documents
are mapped to two latent topic spaces with different
dimensions using LDA. We perform parameter esti-
mation using collapsed Gibbs sampling for LDA [16]
from the open-source librAIry [4] software. It is a
framework that combines natural language processing
(NLP) techniques with machine learning algorithms
on top of the Mallet toolkit [32], an open-source ma-
chine learning package. The number of topics varies to
study their influence on the performance of the algo-
rithm (i.e. CORDIS-70 indicates a latent space created
with 70 topics).

Experiments use JS divergence as an information-
theoretically motivated metric in the probabilistic
space created by topic models. Since it is a smoothed
and symmetric alternative to the KL divergence, which
is a standard measure for comparing distributions [39],
it has been extensively used as state-of-the-art metric
over topic distributions in literature [1,31,38]. Our up-
per bound is created from the brute-force comparison
of the reference documents with all documents in the
collection to obtain the list of similar documents.

In this scenario the goal is to minimize the accuracy
loss introduced by hashing algorithms. Since this is a
large-scale problem and an accuracy-oriented task, re-
call is not a good measure to be considered and pre-
cision is only relevant for sets much smaller than the
total size of data (between 3–5 candidates).

All the experimental results are averaged over ran-
dom training/set partitions. For each topic space, 100
documents are selected as references, and the remain-
ing documents as search space. As noted above, only
p@5 will be used to report the results of the experi-
ments.

4.2. Retrieving similar documents

It is challenging to create an exhaustive gold stan-
dard, given the significant amount of human labour
that is required to get a comprehensive view of the
subjects being covered in it. In order to overcome this

5https://data.europa.eu/euodp/data/dataset/cordisref-data
6https://www.uspto.gov/learning-and-resources/ip-policy/

economic-research/research-datasets

problem, the list of similar documents to a given one
is obtained after comparing the document with all the
documents of the repository and sorting the result. We
have observed that different distance functions per-
form similarly in this scenario (Figs 1 to 4), so we have
decided to use only the JS divergence (Eq. (2)) in our
experiments.

Only the top N documents obtained from this
method are used as reference set to measure the per-
formance of the algorithms proposed in this paper. The
value of N is equals to 0.5% of the corpus size (i.e.
if the corpus size is equal to 1000 elements, only the
top 5 most similar documents are considered relevant
for a given document). This value has been considered
after reviewing datasets used in similar experiments
[25,31]. In those experiments, the reference data is ob-
tained from existing categories, and the minimum av-
erage between corpus size and categorized documents
is around 0.5%.

Once the reference list of documents similar to
a given one is defined, the most similar documents
through the proposed methods (i.e. threshold-based hi-
erarchical hashing method (thhm), centroid-based hi-
erarchical hashing method (chhm) and density-based
hierarchical hashing method (dhhm)) are also ob-
tained. An inverted index has been implemented by
using Apache Lucene7 as document repository. The
source code of both the algorithms and tests is publicly
available [6].

Let’s look at an example to better understand the
procedure. We want to measure the accuracy and data
size ratio used to identify the top5 similar documents
to a new document d1 from a corpus of 1000 docu-
ments. The similarity between d1 and all the docu-
ments in the corpus is calculated based on JS diver-
gence. The top50 (0.5%) documents with the highest
values will be the set of documents considered as sim-
ilar to d1. As we are going to use an ANN-based ap-
proach, we need the hash expressions of all documents
to measure similarity. The data structure proposed in
this work is a hierarchy of sets of topics, so that the
most similar documents are those that share most of
the topics at the highest levels of the hierarchy.

The representational model for this example only
considers 8 topics, that is, a document is described by a
vector with 8 dimensions where each dimension corre-
sponds to a topic (i.e. [t0, t1, t2, t3, t4, t5, t6, t7]) and
its value will be the weight of that topic in the doc-

7http://lucene.apache.org

https://data.europa.eu/euodp/data/dataset/cordisref-data
https://www.uspto.gov/learning-and-resources/ip-policy/economic-research/research-datasets
https://www.uspto.gov/learning-and-resources/ip-policy/economic-research/research-datasets
http://lucene.apache.org
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ument, for example d1 = [0.18, 0.15, 0.2, 0.05, 0.14,

0.11, 0.09, 0.08]. The hierarchy level (L) will be equal
to 2, i.e. the hash expression has two hierarchical sets
of topics: h = {h0, h1}.

According to methods described at Section 3.3,
there are 3 ways to create the hierarchical hash codes
for documents:

1. threshold-based (thhm): 2 thresholds are defined
as described in Section 3.3.1, for example 0.15
and 0.1. h0 includes the topics with a weight
greater than 0.15, and h1 the remaining top-
ics with a weight greater than 0.1. Then h0 =
{t0, t1, t2} and h1 = {t4, t5}. Based on the hash
expression h = {(t0, t1, t2), (t4, t5)}, the docu-
ments that share more topics in those levels (i.e.
h0 = (t0 OR t1 OR t2), h1 = (t4 OR t5)) or in
other levels but with less relevance are ordered.
Since there are many topics in the expression, po-
tentially many documents are similar when shar-
ing at least one of them. This increases the data
ratio. Accuracy is also affected, as the algorithm
is not able to bring under the same bucket sim-
ilar documents. In short, the hash expression is
not representative of the document, for the given
exploratory task.

2. centroid-based (chhm): sets of topics are created
using a clustering algorithm based on centroids
as described in Section 3.3.2. The cardinalities of
the hierarchical groups are generally more uni-
form with this method. Since k = L + 1 = 3 in
this example, h0 = {t0, t2} and h1 = {t1, t4}.
The number of representative topics at each level
of the hierarchy is usually lower, and this causes
the data ratio used to discover similar documents
to decrease as well. This approach increases the
precision because now the hierarchy is more se-
lective to distinguish similar documents. How-
ever, the size of region of similar candidates is
still high.

3. density-based (dhhm): now the clustering algo-
rithm is based on how dense certain regions in
the topic relevance dimensions are as described
in Section 3.3.3. It can group topics that have un-
balanced distributions and, therefore, generates
more discriminating hash expressions than with
the previous algorithm. In the example, we would
have a hash expression like this: h0 = {t2} and
h1 = {t0}. This significantly reduces the data ra-
tio used to discover similar documents and does
not excessively penalize accuracy. Obviously, in-

creasing L (i.e. number of hierarchies) increases
precision, but with L > 3 that gain is not so sig-
nificant.

As it can be seen in Tables 1 to 6, the mean and me-
dian of precision are calculated to compare the perfor-
mance of the methods. In this assessment environment,
the variance is not robust-enough because score values
don’t follow a normal distribution. We consider the re-

Table 1

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on open research dataset using a model with 100
topics. LEVEL column indicates the number of hierarchies used

OPEN-RES-100 (p@5)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 0.22 0.20 0.86 1.00 0.66 0.80

3 0.23 0.20 0.87 1.00 0.81 1.00

4 0.27 0.20 0.89 1.00 0.86 1.00

5 0.27 0.20 0.92 1.00 0.89 1.00

6 0.27 0.20 0.94 1.00 0.92 1.00

Table 2

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on open research dataset using a model with 500
topics. LEVEL column indicates the number of hierarchies used

OPEN-RES-500 (p@5)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 0.23 0.20 0.76 0.80 0.67 0.80

3 0.24 0.20 0.80 1.00 0.71 0.80

4 0.25 0.20 0.83 1.00 0.74 0.80

5 0.25 0.20 0.86 1.00 0.81 1.00

6 0.24 0.20 0.89 1.00 0.86 1.00

Table 3

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset using a model with 70 topics.
LEVEL column indicates the number of hierarchies used

CORDIS-70 (p@5)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 0.18 0.20 0.92 1.00 0.66 0.70

3 0.20 0.20 0.92 1.00 0.80 0.80

4 0.22 0.20 0.94 1.00 0.86 1.00

5 0.23 0.20 0.91 1.00 0.89 1.00

6 0.19 0.20 0.92 1.00 0.91 1.00
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Table 4

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset using a model with 150 topics.
LEVEL column indicates the number of hierarchies used

CORDIS-150 (p@5)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 0.19 0.20 0.88 1.00 0.78 0.80

3 0.19 0.20 0.92 1.00 0.80 1.00

4 0.25 0.20 0.91 1.00 0.82 1.00

5 0.25 0.20 0.91 1.00 0.83 1.00

6 0.27 0.20 0.91 1.00 0.86 1.00

Table 5

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on patents dataset using a model with 250 topics.
LEVEL column indicates the number of hierarchies used

PATENTS-250 (p@5)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 0.03 0.00 0.71 0.80 0.67 0.80

3 0.08 0.00 0.91 1.00 0.90 1.00

4 0.11 0.00 0.95 1.00 0.95 1.00

5 0.12 0.00 0.95 1.00 0.96 1.00

6 0.11 0.00 0.97 1.00 0.97 1.00

Table 6

Precision at 5 (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on patents dataset using a model with 750 topics.
LEVEL column indicates the number of hierarchies used

PATENTS-750 (p@5)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 0.02 0.00 0.77 0.80 0.76 0.80

3 0.04 0.00 0.94 1.00 0.95 1.00

4 0.06 0.00 0.97 1.00 0.97 1.00

5 0.08 0.00 0.97 1.00 0.97 1.00

6 0.06 0.00 0.97 1.00 0.97 1.00

sult obtained as significant, based on the fact that mean
and median values are fairly close. The centroid-based
method (chhm) and the density-based method (dhhm)
show a similar behaviour to the one offered by the use
of brute force by means of JS divergence.

In terms of efficiency, we consider the times to com-
pare pairs of topic distributions constant, and we fo-
cus on the number of comparisons needed. Thus, al-

Table 7

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on open research dataset and 100 topics

OPEN-RES-100 (data-ratio)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 99.8 99.9 45.2 45.9 4.9 2.5

3 99.9 99.9 74.4 77.6 13.4 10.7

4 99.9 99.9 87.4 90.2 27.2 22.8

5 99.9 99.9 95.4 96.3 49.9 42.6

6 99.9 99.9 97.9 98.7 72.2 65.8

Table 8

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on open research dataset and 500 topics

OPEN-RES-500 (data-ratio)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 95.9 96.3 22.2 22.1 1.4 0.3

3 99.1 99.2 43.9 43.7 5.1 4.1

4 99.6 99.6 57.1 57.3 11.7 10.3

5 99.6 99.6 70.7 70.7 28.8 22.0

6 99.9 99.9 81.5 80.6 50.3 40.1

Table 9

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset and 70 topics

CORDIS-70 (data-ratio)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 99.9 99.9 51.3 56.3 5.1 5.0

3 99.9 99.9 84.8 89.5 10.5 10.6

4 99.9 99.9 96.1 97.6 20.8 19.5

5 99.9 99.9 98.9 99.4 35.0 32.7

6 99.9 99.9 99.7 99.8 53.1 51.2

gorithms with larger candidate spaces will be less ef-
ficient than others when the accuracy in both is the
same. Tables 7–12 show the percentage of the corpus
used by each of the algorithms to discover similar doc-
uments. Tables 1–6 show the accuracy of each algo-
rithm for each of these scenarios. Density-based algo-
rithm (dhhm) shows better balance between accuracy
and volume of information (efficiency). It uses smaller
samples (i.e. lower ratio size) than others in all tests
and even when it only uses a subset that is a 6.2% (Ta-
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Table 10

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on CORDIS dataset and 150 topics

CORDIS-150 (data-ratio)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 99.9 99.9 40.9 41.2 3.1 2.9

3 99.9 99.9 75.3 76.7 6.2 6.1

4 99.9 99.9 90.0 92.1 12.1 11.8

5 99.9 99.9 96.4 96.9 21.6 20.6

6 99.9 99.9 98.1 98.9 36.5 33.9

Table 11

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on patents dataset and 250 topics

PATENTS-250 (data-ratio)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 99.9 99.9 43.2 32.7 35.1 23.0

3 99.9 100.0 82.4 100.0 78.2 100.0

4 99.9 100.0 96.5 100.0 95.1 100.0

5 99.9 99.9 99.2 100.0 98.9 100.0

6 100.0 100.0 99.8 100.0 99.7 100.0

Table 12

Data size ratio used (mean and median) of threshold-based (THHM),
centroid-based (CHHM) and density-based (DHHM) hierarchical
hashing methods on patents dataset and 750 topics

PATENTS-750 (data-ratio)

LEVEL THHM CHHM DHHM

mean median mean median mean median

2 99.9 100.0 35.2 23.6 31.8 19.9

3 99.9 99.9 81.4 99.8 79.6 98.8

4 99.9 99.9 96.5 99.9 95.5 99.5

5 97.7 96.6 99.0 99.9 98.6 99.7

6 99.1 98.6 99.7 99.9 99.5 99.8

ble 10) of the entire corpus, it obtains an accuracy of
0.808 (Table 4).

The precision achieved by the algorithm based on
density (dhhm), which is much more restrictive than
the others, suggests that few topics are required to rep-
resent a document in order to obtain similar ones. In
addition, the number of topics does not seem to in-
fluence the performance of the algorithms, since their
precision values are similar among the datasets of the
same corpus. This shows that hashing methods based

Fig. 11. Precision at 5 (mean) of threshold-based hashing method
when number of topics varies in CORDIS dataset.

Fig. 12. Precision at 5 (mean) of centroid-based hashing method
when number of topics varies in CORDIS dataset.

on hierarchical set of topics are robust to models with
different dimensions.

The behavior of the algorithms have also been ana-
lyzed when the number of topics in the model varies.
Models with 100, 200, 300, 400, 500, 600, 700, 800,
900 and 1000 topics were created from the CORDIS
corpus. For each model, the p@5 of the hashing meth-
ods is calculated taking into account the hierarchy lev-
els: 2, 3, 4, 5 and 6. Figures 11 to 13 show the results
obtained for each algorithm. It can be seen how the
performance, i.e. precision, of each of the algorithms
is not influenced by the dimensions of the model.

4.3. Exploration

In a certain domain, we may want to retrieve similar
documents to one given. For example, searching for
articles in the Biomedical domain that are similar to an
article about Semantic Web. In terms of topics this kind
of search requires to narrow down the initial search
space to a subset with only documents that contain the
topics that better describe the queried domain.
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Fig. 13. Precision at 5 (mean) of density-based hashing method when
number of topics varies in CORDIS dataset.

Existing hashing techniques based on a binary-code
Hamming space do not allow to customize the search
query beyond the reference document itself. However,
the algorithms proposed in this work allow adding new
restrictions to the initial query based on the reference
document, since they use a hierarchy of set of topics as
hash codes.

Through the following example we describe the
workflow to enable such retrieval operations. For
simplicity we consider hash expressions with only
two hierarchy levels. The reference document d1 has
the following hash expression: h = {h0, h1} =
{(t10), (t18)}.

The first query, Q1, searches for documents simi-
lar to the reference document d1 among all documents
in the corpus. One of the ways to formalise this query
looks like this: Q1 = h0 : t10ˆ100 or h0 : t18ˆ50 or
h1 : t10ˆ50 or h1 : t18ˆ100. It sets a maximum boost
(100) when the same restrictions as the reference docu-
ment (t10 in h0 and t18 in h1) are fulfilled, and a lower
boost (50) for the others (t18 in h0 and t10 in h1). In
the specific case of applying this query to the CORDIS
dataset, we observed that most of the retrieved docu-
ments included topic t18 (Fig. 14).

But if we were only interested in similar documents
to d1 that have topic t10, we could restrict the previ-
ous query Q1 to express this condition in the follow-
ing way: Q2 = (h0 : t10ˆ100 or h1 : t10ˆ50) and
(h1 : t10ˆ50 or h1 : t18ˆ100). The result obtained by
Q2 (Table 13) shows that the condition has been con-
sidered since there is a balance between topics t10 and
t18 among the documents similar to d1.

This type of restrictions based on the semantics of-
fered by topics in the hash expression get enabled
thanks to the methods proposed in this work.

Fig. 14. Most relevant topics in similar documents from using a doc-
ument as query (Q1) and setting topic t10 as mandatory (Q2).

Table 13

Number of documents similar to a given one (q1) and also in a spe-
cific domain (q2) for threshold-based (thhm), centroid-based (chhm)
and density-based (dhhm) hierarchical hashing methods

OPEN-RESEARCH-100

hash q1 q2 ratio

thhm 499,755 160,660 67.8

chhm 356,111 1,976 99.44

dhhm 49,068 766 98.43

5. Conclusions

The usefulness of topics created by probabilistic
models when exploring collections of scientific arti-
cles on large-scale has been widely studied in the lit-
erature. Each document in the corpus is described by
probability distributions that measure the presence of
those topics in their content. These vectors can also be
used to measure the similarity between documents by
using metrics such as Jensen–Shannon divergence. But
with large amounts of items in the collection, discov-
ering the entire set of nearest neighbors to a given doc-
ument would be infeasible. Due to the low storage cost
and fast retrieval speed, hashing is one of the popular
solutions for approximate nearest neighbors. However,
existing hashing methods for probability distributions
only focus on the efficiency of searches from a given
document, without handling complex queries or offer-
ing hints about why one document is considered more
similar than another. A new data structure is proposed
to represent hash codes, based on topic hierarchies cre-
ated from the topic distributions. This approach has
proven to obtain high-precision results and can accom-
modate additional query restriction. This way of en-
coding documents can also help to understand why two
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documents are similar, based on the intersection of top-
ics at hierarchies of relevance.

In this paper we have focused on (1) comparing the
performance of topic-based hashing methods with re-
spect to the distance metrics based on probability dis-
tributions (e.g. JS divergence), (2) their ability to sup-
port more complex queries based on topic-based filters
and (3) the expressiveness of their annotations (topics
hierarchically divided into groups with different de-
grees of semantic specificity) to justify the relations
obtained.

A manually annotated corpus with content similar-
ity relations would further confirm the ability of the
metrics proposed in this paper to reflect similarity as
humans perceive it. Ongoing work on this line includes
the creation of questionnaires8 to more accurately cap-
ture how similar two documents are from the perspec-
tive of human evaluators who read them both. This is
an ambitious task that need to deals with the evalua-
tors’ own interpretation of similarity. What an expert
perceives as different (since his knowledge in the do-
main allows him to identify discrepancies between the
two texts), may be considered as similar by an inex-
perienced user that might not be able to capture those
fine grained differences.

The next steps in our research are to extend the met-
ric proposed in this paper from the point of view of
the perception of similarity that a human makes, and to
perform a more in-depth investigation about the mean-
ing of the topics grouped by levels of relevance.
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