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Abstract. This article addresses a number of limitations of state-of-the-art methods of Ontology Alignment: 1) they primarily
address concepts and entities while relations are less well-studied; 2) many build on the assumption of the ‘well-formedness’ of
ontologies which is unnecessarily true in the domain of Linked Open Data; 3) few have looked at schema heterogeneity from a
single source, which is also a common issue particularly in very large Linked Dataset created automatically from heterogeneous
resources, or integrated from multiple datasets. We propose a domain- and language-independent and completely unsupervised
method to align equivalent relations across schemata based on their shared instances. We introduce a novel similarity measure
able to cope with unbalanced population of schema elements, an unsupervised technique to automatically decide similarity
threshold to assert equivalence for a pair of relations, and an unsupervised clustering process to discover groups of equivalent
relations across different schemata. Although the method is designed for aligning relations within a single dataset, it can also
be adapted for cross-dataset alignment where sameAs links between datasets have been established. Using three gold standards
created based on DBpedia, we obtain encouraging results from a thorough evaluation involving four baseline similarity measures
and over 15 comparative models based on variants of the proposed method. The proposed method makes significant improvement
over baseline models in terms of F1 measure (mostly between 7% and 40%), and it always scores the highest precision and is
also among the top performers in terms of recall. We also make public the datasets used in this work, which we believe make the
largest collection of gold standards for evaluating relation alignment in the LOD context.
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1. Introduction

The Web of Data is currently seeing remarkable
growth under the Linked Open Data (LOD) commu-
nity effort. The LOD cloud currently contains over

9,000 datasets and more than 85 billion triples.' It
is becoming a gigantic, constantly growing and ex-
tremely valuable knowledge source useful to many ap-
plications [16,30]. Following the rapid growth of the
Web of Data is the increasingly pressing issue of het-
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erogeneity, the phenomenon that multiple vocabular-
ies exist to describe overlapping or even the same
domains, and the same objects are labeled with dif-
ferent identifiers. The former is usually referred to
schema-level heterogeneity and the latter as data or
instance-level heterogeneity. It is widely recognized
that currently LOD datasets are characterized by dense
links at data-level but very sparse links at schema-level
[15,24,38]. This may hamper the usability of data over
large scale and reduces interoperability between Se-
mantic Web applications built on LOD datasets. This
work explores this issue and particularly studies link-
ing relations across different schemata in the LOD do-
main, a problem that is currently under-represented in
the literature.

Research in the area of Ontology Alignment [13,39]
has contributed to a plethora of methods towards solv-
ing heterogeneity on the Semantic Web. A lot of these
[7,9,21,25,27,29,34-36,41] are archived under the On-
tology Alignment Evaluation Initiative (OAEI) [10].
However, we identify several limitations of the ex-
isting work. First, it has been criticized that most
methods are tailored to cope with nicely structured
and well defined ontologies [17], which are different
from LOD ontologies characterized by noise and in-
completeness [15,17,37,38,46,51]. Many features used
by such methods may not be present in LOD ontolo-
gies.

Second, we notice that aligning heterogeneous rela-
tions is not yet well-addressed, especially in the LOD
context. Recent research has found that this problem
is considered to be harder than, e.g., aligning classes
or concepts [6,15,18]. Relation names are more di-
verse than concept names [6], and the synonymy and
polysemy problems are also more typical [6,15]. This
makes aligning relations in the LOD domain more
challenging. Structural information of relations is par-
ticularly lacking [15,51], and the inconsistency be-
tween the intended meaning of schemata and their us-
age in data is more wide-spread [15,17,18]. Further,
some emerging data linking problems such as linkkey
discovery [2,45] can also benefit from the solutions of
this problem since some methods depend on sets of
mapped relations from different schemata.

Third, while it makes a lot of sense to study cross-
dataset heterogeneity, solving heterogeneity from with-
in a single dataset is also becoming increasingly im-
portant. Recent years have seen a rising trend of using
(semi-)automatic Information Extraction techniques to
create very large knowledge bases from semi- or un-
structured text input [5,14,28] as they significantly re-

duces the tremendous human cost involved in tradi-
tional ontology engineering process. Due to polysemy
in natural language, the extracted schemata are of-
ten heterogeneous. For example, in DBpedia,> more
than five relations are used to describe the name of
a University, such as dbpp®:uname, dbpp:name and
foaf*:name. In the ReVerb [14] database containing
millions of facts extracted from natural language doc-
uments from the Web, the relation ‘contain vitamin’
has more than five expressions. The problem worsens
when such datasets are exposed on the LOD cloud,
as data publishes attempting to link to such datasets
may struggle to conform to a universal schema. As a
realistic scenario, the DBpedia mappings portal® is a
community effort dedicated to solving heterogeneity
within the DBpedia dataset itself.

Last, a common limitation to nearly all existing
methods is the need for setting a cutoff threshold of
computed similarity scores in order to assert corre-
spondences. It is known that the performance of dif-
ferent methods are very sensitive to thresholds [6,19,
29,35,44], while finding optimal thresholds requires
tuning on expensive training data; unfortunately, the
thresholds are often context-dependent and requires re-
tuning for different tasks [22,40].

To address these issues, we introduce a completely
unsupervised method for discovering equivalent re-
lations for specific concepts, using only data-level
evidence without any schema-level information. The
method has three components: (1) a similarity measure
that computes pair-wise similarity between relations,
designed to cope with the unbalanced (and particu-
larly sparse) population of schemata in LOD datasets;
(2) an unsupervised method of detecting cutoff thresh-
olds based on patterns discovered in the data; (3) and
an unsupervised clustering process that groups mutu-
ally equivalent relations, potentially discovering rela-
tion alignments among multiple schemata. The princi-
ple of the method is studying the shared instances be-
tween two relations. This makes it particularly suitable
for matching relations across multiple ontologies an-
notating the same dataset, or for contributing match-
ing ontologies when sameAs links between different
datasets have been established.

thtp://dbpedia.org/ . All examples and data analysis based on DB-
pedia in this work uses its dataset in September 2013.

3dbpp:http://dbpedia.org/property/ .

4foaf:http://xmlns.com/foaf/o. 1/.

5http://mappings.dbpedia.org/index.php/Mapping_en, visited on
01 August 2014.
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For a thorough evaluation, we use a number of
datasets collected in a controlled manner, including
one based on the practical problem faced by the DBpe-
dia mapping portal. We create a large number of com-
parative models to assess the proposed method along
the following dimensions: its similarity measure, ca-
pability of coping with dataset featuring unbalanced
usage of schemata, automatic threshold detection, and
clustering. We report encouraging results from these
experiments. The proposed method successfully dis-
covers equivalent relations across multiple schemata,
and the similarity measure is shown to significantly
outperform all baselines in terms of F1 (maximum im-
provement of 0.47, or 47%). It also handles unbalanced
populations of schema elements and shows stability
against several alternative models. Meanwhile, the au-
tomatic threshold detection method is shown to be very
competitive — it even outperforms the supervised mod-
els on one dataset in terms of F1.

In the remainder of this paper, Section 2 discusses
related work; Section 3 introduces the method; Sec-
tion 4 describes a series of designed experiments and 5
discusses results, followed by conclusion in Section 6.

2. Related work
2.1. Terminology and scope

An alignment between a pair of ontologies is a set
of correspondences between entities across the on-
tologies [13,39]. Ontology entities are usually: classes
defining the concepts within the ontology; individu-
als denoting the instances of these classes; literals rep-
resenting concrete data values; datatypes defining the
types that these values can have; and properties com-
prising the definitions of possible associations between
individuals, called object properties, or between one
individual and a literal, called datatype properties [25].
Properties connect other entities to form statements,
which are called friples each consisting of a subject,
a predicate (i.e., a property) and an object.% A corre-
spondence asserts that certain relation holds between
two ontological entities, and the most frequently stud-
ied relations are equivalence and subsumption. On-
tology alignment is often discussed at ‘schema’ or
‘instance’ level, where the former usually addresses
alignment for classes and properties, the latter ad-

6To be clear, we will always use ‘object’ in the context of triples;
we will always use ‘individual’ to refer to object instances of classes.

dresses alignment for individuals. This work belongs
to the domain of schema level alignment.

As we shall discuss, in the LOD domain, data are
not necessarily described by formal ontologies, but
sometimes vocabularies that are simple renderings of
relational databases [38]. Therefore in the following,
wherever possible, we will use the more general term
schema or vocabulary instead of ontology, and relation
and concept instead of property and class. When we
use the terms class or property we mean strictly in the
formal ontology terms unless otherwise stated.

A fundamental operation in ontology alignment is
matching pairs of individual entities. Such methods are
often called ‘matchers’ and are usually divided into
three categories depending on the type of data they
work on [13,39]. Terminological matchers work on
textual strings such as URIs, labels, comments and de-
scriptions defined for different entities within an on-
tology. The family of string similarity measures has
been widely employed for this purpose [6]. Structural
matchers make use of the hierarchy and relations de-
fined between ontological entities. They are closely re-
lated to measures of semantic similarity, or relatedness
in more general sense [49]. Extensional matchers ex-
ploit data that constitute the actual population of an on-
tology or schema in the general sense, and therefore,
are often referred to as instance- or data-based meth-
ods. For a concept, ‘instances’ or ‘populated data’ are
individuals in formal ontology terms; for a relation,
these can depend on specific matchers, but are typi-
cally defined based on triples containing the relation.
Matchers compute a degree of similarity between enti-
ties in certain numerical range, and use cutoff thresh-
olds to assert correspondences.

In the following, we begin by a brief overview of the
literature on the general topic of ontology alignment,
then focus our discussion of related work on two di-
mensions that characterize this work: in the context of
LOD, and aligning relations.

2.2. Ontology alignment in general

A large number of ontology alignment methods
have been archived under the OAEI, which maintains
a number of well-known public datasets and hosts an-
nual evaluations. Work under this paradigm has been
well-summarized in [13,39]. A predominant pattern
shared by these work [7,9,19,21,25,27,29,34-36,41] is
the strong preference of terminological and structural
matchers to extensional methods [39]. Many of these
show that ontology alignment can benefit from the
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use of background knowledge sources such as Word-
Net and Wikipedia [9,19,25,27,34,35]. There is also
a trend of using a combination of different matchers,
since it is argued that the suitability of a matcher is de-
pendent on different scenarios and therefore combin-
ing several matchers could improve alignment quality
[36].

These methods are not suitable for our task for a
number of reasons. First, most methods are designed
to align concepts and individuals, while adaptation to
relations is not straightforward. Second, terminolog-
ical and structural matchers require well-formed on-
tologies, which are not necessarily available in the con-
text of LOD. As we shall discuss in the next sections,
tougher challenges arise in the LOD domain and in the
problem of aligning heterogeneous relations.

2.3. Ontology alignment in the LOD domain

Among the three categories of matchers, extensional
matchers are particularly favoured due to certain char-
acteristics of Linked Data.

First and foremost, vocabulary definitions are of-
ten highly inconsistent and incomplete [17]. Tex-
tual features such as labels and comments for con-
cepts and relations that are used by terminological
matchers are non-existent in some large ontologies. In
particular, many vocabularies generated from (semi-
)automatically created large datasets are based on sim-
ple renderings of relational databases and are unlikely
to contain such information. For instance, Fu et al. [15]
showed that the DBpedia ontology contained little lin-
guistic information about relations except their names.

Even when such information is available, the mean-
ing of schemata may be dependent on their actual us-
age pattern in the data [17,37,51] (e.g., foaf:Person
may represent researchers in a scientific publication
dataset, but artists in a music dataset). This means that
strong similarity measured at terminological or struc-
tural level does not always imply strict equivalence.
This problem is found to be particularly prominent in
the LOD domain [17,37,46]. Empirically, Jain et al.
[23] and Cruz et al. [7] showed that the top-performing
systems in ‘classic’ ontology alignment settings such
as the OAEI do not have clear advantage over others in
the LOD domain.

Second, the Linked Data environment is character-
ized by large volumes of data and the availability of
many interconnected information sources [17,37,38,
44]. Thus extensional matchers can be better suited for
the problem of ontology alignment in the LOD domain

as they provide valuable insights into the contents and
meaning of schema entities from the way they are used
in data [37,46].

The majority of state-of-the-art in the LOD do-
main employed extensional matchers. Nikolov et al.
[37] proposed to recursively compute concept map-
pings and entity mappings based on each other. Con-
cept mappings are firstly created based on the overlap
of their individuals; such mappings are later used to
support mapping individuals in LOD ontologies. The
intuition is that mappings between entities at both lev-
els influence each other. Similar idea was explored by
Suchanek et al. [44], who built a holistic model start-
ing with initializing probabilities of correspondences
based on instance (for both concepts and relations)
overlap, then iteratively re-compute probabilities until
convergence. However, equivalence between relations
is not addressed.

Parundekar et al. [38] discussed aligning ontolo-
gies that are defined at different levels of granularity,
which is common in the LOD domain. As a concrete
example, they mapped the only class in the GeoN-
ames’ ontology — geonames: Feature — with a well de-
fined one, such as the DBpedia ontology, by using the
notion of ‘restriction class’. A restriction class is de-
fined by combining value-restricted-properties, such as
(rdfs® :type=Feature, featureCode=gn°:A.PCLI). This
effectively defines more fine-grained concepts that
can then be aligned with other ontologies. A similar
matcher as Nikolov et al. [37] is used. Slabbekoorn
et al. [43] explored a similar problem: matching a
domain-specific ontology to a general purpose ontol-
ogy. It is unclear if these approaches can be applied to
relation matching or not.

Jain et al. [24] proposed BLOOMS+, the idea of
which is to build representations of concepts as sub-
trees from Wikipedia category hierarchy, then deter-
mine equivalence between concepts based on the over-
lap in their representations. Both structural and exten-
sional matcher are used and combined. Cruz et al. [8]
created a customization of the AgreementMaker sys-
tem [9] to address ontology alignment in the LOD con-
text, and achieved better average precision but worse
recall than BLOOMS++. Gruetze et al. [17] and Duan
et al. [12] also used extensional matchers in the LOD
context but focusing on improving computation effi-
ciency of the algorithms.

7http://Www.geonames.org/.
8rdfs:hllp://www.w?».org/ZOOO/Ol/rdl'— schemat#.
9 gn=http://www.geonames.org/ontology#.
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2.4. Matching relations

Compared to concepts, aligning relations is gener-
ally considered to be harder [6,15,18]. The challenges
concerning the LOD domain can become more notice-
able when dealing with relations. In terms of linguis-
tic features, relation names can be more diverse than
concept names, this is because they frequently involve
verbs that can appear in a wider variety of forms than
nouns, and contain more functional words such as ar-
ticles and prepositions [6]. The synonymy and poly-
semy problems are common. Verbs in relation names
are more generic than nouns in concept names and
therefore, they generally have more synonyms [6,15].

Same relation names are found to bear different
meanings in different contexts [18]. For example, in
the DBpedia dataset ‘before’ is used to describe rela-
tionship between consecutive space missions, or Ro-
man emperors such as Nero and Claudius. If a user cre-
ates a query using such relations without enough ad-
ditional constraints, the result may contain irrelevant
records since the user might be only interested in par-
ticular aspects of these polysemous relations [15]. In-
deed, Gruetze et al. [17] suggested definitions of rela-
tions should be ignored when they are studied in the
LOD domain due to such issues.

In terms of structural features, Zhao et al. [51]
showed that relations may not have domain or range
defined in the LOD domain. Moreover, we carried
out a test on the ‘well-formed’ ontologies released
by the OAEI-2013 website, and found that among 21
downloadable!® ontologies 7 defined relation hierar-
chy and the average depth is only 3. Fu et al. [15] also
showed hierarchical relations between DBpedia prop-
erties were very rare.

For these reasons, terminological and structural
matchers can be seriously hampered if applied to
matching relations, particularly in the LOD domain.
Indeed, Cheatham et al. [6] compared a wide selec-
tion of string similarity measures in several tasks and
showed their performance on matching relations to
be inferior to matching concepts. Thus in line with
Nikolov et al. [37] and Duan et al. [12], we argue in
favour of extensional matchers.

We notice that only a few related work specifically
focused on matching relations based on data-level ev-
idence. Fu et al. [15] studied mapping relations in the
DBpedia dataset. The method uses three types of fea-

10http://oaei.ontologymatching.0rg/2013/, visited on 01-11-2013.
Some datasets were unavailable at the time.

tures: data level, terminological, and structural. Simi-
larity is computed using three types of matchers corre-
sponding to the features. An extensional matcher simi-
lar to the Jaccard function compares the overlap in the
subject sets of two relations, balanced by the overlap in
their object sets. Zhao et al. [50,51] first created triple
sets each corresponding to a specific subject that is an
individual, such as dbr'!:Berlin. Then initial groups
of equivalent relations are identified for each specific
subject: if, within the triple set containing the subject,
two lexically different relations have identical objects,
they are considered equivalent. The initial groups are
then pruned by a large collection of terminological and
structural matchers, applied to relation names and ob-
jects to discover fuzzy matches. Zhao et al. [52] used
nine WordNet-based similarity measures to align prop-
erties from different ontologies. They firstly use NLP
tools to extract terms from properties, then compute
similarity between the groups of terms from the pair of
properties. These similarity measures make use of the
terminological and structural features of the WordNet
lexical graph.

Many extensional matchers used for matching con-
cepts could be adapted to matching relations. One pop-
ular strategy is to compare the size of the overlap in the
instances of two relations against the size of their total
combined, such as the Jaccard measure and Dice co-
efficient [12,15,17,22]. However, in the LOD domain,
usage of vocabularies can be extremely unbalanced
due to the collaborative nature of LOD. Data publish-
ers have limited knowledge about available vocabular-
ies to describe their data, and in worst cases they sim-
ply do not bother [46]. As a result, concepts and re-
lations defined from different vocabularies bearing the
same meaning can have different population sizes. In
such cases, the above strategy is unlikely to succeed
[37].

Another potential issue is that current work assumes
relation equivalence to be ‘global’, while it has been
suggested that, interpretation of relations should be
context-dependent, and argued that equivalence should
be studied at concept-specific context because essen-
tially relations are defined specifically with respect
to concepts [15,18]. Global equivalence cannot deal
with the polysemy issue such as the previously illus-
trated example of ‘before’ bearing different meanings
in different contexts. Further, to our knowledge, there
is currently no public dataset specifically for align-
ing relations in the LOD domain, and current meth-

11 dbr:http://dbpedia.org/resource/.
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ods [15,50,51] have been evaluated on smaller datasets
than those used in this study.

2.5. The cutoff thresholds in matchers

To date, nearly all existing matchers require a cut-
off threshold to assert correspondence between enti-
ties. The performance of a matcher can be very sensi-
tive to thresholds and finding an optimal point is of-
ten necessary to warrant the effectiveness of a matcher
[6,19,29,35,44]. Such thresholds are typically decided
based on some annotated data (e.g., [18,29,41]), or
even arbitrarily in certain cases. In the first case, ex-
pensive effort must be spent on annotation and train-
ing. In both cases, the thresholds are often context-
dependent and requires re-tuning for different tasks
[22,40,41]. For example, Seddiqui et al. [41] showed
that for the same matcher, previously reported thresh-
olds in related work may not perform satisfactorily
on new tasks. For extensional matchers, finding best
thresholds can be difficult since they too strongly de-
pend on the collection of data [12,22].

One study that reduces the need of supervision in
learning thresholds is based on active learning by Shi
et al. [42]. The system automatically learns similarity
thresholds by repeatedly asking feedback from a user.
However, this method still requires certain supervision.
Another approach adopted in Duan et al. [12] and Fu et
al. [15] is to sort the matching results in a descending
order of the similarity score, and pick only the top-k
results. This suffers from the same problem as cutoff
thresholds since the value of k can be different in dif-
ferent contexts (e.g., in Duan et al. this varied from 1
to 86 in the ground truth). To the best of our knowl-
edge, our work is the first that automatically detects
thresholds without using annotated training data.

2.6. Remark

To conclude, the characteristics of relations found
in the schemata from the LOD domain, i.e., incom-
plete (or lack of) definitions, inconsistency between in-
tended meaning of schemata and their usage in data,
and very large amount of data instances, advocate for
a renewed inspection of existing ontology alignment
methods. We believe that the solution rests on exten-
sional methods that provide insights into the meaning
of relations based on data, and unsupervised methods
that alleviate the need for threshold tuning.

Towards these directions we developed a prototype
[47] specifically to study aligning equivalent relations

in the LOD domain. We proposed a different exten-
sional matcher designed to reduce the impact of the un-
balanced populations, and a rule-based clustering that
employs a series of cutoff thresholds to assert equiv-
alence between relation pairs and discover groups of
equivalent relations specific to individual concepts.
The method showed very promising results in terms of
precision, and was later used in constructing knowl-
edge patterns based on data [3,48]. The work described
in this article is built on our prototype but extends it
in several dimensions: (1) a revised and extended ex-
tensional matcher; (2) a method of automatic threshold
detection without need of training data; (3) an unsuper-
vised machine learning clustering approach to discover
groups of equivalent relations; (4) augmented and re-
annotated datasets that we make available to public;
(5) extensive and thorough evaluation against a large
set of comparative models, together with an in-depth
analysis of the task of aligning relations in the LOD
domain.

We focus on equivalence only because firstly, it is
considered the major issue in ontology alignment and
studied by the majority of related work; secondly, hi-
erarchical structures for relations are very rare, espe-
cially in the LOD domain.

3. Methodology
3.1. Task formalization

Our domain- and language-independent method for
aligning heterogeneous relations belongs to the cate-
gory of extensional matchers, and only uses instances
of relations as its evidence to predict equivalence. In
the following, we write <x, r, y> to represent triples,
where x, y and r are variables representing subject,
object and relation respectively. We will call x, y the
arguments of r, or let arg(r) = (x, y) return pairs of
x and y between which r holds true. We call such ar-
gument pairs as instances of r. We will also call x the
subject of r, or let arg,(r) = x return the subjects of
any triples that contain r. Likewise we call y the ob-
ject of r or let arg,(r) = y return the objects of any
triples that contain r. Table 1 shows examples using
these notations.

We start by taking as input a URI representing a spe-
cific concept C and a set of triples <x, r, y> whose
subjects are individuals of C, or formally type(x) = C.
In other words, we study the relations that link C with
everything else. The intuition is that such relations may
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Table 1
Notations used in this paper and their meaning

<X, I, y> <dbr.'Sydney_Opera_House,
dbo” :openningDate, ‘1973’ >,
<dbr:Royal_Opera_House,
dbo:openningDate, ‘1732°>,
<dbr:Sydney_Opera_House,
dbpp:yearsactive, ‘1973’ >

r dbo:openningDate

1) dbpp:yearsactive

arg(ry) (dbr:Sydney_Opera_House, ‘1973’),
(dbr:Royal_Opera_House, ‘1732’)

arg (ry) dbr:Sydney_Opera_House,
dbr:Royal_Opera_House

arg, (r1) ‘1973°,°1732°

* dbo:http://dbpedia.org/ontolgy/

carry meanings that are specific to the concept (e.g.,
the example of the DBpedia relation ‘before’ in the
context of different concepts).

Our task can be formalized as: given the set of
triples <x, r, y> such that x are instances of a par-
ticular concept, i.e., type(x) = C, determine (1) for
any pair of (r1,rp) derived from <x,r, y> if r; =
ro; and (2) create clusters of relations that are mutu-
ally equivalent for the concept. To approach the first
goal, we firstly introduce a data-driven similarity mea-
sure (Section 3.2). For a specific concept we hypoth-
esize that there exists only a handful of truly equiv-
alent relation pairs (true positives) with high similar-
ity scores, however, there can be a large number of
pairs of relations with low similarity scores (false pos-
itives) due to noise in the data caused by, e.g., mis-
use of schemata or chances. Therefore, we propose to
automatically split the relation pairs into two groups
based on patterns in their similarity scores and as-
sert equivalence for pairs from the smaller group with
higher similarity (Section 3.3). This also allows us
to detect concept-specific thresholds. For the second
goal, we apply unsupervised clustering to the set of
equivalent pairs and create clusters of mutually equiv-
alent relations (Section 3.4) for a concept. The clus-
tering process discovers equivalence transitivity or in-
validates pair-wise equivalence. This may also dis-
cover alignments among multiple schemata at the same
time.

3.2. Measure of similarity
The goal of the measure is to assess the degree of

similarity between a pair of relations within a concept-
specific context, as illustrated in Fig. 1. The measure

A :
. 0B s
. e ‘e @7
0.7
0.05
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Fig. 1. The similarity measure computes a numerical score for pairs
of relations. r3 and r5 has a score of 0.
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Fig. 2. Tllustration of triple agreement.

consists of three components, the first two of which are
previously introduced in our prototype [47].12

3.2.1. Triple agreement

Triple agreement evaluates the degree of shared ar-
gument pairs of two relations in triples. Equation (1)
firstly computes the overlap (intersection) of argument
pairs between two relations.

argn(r1, rp) = arg(ry) Narg(r2) (1

Then the triple agreement is a function that returns
a value between 0 and 1.0:

|argn(r, r2)| | argn(ry, r2)| }
| arg(ry)| |arg(r2)|
2)

ta(ri, rn) = max{

The intuition of triple agreement is that if two rela-
tions r; and r have a large overlap of argument pairs
with respect to the size of either relation, they are likely
to have an identical meaning. We choose the max of
the two values in Eq. (2) rather than balancing the two
as this copes with the unbalanced usage of different
schemata in LOD datasets, the problem which we dis-
cussed in Section 2.4. As an example, consider Fig. 2.
The size of argument pair overlap between r; and ro
is 4 and it is relatively large to r; but rather insignif-
icant to r;. ta chooses the maximum between the two
giving a strong indication of equivalence between the

12Notations have been changed.
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Fig. 3. Illustration of subject agreement.

relations. We note that similar forms have been used
for discovering similar concepts [37] and studying sub-
sumption relations between concepts [38,44]. How-
ever we believe that this could be used to find equiv-
alent relations due to the largely unbalanced popula-
tion for different vocabularies, as well as the lack of
hierarchical structures for relations as discussed before
in Section 2.4. We confirm this empirically in experi-
ments later in Section 5.

3.2.2. Subject agreement

Subject agreement provides a complementary view
by looking at the degree to which two relations share
the same subjects. The motivation of having sa in ad-
dition to fa can be illustrated by Fig. 3. The exam-
ple produces a low ta score due to the small overlap
in the argument pairs of r; and . A closer look re-
veals that although | and r, have 7 and 11 argument
pairs, they have only 3 and 4 different subjects respec-
tively and two are shared in common. This indicates
that both 71 and r, are /-to-many relations. Again due
to publisher preferences or lack of knowledge, triples
may describe the same subject (e.g., dbr:London) us-
ing heterogeneous relations (e.g., dbo:birthPlace Of,
dbpp:place OfOriginOf) with different sets of objects
(e.g., {dbr:Marc_Quinn, dbr:David_Haye, dbr:Alan_
Keith} for dbo:birthPlaceOf and {dbr:Alan_Keith,
dbr:Adele_Dixon} for dbpp:placeOfOriginOf). ta
does not discriminate such cases.

Subject agreement captures this situation by hypoth-
esizing that two relations are likely to be equivalent
if (o) a large number of subjects are shared between
them and (B) a large number of such subjects also have
shared objects.

subn(ry, rp) = arg(r1) N argg (r2) 3)
suby(ry, rp) = argg(r1) U arg,(r2) (@)
w1, ry) = [subn(ry, r2)| 5)

[suby(ry, r2)|

B(ri, r2)

1 if 3y : (x,y) € arg~(r1, r2)
ermbﬂ(’lﬂ) 0 otherwise

’

(6)
both o and B return a value between 0 and 1.0, and
subject agreement combines both to also return a value
in the same range as

[subn(r1, r2)|

sa(ry, r)) = a(ry, r2) - B(ri, r2), @)

and effectively:

sa(ry, r1)

1 if 3y : (x,y) € arg~(r1, r2)
ersubﬂ(’h’Z) 0 otherwise

Isuby(ry, ra)|
(®)
Equation (5) evaluates the degree to which two re-
lations share subjects based on the intersection and the
union of the subjects of two relations. Equation (6)
counts the number of shared subjects that have at least
one overlapping object. The higher the 8, the more the
two relations ‘agree’ in terms of their shared subjects
subn. For each subject shared between r; and rp we
count 1 if they have at least 1 object in common and 0
otherwise. Since both r; and r; can be 1-to-many rela-
tions, few overlapping objects could mean that one is
densely populated while the other is not, which does
not mean they ‘disagree’. The agreement sa(ry, r2)
balances the two factors by taking the product. As a
result, relations that have high sa will share many sub-
jects (i.e., x € subn(ry, rp) under summation), a large
proportion of which will also share at least one object
(ie., dy : (x,y) € argn(r1, r2)). Following the exam-
ple in Fig. 3 we can calculate « = 0.4, 8 = 1.0 and
sa = 0.4.

3.2.3. Knowledge confidence modifier

Although ta and sa compute scores of similarity
from different dimensions, as argued by Isaac et al.
[22], in practice, datasets often have imperfections due
to incorrectly annotated instances, data spareness and
ambiguity, so that basic statistical measures of co-
occurrence might be inappropriate if interpreted in a
naive way. Specifically in our case, the divisional equa-
tions of fa and sa components can be considered as
comparison between two items — sets of elements in
this case. Intuitively, to make a meaningful compar-
ison of two items we must possess adequate knowl-
edge about each such that we ‘know’” what we are com-
paring and can confidently identify their ‘difference’.
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Fig. 4. The logistic function modelling knowledge confidence.

Thus we hypothesize that our confidence about the out-
come of comparison directly depends on the amount
of knowledge we possess about the compared items.
We can then solve the problem by solving two sub-
tasks: (1) quantifying knowledge and (2) defining ‘ad-
equacy’. The quantification of knowledge can be built
on the principle of human inductive learning. The in-
tuition is that given a task (e.g., learning to recognize
horses) of which no a priori knowledge is given, hu-
mans are capable of generalizing examples and induc-
ing knowledge about the task. Exhausting examples
is unnecessary and typically our knowledge converges
after seeing certain amount of examples and we learn
little from additional examples — a situation that indi-
cates the notion of ‘adequacy’. Such a learning pro-
cess can be modeled by ‘learning curves’, which are
designed to capture the relation between how much
we experience (examples) and how much we learn
(knowledge). Therefore, we propose to approximate
the modeling of confidence by models of learning
curves. In this context, the items we need knowledge
of are pairs of relations to be compared. Practically,
each is represented as a set of instances, i.e., examples.
Thus our knowledge about the relations can be mod-
eled by learning curves corresponding to the number of
examples (i.e., argument pairs). We propose to model
this problem based on the theory by Dewey [11], who
suggested human learning follows an ‘S-shaped’ curve
as shown in Fig. 4. As we begin to observe examples,
our knowledge grows slowly as we may not be able
to generalize over limited cases. This is followed by a
steep ascending phase where, with enough experience
and new re-assuring evidence, we start ‘putting things
together’ and gaining knowledge at a faster phase. This
rapid progress continues until we reach convergence,
an indication of ‘adequacy’ and beyond which the ad-
dition of examples adds little to our knowledge. Em-
pirically, we model such a curve using a logistic func-
tion shown in Eq. (9), where T denotes the set of ar-

gument pairs of a relation we want to understand, kc is
the shorthand for knowledge confidence (between 0.0
and 1.0) representing the amount of knowledge or level
of confidence corresponding to different amounts of
examples (i.e., |T'|), and n denotes the number of ex-
amples by which one gains adequate knowledge about
the set and becomes fully confident about comparisons
involving the set (hence the corresponding relation it
represents). The choice of 7 is to be discussed in Sec-
tion 4.3.

1

ke(IT)) = ler(IT1) =

C))

It could be argued that other learning curves (e.g.,
exponential) could be used as alternative; or we could
use simple heuristics instead (e.g., discard any rela-
tions that have fewer than n argument pairs). How-
ever, we believe that the logistic model better fits the
problem since the exponential model usually implies
rapid convergence, which is hardly the case in many
real learning situations; while the simplistic thresh-
old based model may harm recall. We show empirical
comparison in Section 5.

Next we revise fa and sa as ta*® and sa*° respectively
by adding the kc measure in the equation:

ta*(ry, r2)

),

ke(| arg(rz)\)} (10)

_ max{ |arg (71, 72)] k(| arg(ry)

|arg(ry)|
|argn (1. 72)|
|arg(r2)|

sa“(ry, r1)

).
(1)

= a(ri,r2) - Bri, r2) - ke(| argn(r1, r2)

where the choice of the kc model can be either Ig?, or
some alternative models to be detailed in Section 4.
The choice of the kc model does not break the math-
ematical consistency of the formula. In Eq. (10), our
confidence about a fa score depends on our knowl-
edge of either arg(ry) or arg(rp) (i.e., the denomina-
tors). Note that the denominator is always a superset of
the numerator, the knowledge of which we do not need
to quantify separately since intuitively, if we know the
denominator we should also know its elements and
its subsets. In Eq. (11), our confidence about an sa
score depends on the knowledge of the shared argu-
ment pairs between r; and r;. The modification effect
of kc is that with insufficient examples (|7| the argu-
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Fig. 5. Deciding a threshold beyond which pairs of relations are con-
sidered to be truely equivalent.

ment pairs of a relation), the triple agreement and sub-
ject agreement scores are penalized depending on the
size of |T| and the formulation of kc. The penalty is
reduced to neglectable when |T'| is greater than certain
number.

Both equations return a value between 0 and 1.0.
Finally, the similarity between ry and r is:

ke ke
ta*“(ry, ry) + sa“(ry, r2)
e(r;,rn) = 5 (12)

3.3. Determining thresholds

After computing similarity scores for relation pairs
of a specific concept, we need to interpret the scores
and be able to determine the minimum score that justi-
fies equivalence between two relations (Fig. 5). This is
also known as a part of the mapping selection problem.
As discussed before, one typically derives a thresh-
old from training data or makes an arbitrary decision.
The solutions are non-generalizable and the supervised
method also requires expensive annotations.

We use an unsupervised method that determines
thresholds automatically based on observed patterns in
data. We hypothesize that a concept may have only
a handful of equivalent relation pairs whose similar-
ity scores should be significantly higher than the non-
equivalent noisy ones that also have non-zero similar-
ity. The latter can happen due to imperfections in data
such as schema misuse or merely by chance. For exam-
ple, Fig. 6 shows the scores (e) of 101 pairs of relations
of the DBpedia concept Book ranked by e (>0) appear
to form a long-tailed pattern consisting of a small pop-
ulation with high similarity, and a very large popula-
tion with low similarity.!> Hence our goal is to split
the pairs of relations into two groups based on their
similarity scores, where the scores in the smaller group
should be significantly higher than those in the other
larger group. Then we assume that the pairs contained

DBpedia concept: Book

Fig. 6. The long-tailed pattern in similarity scores between relations
computed using e. ¢ could be the boundary threshold.

by the smaller group are truly equivalent pairs and the
larger group contains noise and is discarded.

We do this based on the principle of maximizing
the difference of similarity scores between the groups.
While a wide range of data classification and clustering
methods can be applied for this purpose, here we use
an unsupervised method — Jenks natural breaks [26].
Jenks natural breaks determines the best arrangement
of data values into different classes. It seeks to reduce
within-class variance while maximizing between-class
variance. Given a set of data points and i the expected
number of groups in the data, the algorithm starts by
splitting the data into arbitrary i groups, followed by an
iterative process aimed at optimizing the ‘goodness-of-
variance-fit’ based on two figures: the sum of squared
deviations between classes, and the sum of squared de-
viations from the array mean. At the end of each itera-
tion, a new splitting is created based on the two figures
and the process is repeated until the sum of the within
class deviations reaches a minimal value. The resulting
optimal classification is called Jenks natural breaks.
Essentially, Jenks natural breaks is k-means [32] ap-
plied to univariate data.

Empirically, given the set of relation pairs for a con-
cept C we apply Jenks natural breaks to the similar-
ity scores with i = 2 to break them into two groups.
We expect to obtain a smaller group of pairs with sig-
nificantly higher similarity scores than another larger
group of pairs, and we consider those pairs from the
smaller group as truly equivalent while those from the
larger group as non-equivalent.

Although it is not necessary to compute a threshold
of similarity (denoted as ¢) under this method, this can
be done by simply selecting the maximum similarity
score in the larger group'* as similarity scores of all
equivalent pairs in the smaller group should be greater
than this value. We will use this method to derive our

B3we manually checked a random set of 40 concepts (approxi-
mately 17% of all) in our collection of datasets and found 38 show a
strong pattern like this while the other two seem to be borderline.

140r the minimum in the smaller group. Practically there is no
difference as the purpose of a threshold is to separate equivalent pairs
from non-equivalent ones.
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Fig. 7. Clustering discovers transitive equivalence and invalidates
weak links.

threshold later in experiments when compared against
other methods.

3.4. Clustering

So far, Sections 3.2 and 3.3 described our method to
answer the first question set out in the beginning of this
section, i.e., predicting relation equivalence. The pro-
posed method studies each relation pair independently
from other pairs. This may not be sufficient for discov-
ering equivalent relations due to two reasons. First, two
relations may be equivalent even though no supporting
data are present. For example, in Fig. 7 we can assume
r1 = r3 based on transitivity although there are no
shared instances between the two relations to directly
support a non-zero similarity between them. Second, a
relation may be equivalent to multiple relations (e.g.,
r» = r; and rp = r3) from different schemata, thus
forming a cluster; and furthermore some equivalence
links may appear too weak to hold when compared to
the cluster context (e.g., e(r1, r4) appears to be much
lower compared to other links in the cluster of ry, rp,
and r3).

To address such issues we cluster mutually equiv-
alent relations for a concept. Essentially clustering
brings in additional context to decide pair-wise equiva-
lence, which allows us to (1) discover equivalence that
may be missed by the proposed similarity measure and
the threshold detection method, and (2) discard equiv-
alence assertion the similarity of which appears rela-
tively weak to join a cluster. Potentially, this also al-
lows creating alignments between multiple schemata
at the same time. Given the set of equivalent relation
pairs discovered before, {r;,r; : e(r;,r;) > t}, we
identify the number of distinct relations / and create
an h x h distance matrix M. The value of each cell
mi j, (0 <i,j < h) is defined as:

m; ;= 1.0—e(,rj) (13)

where 1.0 is the maximum possible similarity given
by Eq. (12). Then we use the group-average agglom-
erative clustering algorithm [33] that takes M as in-

put and creates clusters of equivalent relations. This
is a state-of-the-art ‘bottom-up’ clustering algorithm
that follows an iterative approach beginning with each
data point (i.e., a relation) as a separate cluster. In each
iteration, clusters can be merged based on their dis-
tance (using M). This repeats for several iterations un-
til all data points are grouped into a single cluster. This
process creates a hierarchical arrangement of clusters,
called a dendrogram. Next, deciding the optimal clus-
ters for the data involves cutting the dendrogram at
an appropriate level, which can be data-dependent.
We compute this using the well-known Calinski and
Harabasz [4] stopping rule. In general, the idea is to
find the level at which the variance ratio criterion —
based on the between-cluster variance and the within-
cluster variance — is maximized.

At the end of this process, we obtain groups of re-
lations that are mutually equivalent in the context of a
specific concept C, such as that shown in the right part
of Fig. 7.

4. Experiment settings

We design a series of experiments to thoroughly
evaluate our method in terms of the two goals de-
scribed at the beginning of Section 3, i.e., its capability
of predicting equivalence of two relations of a concept
(pair equivalence) and clustering mutually equivalent
relations (clustering) for a concept. Different settings
are created along three dimensions by selecting from
several choices of (1) similarity measures, (2) thresh-
old detection methods and (3) different knowledge
confidence models kc.

4.1. Measures of similarity

We compare the proposed measure of similarity
against four baselines. Our criteria for the baseline
measures are: (1) to cover different types of match-
ers; (2) to focus on methods that have been practically
shown effective in the LOD context, and where pos-
sible, particularly for aligning relations; (3) to include
some best performing methods for this particular task.

The first is a string similarity measure, the Lev-
enshtein distance (lev) that proves to be one of the
best performing terminological matcher for aligning
both relations and classes [6]. Specifically, we measure
the string similarity (or distance) between the URIs
of two relations, but we remove namespaces from re-
lation URIs before applying the measure. As a re-
sult, dbpp:name and foaf:name will be both normal-
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ized to name and thus receiving the maximum similar-
ity score.

The second is a semantic similarity measure by Lin
(lin) [31], which uses both WordNet’s hierarchy and
word distributional statistics as features to assess simi-
larity of two words. Thus two lexically different words
(e.g., ‘cat’ and ‘dog’) can also be similar. Since URIs
often contain strings that are concatenation of multiple
words (e.g., ‘birthPlace’), we use simple heuristics to
split them into multiple words when necessary (e.g.,
‘birth place’). Note that this method is also used by
Zhao et al. [52] for aligning relations.

The third is the extensional matcher proposed by Fu
et al. [15] (fu) to address particularly the problem of
aligning relations in DBpedia:

Su(ri, r2)
_arg,(r) Narg ()| | arg,(r) Narg, (r2))|
" Jarg,(r) Uarg ()| |arg,(r) Uarg, (r2)]
(14)

The fourth baseline is the ‘corrected’ Jaccard func-
tion proposed by Isaac et al. [22]. The original Jaccard
function has been used in a number of studies concern-
ing mapping concepts across ontologies [12,22,40].
Isaac et al. [22] showed that it is one of the best per-
forming measures in their experiment, however, they
also pointed out that one of the issue with Jaccard is
its inability to consider the absolute sizes of two com-
pared sets. As an example, Jaccard does not distinguish
the cases of % and % In the latter case, there is lit-
tle evidence to support the score (both 1.0). To address
this, they introduced a ‘corrected’ Jaccard measure (jc)
as below:

je(ri, r2)

_ Vlarg(r) N arg(r)] - (Jarg(r) N arg(r2)| — 0.8)
|arg(ry) U arg(r2)|

(15)
4.2. Methods of detecting thresholds

We compare three different methods of threshold
detection. The first is Jenks Natural Breaks (jk) that is
used in the proposed method, discussed in Section 3.3.
For the second method we use the k-means clustering
algorithm (km) for unsupervised threshold detection.
As discussed before, the two methods are very simi-
lar, with the main distinction being that jk is particu-
larly suitable for univariate data. Hence we derive the
threshold in the same way by choosing the boundary
value that separates the two clusters. Since both meth-

ods find boundaries based on data in an unsupervised
manner, we are able to define concept-specific thresh-
old that may fit better than an arbitrarily determined
global threshold.

Next, we also use a supervised method (denoted
by s) to derive a uniform threshold for all concepts
based on annotated data. To do so, suppose we have a
set of m concepts and for each concept, we create pairs
of relations found in data and ask humans to annotate
each pair (to be detailed in Section 4.5) as equivalent
or not. Then given a similarity measure, we use it to
score each pair and rank pairs by scores. A good mea-
sure is expected to rank equivalent pairs higher than
inequivalent ones. Next, we calculate accuracy at each
rank taking into account the number of equivalent v.s.
inequivalent pairs by that rank, and it is expected that
maximum accuracy can be reached at one particular
rank. We record the similarity score at this rank, and
use it as the optimal threshold for that concept. Due
to the difference in concept-specific data, we expect
to obtain different optimal thresholds for each of the
m concepts in the training data. However, in reality,
the thresholds for new data will be unknown a priori.
Therefore we use the average of all thresholds derived
from the training data concepts as an approximation
and use it for testing.

4.3. Knowledge confidence models kc

We compare the proposed logistic model (Ig¢) of
kc against two alternative models. The first is a naive
threshold based model that discards any relations that
have fewer than n argument pairs. Intuitively, n can be
considered the minimum number of examples to en-
sure that a relation has ‘sufficient’ data evidence to ‘ex-
plain’ itself. Following this model, if either 7| or r; in a
pair has fewer than n triples their fa and sa scores will
be 0, because there is insufficient evidence in the data
and hence we ‘know’ too little about them to evaluate
similarity. Such strategy is adopted in [22]. To denote
this alternative method we use —n.

The second is an exponential model, denoted by exp
and shown in Fig. 8. We model such a curve using an
exponential function shown in Eq. (16), where k is a
scalar that controls the speed of convergence and |T'|
returns the number of observed examples in terms of
argument pairs.

ke(IT)) = exp(IT]) =1 — e 1T1* (16)

For each model we need to define a parameter. For
lgt, we need to define n, the number of examples above
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Fig. 8. The exponential function modelling knowledge confidence.

which we obtain adequate knowledge and therefore
close to maximum confidence. Our decision is inspired
by the empirical experiences of bootstrapping learn-
ing, in which machine learns a task starting from a
handful of examples. Carlson et al. [5] suggest that
typically 10 to 15 examples are sufficient to bootstrap
learning of relations from free form Natural Language
texts. In other words, we consider 10 to 15 examples
are required to ‘adequately’ explain the meaning of a
relation. Based on this intuition, we experiment with
n = 10, 15, and 20. Likewise this also applies to the
model —n, for which we experiment with 10, 15 and
20 as thresholds.

We apply the same principle to the exp model. How-
ever, the scalar k is only indirectly related to the num-
ber of examples. As described before, it affects the
speed of convergence, thus by setting appropriate val-
ues the knowledge confidence score returned by the
model reaches its maximum at different numbers of
examples. We choose k = 0.55, 0.35 and 0.25 that are
equivalent to reaching the maximum kc of 1.0 at 10, 15
and 20 examples.

Additionally, we also compare against a variant of
the proposed similarity measure without kc, denoted
by e*¢, which simply combines ta and sa in their orig-
inal forms. Note that this can be considered as the pro-
totype similarity measure'> we developed earlier [47].

4.4. Creation of settings

By taking different choices from the three dimen-
sions above, we create different models for experi-
mentation. We will denote each setting in the form
of msr’t‘}fd, where msr, kc, thd are variables each rep-
resenting one dimension (similarity measure, knowl-

I5Readers may notice that we dropped the ‘cardinality ratio’ com-
ponent from the prototype, since we discovered that component may
negatively affect performance.
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Fig. 9. Different settings based on the choices of three dimensions.
kc is a variable whose value could be Igf (Eq. (9)), exp (Eq. (16)), or
—n.

edge confidence model, and threshold detection re-
spectively). Note that the variable kc only applies to the
proposed similarity measure, not baseline measures.
Thus jc, means scoring relation pairs using the cor-
rected Jaccard function (jc), then find threshold based
on training data (supervised, s); while e/l.fl is the pro-
posed method in its original form, i.e., using the pro-
posed similarity measure, with the logistic model of
knowledge confidence, and Jenks Natural Breaks for
automatic threshold detection. Figure 9 shows a con-
tingency chart along msr and thd dimensions, with the
third dimension included as a variable kc. The output
from each setting is then clustered using the same al-
gorithm.

The Metrics we use for evaluating pair accuracy are
the standard Precision, Recall and F1; and the met-
rics for evaluating clustering are the standard purity,
inverse-purity and F1 [1].

4.5. Dataset preparation

4.5.1. DBpedia

Although a number of benchmarking datasets are
published under the OAEI, as discussed before, they
are not suitable for our task since they do not represent
the particular characteristics in the LOD domain and
the number of aligned relations is also very small —less
than 2%o (56) of mappings found in their gold stan-
dard datasets are equivalent relations.'® Therefore, we
study the problem of heterogeneous relations on DB-
pedia, the largest LOD dataset serving as a hub for
connecting multiple sources in the LOD domain. DB-
pedia is also a representative example of relation het-

16Baged on the downloadable datasets as by 01-11-2013.
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erogeneity [15,18]. Multiple vocabularies are used in
the dataset, including RDFS, Dublin Core,'” WGS84
Geo,'® FOAF, SKOS,'” the DBpedia ontology, origi-
nal Wikipedia templates and so on. The DBpedia on-
tology version 3.9 covers 529 concepts and 2,333 dif-
ferent relations.” Heterogeneity is mostly found be-
tween the DBpedia ontology and other vocabularies,
especially the original Wikipedia templates, due to the
enormous amount of relations in both vocabularies. A
Wikipedia template usually defines a concept and its
properties.”! When populated, they become infoboxes,
which are processed to extract triples that form the
backbone of the DBpedia dataset. Currently, data de-
scribed by relations in the DBpedia ontology and the
original Wikipedia template properties co-exist and
account for a very large population in the DBpedia
dataset.

The disparity between the different vocabularies in
DBpedia is a pressing issue that has attracted partic-
ular effort, which is known as the DBpedia mappings
portal. The goal of the portal is to invite collaborative
effort to create mappings between certain structured
content on Wikipedia to the manually curated DBpedia
ontology. One task is mapping Wikipedia templates to
concepts in the DBpedia ontology, and then mapping
properties in the templates to relations of mapped con-
cepts. It is known that manually creating such map-
pings requires significant work, and as a result, as by
September 2015, less than 65% of mappings between
Wikipedia template properties and relations in the DB-
pedia ontology are complete.”?> Hence the community
can significantly benefit from an automatic mapping
system.

4.5.2. Datasets

We collected three datasets for experiments. The
first dataset (dbpm) is created based on the mappings
published on the DBpedia mappings portal. We pro-
cessed the DBpedia mappings Webpages as by 30 Sep
2013 and created a dataset containing 203 DBpedia
concepts. Each concept has a page that defines the
mapping from a Wikipedia template to a DBpedia con-
cept, and lists a number of mapping pairs from tem-

17 de=http://purl.org/dc/elements/1.1/.

18 9e0=hitp://www.w3.0rg/2003/01/ge0/wgs84_post.

19 skos=http://www.w3.0rg/2004/02/skos/core#.

20http://dbpedia.org/Ontology.

21Not in formal ontology terms, but rather a Wikipedia terminol-
ogy.

22http://mappings.dbpedia.org/server/statistics/en/, visited on 15-
09-2015.

plate properties to the relations of the corresponding
concept in the DBpedia ontology. We extracted a to-
tal of 5388 mappings and use them as gold standard.
Howeyver, there are three issues with this dataset. First,
the community portal focuses on mapping the DBpe-
dia ontology with the original Wikipedia templates.
Therefore, mappings between the DBpedia ontology
and other vocabularies are rare. Second, the dataset is
largely incomplete. Therefore, we only use this dataset
for evaluating recall. Third, it has been noticed that the
mappings created are not always strictly ‘equivalence’.
Some infrequent mappings such as ‘broader-than’ have
also been included.

For these reasons, we manually created the second
and the third datasets based on 40 DBpedia (DBpe-
dia ontology version 3.8) and YAGO?® concepts. The
choices of such concepts are based on the QALDI
question answering dataset®* for Linked Data. For
each concept, we query the DBpedia SPARQL end-
point using the following query template to retrieve all
triples related to the concept.>

SELECT * WHERE {
?s a <[Concept_URI]>
?s ?p 70

}

Next, we build a set P containing unordered pairs of
predicates from these triples and consider them as can-
didate relation pairs for the concept. We also use a stop
list of relation URISs to filter meaningless relations that
usually describe Wikipedia meta-level information,
e.g., dbpp:wikiPagelD, dbpp:wikiPageUsesTemplate.
Each of the measures listed in Section 4.1 is then ap-
plied to compute similarity of the pairs in this set and
may produce either a zero or non-zero score. We then
create a set cP to include only the pairs with non-zero
scores by any of the measures, and ask human anno-
tators to annotate cP. Note that cP C P and may not
contain all true positives of the concept since there can
be equivalent pairs of relations receiving a zero simi-
larity score by all measures. However, this should be
a reasonable approximation. Moreover it would be ex-
tremely expensive to annotate the set of all pairs com-
pletely.

23http://www.mpi—inf.mpg.de/yago—naga/yago/.

24http:// greententacle.techfak.uni-bielefeld.de/~cunger/qald1/
evaluation/dbpedia-test.xml.

25Note that DBpedia by default returns a maximum of 50,000
triples per query. We did not incrementally build the exhaustive re-
sult set for each concept since we believe the data size is sufficient
for experiment purposes.
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Table 2
Dataset statistics

Dev Test dbpm
Concepts 10 30 203
Relation pairs (P.) 2316 6657 5388
True positive P. 473 868 -
P. with incomprehensible 316 549 -
relations (I.R.)
% of triples with L.R. 0.2% 0.2% -

Schemata in datasets dbo, dbpp, rdfs, skos, dc, geo, foaf

The data is annotated by four computer scientists
and then randomly split into a development set (dev)
containing 10 concepts and a test set (fest) contain-
ing 30 concepts. The dev set is used for analyzing
the patterns in the data, developing components of the
method, and learning cutoff thresholds by the super-
vised experimental settings; the fest set is used for
evaluation. All datasets and associated resources used
in this study are publicly available.® The statistics
of the three datasets are shown in Table 2. Figure 10
shows the ranges of the percentage of true positives in
the dev and test datasets. To our knowledge, this is by
far the largest annotated dataset for evaluating relation
alignment in the LOD domain.

4.5.3. Difficulty of the task

Annotating relation equivalence is a non-trivial task.
The process took three weeks, where one week was
spent on creating guidelines. Annotators queried DB-
pedia for triples containing the relation to assist their
interpretation. However, a notable number of rela-
tions are still incomprehensible. As Table 2 shows,
this accounts for about 8 to 14% of data. Such rela-
tions have peculiar names (e.g., dbpp:v, dbpp:trW of
dbo:University) and ambiguous names (e.g., dbpp:law,
dbpp:bio of dbo:University). They are undocumented
and have little usage in data, which makes them dif-
ficult to interpret. Pairs containing such relations can-
not be annotated and are ignored in evaluation. On av-
erage, it takes 0.5 to 1 hour to annotate one concept.
We measured inter-annotator-agreement using a sam-
ple dataset based on the method by Hripcsak et al. [20],
and the average IAA is 0.8 while the lowest bound is
0.68 and the highest is 0.87.

Moreover, there is also a high degree of inconsistent
usage of relations. A typical example is dbo:railway

26http://staffwww.dcs.shef.zlc.uk/people/Z.Zhang/resources/
swj2015/data_release.zip. The cached DBpedia query results are
also released.

Test

0 0.1 0.2 0.3 0.4 0.5

Fig. 10. % of true positives in dev and fest. Diamonds indicate the
mean.

Platforms of dbo:Station. 1t is used to represent the
number of platforms in a station, but also the types of
platforms in a station. These findings are in line with
Fu et al. [15].

Table 2 and Fig. 10 both show that the dataset is
overwhelmed by negative examples (i.e., true nega-
tives). On average, less than 25% of non-zero similar-
ity pairs are true positives and in extreme cases this
drops to less than 6% (e.g., 20 out of 370 relation pairs
of yago:EuropeanCountries are true positive). These
findings suggest that finding equivalent relations on
Linked Data is indeed a challenging task.

4.6. Running experiment

Each setting (see Section 4.4) to be evaluated starts
with one concept at a time to query the DBpedia
SPARQL endpoint to obtain triples related to the con-
cept (see the query template before). Querying DB-
pedia is the major bottleneck throughout the process
and therefore, we cache query results and re-use them
for different settings. Next, candidate relation pairs
are generated from the triples and (1) their similarity
is computed using the measure of each setting; then
(2) relations are clustered based on pair-wise similar-
ity, to generate clusters of mutually equivalent rela-
tions for the concept.

The output from (1) is then evaluated against the
three gold standard datasets described above. Only true
positive pairs are considered as the larger amount of
true negatives may bias results. To evaluate clustering,
we derived gold standard clusters using the three pair-
equivalence gold standards by assuming equivalence
transitivity, i.e., if rq is equivalent to r, and r is equiv-
alent to r3 then we assume r] is also equivalent to r3
and group the three relations in a single cluster. For
the same reason, we consider only clusters of positive
pairs.

We ran experiments on a multi-core laptop computer
with an allocated 2 GB of memory. However, the sys-
tem is not programmed to utilize parallel computing as
the actual computation (i.e., excluding querying DB-
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Table 3

Optimal thresholds ¢ for each baseline similarity measures derived
from the dev set

lev jc fu lin
t 0.43 0.07 0.1 0.65
min 0.06 0.01 6 x 1070 0.14
max 0.77 0.17 0.31 1.0
Table 4

Optimal thresholds (¢) for different variants of the proposed similar-
ity measure derived from the dev set

t min max
lgt,n =10 0.24 0.06 0.62
lgt,n =15 0.22 0.05 0.62
Igt,n =20 0.2 0.06 0.39
exp, k = 0.55 0.32 0.06 0.62
exp, k = 0.35 0.31 0.06 0.62
exp, k = 0.25 0.33 0.11 0.62
—n,n =10 0.29 0.06 0.62
—n,n =15 0.28 0.07 0.59
—n,n =20 0.28 0.07 0.59

pedia) is fast. When caching is used, on average it takes
40 seconds to process a concept, which has an average
of 264 pairs of relations.

5. Results and discussion

We firstly show the learned thresholds based on the
dev set for each measure. Table 3 shows the learned
thresholds for the baseline similarity measures, and Ta-
ble 4 shows the thresholds for different variants of the
proposed method by replacing the knowledge confi-
dence component kc. In any case, the learned thresh-
olds span across a wide range, suggesting that the op-
timal thresholds to decide equivalence are indeed data-
specific, and finding these values can be difficult.

5.1. Performance of the proposed method

In Table 5 we show the results of our proposed
method on the three datasets with varying n in the
lgt knowledge confidence model. All figures are aver-
ages over all concepts in a dataset. Figure 11 shows
the ranges of performance scores for different concepts
in each dataset. Table 6 shows example clusters of
equivalent relations discovered for different concepts.
It shows that our method manages to discover align-
ment between multiple schemata used in DBpedia.

On average, our method obtains 0.65~0.67 F1
in predicting pair equivalence on the dev set and

Table 5
Results of the proposed method on all datasets. R — Recall
n of Igt 10 15 20
Pair equivalence
dev, F1 0.67 0.66 0.65
test, F1 0.61 0.60 0.59
dbpm, R 0.68 0.66 0.66
Clustering
dev, F1 0.74 0.74 0.74
test, F1 0.70 0.70 0.70
dbpm, R 0.72 0.70 0.70
1
I | 7)/ /)
0.8 o Y 7 7 —
% V
« B 7 _
0.6 - l
0.4 J.
0.2
dev, F1 test, F1 dbpm, R.
0
pe ¢ pe C pe C

Fig. 11. Performance ranges on a per-concept basis for dev, test and
dbpm. R — Recall, pe — pair equivalence, ¢ — clustering.

Table 6

Examples clusters of equivalent relations

Concept Example cluster

dbo:Actor dbpp:birthPlace, dbo:birthPlace,
dbpp:placeOfBirth

dbo:Book dbpp:name, foaf:name, dbpp:titleOrig, rdfs:label

dbo:Company dbpp:website, foaf:website, dbpp:homepage,

dbpp:url

0.59~0.61 F1 on the fest set. These translate to 0.74
and 0.70 clustering accuracy on each dataset respec-
tively. For the dbpm set, we obtain a recall between
0.66 and 0.68 for pair equivalence and 0.7 and 0.72 for
clustering. It is interesting to note that our method ap-
pears to be insensitive to the varying values of n. This
stability is a desirable feature since it may be unnec-
essary to tune the model and therefore, the method is
less prone to overfitting. This also confirms the hypo-
thetical link between the amount of seed data needed
for bootstrapping relation learning and the amount of
examples needed to obtain maximum knowledge con-
fidence in our method.

Figure 11 shows that the performance of our method
can vary depending on specific concepts. To under-
stand the errors, we randomly sampled 100 false pos-
itive and 100 false negative examples from the fest
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Table 7
Relative prevalence of error types

Error Type Prevalence %
False Positives

Semantically similar 52.4
Low variability 29.1
Entailment 14.6
Arguable gold standard 3.88
False Negatives

Object representation 25.1
Different datatype 24.7
Noisy relation 19.4
Different lexicalisations 11.7
Sparsity 10.5
Limitation of method 5.67
Arguable gold standard 2.83

dataset, and 200 false negative examples from the
dbpm dataset, then manually analyzed and divided
them into several types.?’ The prevalence of each type
is shown in Table 7.

5.1.1. False positives

The first main source of errors are due to high
degree of semantic similarity: e.g., dbpp:residence
and dbpp:birthPlace of dbo:TennisPlayer are highly
semantically similar but non-equivalent. The second
type of errors is due to low variability in the ob-
jects of a relation: semantically dissimilar relations
can have the same datatype and have many overlap-
ping values by coincidence. The overlap is caused by
some relations having a limited range of object values,
which is especially typical for relations with boolean
datatype because they only have two possible val-
ues. The third type of errors is entailment, e.g., for
dbo:EuropeanCountries, dbpp:officialLanguage en-
tails dbo:language because official languages of a
country are a subset of languages spoken in a country.
These could be considered as cases of subsumption,
which accounts for less than 15%. Finally, some of the
errors are arguably due to imperfect gold standard,
as analysers sometimes disagree with the annotations
(see Table 8).

5.1.2. False negatives
The first type of common errors is due to repre-
sentation of objects. For instance, for dbo:American

27Analysis based on the DBpedia SPARQL service as by 31-10-
2013. Inconsistency should be anticipated if different versions of
datasets are used.

Table 8

The equivalent relations for dbo:Monument discovered by the pro-
posed method are false positives according to the gold standard

1 ) #x, y argument pairs
dbo:synonym dbp:otherName 6
rdfs:label foaf:name 10
rdfs:label dbp:name 10
rdfs:comment dbo:abstract 41
dbp:material dbo:material 10
dbp:city dbo:city 5

FootballPlayer, dbo:team are associated with mostly
resource URIs (e.g., ‘dbr:Detroit_Lions’) while dbpp:
teams are mostly associated with lexicalization of lit-
eral objects (e.g., “* Detroit Lions’) that are typi-
cally names of the resources. The second type is
due to different datatypes, e.g., for dbo:Building,
dbpp:startDate typically have literal objects indicating
years, while dbo:buildingStartDate usually has pre-
cisely literal date values as objects. Thirdly, the lex-
icalization of objects can be different. An example
for this category is dbpp:dialCode and dbo:areaCode
of dbo:Settlement, the objects of the two relations are
represented in three different ways, e.g. ‘0044°, ‘+44°,
‘44’. Many false negatives are due to sparsity: e.g.,
dbpp:oEnd and dbo:originalEndPoint of dbo:Canal
have in total only 2 triples. There are also noisy re-
lations, whose lexicalization appears to be inconsis-
tent with how it is used. Usually the lexicalization is
ambiguous, such as the dbo:railwayPlatforms exam-
ple discussed before. Some errors are simply due to the
limitation of our method, i.e., our method still fails
to identify equivalence even if sufficient, quality data
are available, possibly due to inappropriate automatic
threshold selection. And further, arguable gold stan-
dard also exist (e.g., dbpp:champions and dbo:teams
of dbo:SoccerLeague are mapped to each other in the
dbpm dataset.

We then also manually inspected some worst per-
forming concepts in the dbpm dataset, and noticed
that some of them are due to extremely small gold
standard. For example, dbo:SportsTeamMember and
dbo:Monument have only 3 true positives each in their
gold standard and as a result, our method scored 0 in
recall. However, we believe that these gold standards
are largely incomplete. For example, we consider most
equivalent relation pairs proposed by our method as
shown in Table 8 to be correct.

Some of the error types mentioned above could be
rectified with by modifying the proposed method in
certain ways. String similarity measures may help er-
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Table 9

Improvement of the proposed method over baselines. The highest improvements on each dataset are in bold. Negative changes are in italic. See
Section 4.4 and Fig. 9 for notations

Pair equivalence

dev F1 test F1 dbpm R.
thd . . .
msr Jk km K Jk km s Jjk km s
lev 0.16~18 0.16~18 0.17~19 0.12~14 0.12~14 0.13~15 0.07~08 0.08~09 0.07~08
f 0.18~20 0.20~22 0.09~11 0.20~21 0.22~23 0.10~11 0.21~23 0.24~26 0.03~04
lin 0.27~29 0.29~31 0.28~30 0.19~21 0.19~21 0.19~21 0.39~40 0.37~38 0.38~39
Jjec 0.09~11 0.11~12 0.01~03 0.10~11 0.12~13 0.07~08 0.09~10 0.10~12  —0.05~—0.04
Clustering
dev F1 test F1 dbpm R.
thd . . .
st Jjk km s Jjk km K jk km s
lev 0.35 0.36 0.36 0.40 0.41 0.39 0.02~04 0.04~06 0.03~05
f 0.15~16 0.17~18 0.06~07 0.23 0.25 0.11 0.21~23 0.24~26 0.01~03
lin 0.45 0.47 0.47 0.41 0.42 0.42 0.37~39 0.37~39 0.39~0.41
jc 0.06~07 0.07~08 0.00~01 0.14~15 0.17 0.06 0.08~10 0.09~11  —0.07~-0.05

rors due to representation of objects and different
lexicalization of objects. Regular expressions could
be used to parse values in order to match data at
semantic level, e.g., for dates, weights, and lengths.
These could be useful to solve errors due to different
datatypes. Other error groups are much harder to pre-
vent: even annotators often struggled to distinguish be-
tween semantically similar and equivalent relations or
to understand what a relation is supposed to mean.

5.2. Performance against baselines

Next, Table 9 shows the improvement of the pro-
posed method over different models that use a base-
line similarity measure. Since the performance of the
method depends on the parameter n in the similarity
measure, we show the ranges between minimum and
maximum improvement due to the choice of n.

It is clear from Table 9 that the proposed method sig-
nificantly outperforms most baseline models, either su-
pervised or unsupervised. Exceptions are noted against
Jjecg in the clustering task on the dev dataset, where the
method achieves comparable results; and on the dbpm
dataset in both pair equivalence and clustering tasks,
where it underperforms jc, in terms of recall. How-
ever, as discussed before the dbpm gold standard has
many issues; furthermore, we are unable to evaluate
precision on this dataset while results on the dev and
test sets suggest that the method has more balanced
performance. The relatively larger improvement over
unsupervised baselines than over supervised baselines
may suggest that the scores produced by the proposed

similarity measure may exhibit a more ‘separable’ pat-
tern (e.g., like Fig. 6) of distribution for unsupervised
threshold detection.

Figures 12(a) and 12(b) compares the balance be-
tween precision and recall of the proposed method
against baselines on the dev and fest datasets. We use
three different shapes to represent variants with differ-
ent n values in the knowledge confidence model Igt;
for baseline models we use different shapes to repre-
sent different similarity measures and different colours
(black, white and grey) to represent different thresh-
old detection methods thd. It is clear that the proposed
method always outperforms any baselines in terms of
precision, and also finds the best balance between pre-
cision and recall thus resulting in the highest F1.

Interesting to note is the inconsistent performance
of string similarity baselines (levjk, leviy, levs) in pair
equivalence experiments and clustering experiments.
While in pair equivalence experiments they obtain be-
tween 0.45 and 0.5 F1 (second best among baselines)
on both the dev and test sets with arguably balanced
precision and recall, in clustering experiments the fig-
ures sharply drop to 0.3~0.4 (second worst among
baselines) skewed towards very high recall and very
low precision. This suggests that the string similarity
scores are non-separable by clustering algorithms, cre-
ating larger clusters that favour recall over precision.

Very similar pattern is also noted for the seman-
tic similarity baselines (linj, lingy, ling). In fact, se-
mantic similarity and string similarity baselines gen-
erally obtain much worse results than other baselines
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Fig. 12. Balance between precision and recall for the proposed method and baselines on (a) the dev set; (b) the test set. pe — pair equivalence,

¢ — clustering. The dotted lines are F1 references.

that belong to extensional matchers, a strong indica-
tion that the latter are better fit for aligning relations
in the LOD domain. This can be partially attributed
to the fact that the relation URIs can be very noisy
and many do not comply with naming conventions and
rules (e.g., ‘birthplace’ instead of ‘birthPlace’).

5.3. Variants of the proposed method

In this section, we compare the proposed method
against several alternative designs based on the alter-
native choices of knowledge confidence (kc) models
and threshold detection (thd) methods. We pair differ-
ent kc models described in Section 4.3 with different
threshold detection methods described in Section 4.2
to create variants of the method and compare them
against the method in its original form. In addition,
we also compared against the similarity measure ¢*¢,
which only takes fa and sa without the knowledge con-
fidence factor. Moreover, we also select jc as the best
performing baseline similarity measure and use corre-
sponding baseline settings (jcji, jCxy, jC;) as compara-
tive references.

5.3.1. Alternative knowledge confidence models kc

Figure 13(a) compares variants of the proposed
method by alternating the kc model under each thresh-
old detection method thd. The best performing base-
line similarity measure is marked as a horizontal dot-
ted line across each groups of bars. Since each of the
kc models Igt, exp and —n requires a parameter to be
set, we show the ranges of performance gained under
different parameter settings. These are represented as
black caps on top of each bar. The bigger the cap, the
wider the range between the minimum and the maxi-
mum performance obtainable by tuning these parame-
ters.

Firstly, under the same thd method (i.e., within the
sections of jk (Jenks natural breaks), km (k-means),
or s (supervised) in Fig. 13(a), the variants without
knowledge confidence models (e}f, efe and €45 outper-
form the best baseline in most cases. This suggests that
triple agreement fa and subject agreement sa are in-
deed more effective indicators of relation equivalence
than other measures, and also suggests that the issue
of unbalanced populations of schemata in the LOD do-
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Fig. 13. Comparing variations of the proposed method by (a) alternating kc functions under each threshold detection method, and (b) alternating
thd methods under each knowledge confidence function (incl. without kc).

main is very common. Secondly, we can see that the F1
accuracy obtained on the dev and test sets does benefit
from the addition of the kc modifier (i.e., comparing
e, ey, and €5 against €%, within each groups of
bars). The changes are also substantial on the test set.
However, the recall obtained on the dbpm set seems
to degrade slightly when the kc modifier is used. This
seems to suggest that kc models may trade off recall
for precision to achieve overall higher F1. Thirdly, in
terms of the three kc models, the performance given
by the exp and —n models appears to be volatile since
changing their parameters caused considerable varia-

tion of performance in most cases (note that the black
caps on top of the bars corresponding to variants based
on these two kc models are thicker than those corre-
sponding to variants using /gf). When the supervised
thresholds are used (s), in the clustering experiments
on both the dev and fest sets, e;” and e;” even under-
performed the best baseline in terms of F1.

By analyzing the precision and recall trade-off for
different kc models, it shows that without kc, the pro-
posed similarity measure tends to favour high-recall
but perhaps lose too much precision. Any kc model
thus has the effect of re-balancing towards precision.
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Among the three, the exp model generally favours re-
call over precision, the threshold based model favours
precision over recall, while the /g model finds the best
balance. Details of this part of analysis can be found in
Appendix A.

5.3.2. Alternative threshold detection methods thd
Figure 13(b) is a re-arranged view of Fig. 13(a),
in the way that it compares variants of the pro-
posed method by alternating the thd method under
each group of the same knowledge confidence model
kc. This gives a better view for comparing different
choices of thd. Generally it appears that regardless of
the kc model, the Jenks natural breaks (jk) method has
slight advantage over k-means (km), which is likely
due to its particular fit with univariate data. In many
cases, e]l.ft, e;,fp and eﬁ(” also obtain close and some-
times higher performance to their supervised coun-
terparts €', ¢ and e;" respectively. This suggess
Jenks Natural Breaks an effective method for auto-
matic threshold detection in the proposed method.

5.3.3. Limitations

The current version of the proposed method is lim-
ited in a number of ways. First and foremost, being
an extensional matcher, it requires relations to have
shared instances to work. This is usually a reasonable
requirement for individual dataset, and hence experi-
ments based on DBpedia have shown it to be very ef-
fective. However, in a cross-dataset context, concepts
and instances will have to be aligned first in order
to apply our method. This is because often, different
datasets use different URISs to refer to the same entities;
as a result, counting overlap of a relation’s arguments
will have to go beyond syntactic level. A basic and
simplistic solution could be a pre-process that maps
concepts and instances from different datasets using
existing sameAs mappings, as done by Parundekar et
al. [38] and Zhao et al. [50].

However, when incorrect sameAs mappings are
present, they can impact on the accuracy of the pro-
posed method and hence this is our second limita-
tion. Generally speaking, there are two cases of in-
correct sameAs mappings, i.e., at concept level or in-
stance level. Recall that the proposed similarity mea-
sure looks at relations of a specific concept and oper-
ates on a relation’s argument pairs (see triple agree-
ment, fa and subject agreement, sa), where the subjects
are instances of the concept, thus it is more prone to
errors in the second case.

In the first case, suppose we have an incorrect con-
cept mapping C, sameAs Cp. The implication is that

when we query for triples containing instances of C,
at the beginning of the method, we also obtain irrele-
vant triples for Cy. Let r, denote any relation for C,,
and rp, denote any relation for Cy, the proposed method
may make mistake if it predicts r, = rp. This is pos-
sible when r, and r, has overlapping argument pairs,
which then requires an overlap between the instances
of C, and Cp. In other words, a reasonable number of
sameAs links must have already been established be-
tween the instances of C, and C} (see discussion be-
low). Otherwise, an incorrect mapping at concept level
should not impact on the proposed method.

In the second case, incorrectly mapped instances
could indeed influence the method under two condi-
tions. First, both fa and sa depend on a relation’s ar-
gument pairs, thus the incorrect instance alone (ei-
ther as the subject or object of a triple) is insufficient
to influence the method unless it contributes to form
an argument pair which is identical for two relations
(i.e., the object or subject that appears with the incor-
rect sameAs instance in the triple must be found for
both relations). Second, a reasonable number of in-
correctly mapped instances must be present and must
satisfy the above condition, as the knowledge confi-
dence modifier will penalize the ra and sa scores with-
out sufficient supporting evidence. Nevertheless, any
extensional matchers that utilize sameAs links across
datasets are likely to suffer from incorrect mappings at
instance level.

6. Conclusions

This article explored the problem of aligning hetero-
geneous relations in LOD datasets, particularly focus-
ing on heterogeneity from within a single dataset. Het-
erogeneity decreases the quality of the data and may
eventually hamper its usability over large scale. It is a
major research problem concerning the Semantic Web
community and significant effort has been made to ad-
dress this problem in the area of ontology alignment.
While most work studied mapping concepts and indi-
viduals in the context of cross-datasets, solving rela-
tion heterogeneity and in particular, in a single very
large LOD dataset is becoming an increasingly press-
ing issue but still remains much less studied. The anno-
tation practice undertaken in this work has shown that
the task is even challenging to humans.

This article makes particular contribution to this
problem with a domain- and language-independent
and unsupervised method to align relations based on
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their shared instances in a dataset. In its current form,
the method fits best with aligning relations from dif-
ferent schemata used in a single Linked Dataset, but
can potentially be used in cross-dataset settings, pro-
vided that concepts and instances across the datasets
are aligned to ensure relations have shared instances.

A series of experiments have been designed to thor-
oughly evaluate the method in two tasks: predict-
ing relation pair equivalence and discovering clusters
of equivalent relations. These experiments have con-
firmed the advantage of the method: compared to base-
line models including both supervised and unsuper-
vised versions, it makes significant improvement in
terms of F1 measure, and always scores the highest
precision. Compared to different variants of the pro-
posed method, the logistic model of knowledge con-
fidence achieves the best scores in most cases and
is seen to give stable performance regardless of its
parameter setting, while the alternatives suffer from
a higher degree of volatility that occasionally causes
them to underperform baselines. The Jenks Natural
Breaks method for automatic threshold detection also
proves to have slight advantage than the k-means alter-
native, and even outperformed the supervised method
on the fest set. Although the proposed method does not
achieve the best recall on the dbpm dataset, we believe
its results are still encouraging and that it can achieve
the most balanced performance had we been able to
evaluate precision. Overall we believe that it may po-
tentially speed up the practical mapping task currently
concerning the DBpedia community.

As future work, we will explore the possibility of
utilizing sameAs links between datasets to address
cross-dataset relation alignment with focus on the pre-
viously discussed issues, and also aim to extend the
method into to a full ontology alignment system.
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Appendix A. Precision and recall obtained with
different knowledge confidence models kc

Figure 14 complements Fig. 13(a) by comparing the
balance between precision and recall for different vari-

ants of the proposed method using the dev and test sets.
We use different shapes to represent different k¢ mod-
els and different colours (black, white and grey) to rep-
resent different parameter settings for each kc model.
It is clear that without kc, the proposed method tends
to favour high-recall but perhaps lose too much pre-
cision. All kc models have the effect to balance to-
wards precision due to the constraints on the number of
examples required to compute similarity confidently.
Among the three, the exp model generally produces the
highest recall by trading off precision. To certain ex-
tent, this confirms our belief that the knowledge con-
fidence score under the exponential model may con-
verge too fast: it may be over-confident in small set of
examples, causing the method to over-predict equiva-
lence. On the other hand, the threshold based model
trades off recall for precision. The variants with the
lgt model generally find the best balance — in fact, un-
der unsupervised settings, achieve best or close-to-best
precision.

The Igtr model also warrants more stability since
changing parameters caused little performance varia-
tion (note that the different coloured squares are gen-
erally cluttered, while the different coloured triangles
and diamonds are far away). Although occasionally
variants with the exp model may outperform those
based on the /g model (e.g., when thd = km in the
clustering experiment on dev), the difference is small
and their performance is more dependent on the set-
ting of the parameter in these cases and can sometimes
underperform baselines. Based on these observations,
we argue that the /gr model of knowledge confidence
is better than exp, —n, or ke.

Appendix B. Exploration during the development
of the proposed similarity measure

In this section we present some earlier analysis
that helped us during the development of the method.
These analysis helped us to identify useful features for
evaluating relation equivalence, as well as unsuccess-
ful features which we abandoned in the final form of
the proposed method. We analyzed the components of
the proposed similarity measure, i.e., triple agreement
ta and subject agreement sa, from a different perspec-
tive to understand if they could be useful indicators of
equivalence (Section B.1). We also explored another
dimension — the ranges of relations (Section B.2). The
intuition is that ranges provide additional information
about relations. Unfortunately our analysis showed
that ranges derived for relations from data are highly
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Fig. 14. Balance between precision and recall for the proposed method and its variant forms. pe — pair equivalence, ¢ — clustering. The dotted

lines are F1 references.

inconsistent and therefore, they are not discriminative
features for this task. As a result they were not used in
the proposed method. We carried out all analysis using
the dev dataset only.

B.1. ta and sa

We applied ta and sa separately to each relation pair
in the dev dataset, then studied the distribution of ta
and sa scores for true positives and true negatives. Fig-
ure 15 shows that both fa and sa create different dis-
tributional patterns of scores for positive and negative
examples in the data. Specifically, the majority of true

positives receive a fa score of 0.2 or higher and an sa
score of 0.1 or higher, the majority of true negatives
receive a ta < 0.15 and sa < 0.1. Based on such dis-
tinctive patterns we concluded that 7a and sa could be
useful indicators in discovering equivalent relations.

B.2. Ranges of relations

We also explored several ways of deriving ranges
of a relation to be considered in measuring similar-
ity. One simplistic method is to use ontological defini-
tions. For example, the range of dbo:birthPlace of the
concept dbo:Actor is defined as dbo:Place according
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Fig. 15. Distribution of ta and sa scores for true positive and true
negative examples in dev.

to the DBpedia ontology. However, this does not work
for relations that are not defined formally in ontolo-
gies, such as any predicates with the dbpp namespaces,
which are very common in the datasets.

Instead, we chose to define ranges of a relation
based on its objects arg, (r) in data. One approach is to
extract classes of their objects and expect a dominant
class for all objects of this relation. Thus we started
by querying the DBpedia SPARQL endpoint with the
following queries:

SELECT ?0 ?range WHERE {
?s [RDF Predicate URI] 7o
?s a [Concept URI]
OPTIONAL {?0 a ?range .}
}

Next, we counted the frequency of each distinct
value for the variable ?range and calculated its frac-
tion with respect to all values. We found three issues
that make this approach unreliable. First, if a subject
s had an rdfs:type triple defining its type c, (e.g., s
rdfs:type c), it appears that DBpedia creates additional
rdfs:type triples for the subject with every superclass
of c. For example, there are 20 rdfs:type triples for
dbr:Los_Angeles_County,_California and the objects
of these triples include owl:Thing, yago:Object10000
2684 and gml:_Feature (gml: Geography Markup
Language). These triples will significantly skew the
data statistics, while incorporating ontology-specific
knowledge to resolve the hierarchies can be an ex-
pensive process due to the unknown number of on-
tologies involved in the data. Second, even if we are
able to choose always the most specific class ac-
cording to each involved ontology for each subject,
we notice a high degree of inconsistency across dif-
ferent subjects in the data. For example, this gives
us 13 most specific classes as candidate ranges for
dbo:birthPlace of dbo:Actor, and the dominant class
is dbo:Country representing just 49% of triples con-
taining the relation. Other ranges include scg:Place,
dbo:City, yago:Location (scg: schema.org) etc. The
third problem is that for values of 7o that are literals,
no ranges will be extracted in this way (e.g., values of

mra
|
NEG e
POS ﬁ§
0.2 04 0.6 0.8 1

Fig. 16. Distribution of mra scores for true positive and true negative
examples in dev.

?range extracted using the above SPARQL template
for relation dbpp:othername are empty when ?o values
are literals).

For these reasons, we abandoned the two methods
but proposed to use several simple heuristics to clas-
sify the objects of triples into several categories based
on their datatype and use them as ranges. Thus given
the set of argument pairs arg(r) of a relation, we clas-
sified each object value into one of the six categories:
URI, number, boolean, date or time, descriptive texts
containing over ten tokens, and short string for every-
thing else. A similar scheme is used in Zhao et al. [51].
Although these range categories are very high-level,
they should cover all data and may provide limited but
potentially useful information for comparing relations.

We developed a measure called maximum range
agreement, to examine the degree to which both rela-
tions use the same range in their data. Let RG,, ,, de-
note the set of shared ranges discovered for the relation
r1 and rp following the above method, and frac(rgil)
denote the fraction of triples containing the relation r;
whose range is the ith element in RG,, ,,, we defined
maximum range agreement (mra) of a pair of relations
as:

mra(ry, rp)

0, if RGy, ,, = 0
max{fmc(rgil)+ﬁ’aC(rg§2)}, otherwise

7)

The intuition is that if two relations are equivalent,
each of them should have a dominant range as seen
in their triple data (thus a high value of frac(rgl) for
both 1 and r;) and their dominant ranges should be
consistent. Unfortunately, as Fig. 16 shows, mra has
little discriminating power in separating true positives
from true negatives. As a result, we did not use it in the
proposed method. In the error analysis, the errors due
to incompatible datatypes may potentially benefit from
range information of relations. However, the proposed
six categories of ranges may have been too general to
be useful.
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