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Abstract. Both materialization and backward-chaining as different modes of performing inference have complementary advan-
tages and disadvantages. Materialization enables very efficient responses at query time, but at the cost of an expensive up front
closure computation, which needs to be redone every time the knowledge base changes. Backward-chaining does not need such
an expensive and change-sensitive pre-computation, and is therefore suitable for more frequently changing knowledge bases, but
has to perform more computation at query time.

Materialization has been studied extensively in the recent semantic web literature, and is now available in industrial-strength
systems. In this work, we focus instead on backward-chaining, and we present a general hybrid algorithm to perform efficient
backward-chaining reasoning on very large RDF data sets.

To this end, we analyze the correctness of our algorithm by proving its completeness using the theory developed in deductive
databases and we introduce a number of techniques that exploit the characteristics of our method to execute efficiently (most of)
the OWL RL rules. These techniques reduce the computation and hence improve the response time by reducing the size of the
generated proof tree and the number of duplicates produced in the derivation.

We have implemented these techniques in an experimental prototype called QueryPIE and present an evaluation on both
realistic and artificial data sets of a size that is between five and ten billion of triples. The evaluation was performed using one
machine with commodity hardware and it shows that (i) with our approach the initial pre-computation takes only a few minutes
against the hours (or even days) necessary for a full materialization and that (ii) the remaining overhead introduced by reasoning
still allows atomic queries to be processed with an interactive response time. To the best of our knowledge our method is the
first that demonstrates complex rule-based reasoning at query time over an input of several billion triples and it takes a step
forward towards truly large-scale reasoning by showing that complex and large-scale OWL inference can be performed without
an expensive distributed hardware architecture.

1. Introduction

The amount of RDF data available on the Web calls
for RDF applications that can process this data in an
efficient and scalable way.

One of the advantages of publishing RDF data is
that applications are able to infer implicit information

*Corresponding author. E-mail: jacopo@cs.vu.nl.

by applying a reasoning algorithm on the input data.
To this end, a predefined set of inference rules, which
is complete w.r.t. some underpinning logic, can be ap-
plied in order to derive additional data.

Several approaches that perform rule-based infer-
ence were presented in the literature [11,20,27] and
demonstrated reasoning upon several billion of triples.
These methods apply the rules in a forward-chaining
fashion, so that all the possible derivations are pro-
duced and stored together with the original input.
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While these methods exhibit good scalability because
they can efficiently exploit computational parallelism,
they have several disadvantages which compromise
their use in real-world scenarios. First, they cannot effi-
ciently deal with small incremental updates since they
have to compute the complete materialization anew.
Second, they become inefficient if the user is only in-
terested in a small portion of the entire input because
forward-chaining needs to calculate all derivations.

Unlike forward-chaining, backward-chaining ap-
plies only inference rules depending on a given query.
In this case, the computations required to determine
the rules that need to be executed often become too ex-
pensive for interactive applications. Thus, backward-
chaining has until now been limited to either small data
sets (usually in the context of expressive DL reasoners)
or weak logics (RDFS inference).

In this paper, we propose a method which material-
izes a fixed set of selected queries, before query time,
while applying backward chaining during query time.
This hybrid approach is a trade-off between a reduc-
tion in rule applications at query time and a small,
query independent computation of data before query
time. Our backward-chaining algorithm exploits the
parallel computing power of modern architectures and
uses at query time a partial materialization of some se-
lected queries to reduce the computation.

We will show that our backward chaining algorithm
is correct, i.e. it terminates, is sound and complete. We
shall argue that the correctness is not dependent on a
particular rule set but holds for any Datalog program.

For the implementation and evaluation, however, we
apply our method considering the semantics of the
OWL RL fragment, which is one of the most recently
standardized OWL profiles designed to work on a large
scale.

To this end, we have implemented the backward-
chaining algorithm using the results of the pre-materia-
lized queries in an experimental prototype called
QueryPIE and tested the performance using artificial
and realistic data sets of a size between five and ten
billion triples. The evaluation shows that we are able to
perform OWL reasoning using one machine equipped
with commodity hardware which keeps the response
time often below one second.

This paper is a revised and improved version of our
initial work that was presented in [19]. More specifi-
cally, it extends the initial version that targets the pD∗
fragment to one that supports most of the OWL RL
rules, which are officially standardized by W3C. Also,
this paper provides a theoretical analysis of the ap-

proach proving its correctness w.r.t. the considered rule
set and presents an improved explanation and evalua-
tion over larger data sets.

The remainder of this paper is organized as follows:
Section 2 presents notations and notions used through-
out the paper. In Section 3 we introduce the reader to
our problem and provide a high level overview of our
approach.

Next, in Section 4, we describe the backward-
chaining algorithm that is used in our method to cal-
culate the inference. Section 5 formalizes the pre-
computation algorithm of hybrid reasoning and proves
its correctness. Section 6 focuses on the execution of
most of the OWL 2 RL/RDF rule set (henceforth sim-
ply referred to as OWL RL rule set), specifying which
rules are excluded and presenting a series of optimiza-
tions to improve the performance on a large input.1

In Section 7 we present an evaluation of our ap-
proach using atomic queries on both realistic and ar-
tificial data. In Section 8 we report on related work.
Finally, Section 9 concludes and gives directions for
future work.

2. Preliminaries

In this section, we set out notational conventions and
briefly recall some well-known notions from Database
theory, where we mainly follow [1, Chapter 12].

The algorithms we present run on Datalog pro-
grams, since the OWL RL inference rules are formu-
lated in Datalog style; therefore most rules of our se-
lected rule set, with a few exceptions (cf. Section 6,
On the implementation of RDF lists), can be trivially
rendered into a Datalog program.

Throughout this paper, we use abbreviations to in-
dicate well-known URIs for reasons of space.2 In our
notations, we use as a convention fixed-width charac-
ters to denote constant terms (e.g SPO) as well as ital-
ics for Datalog variables and predicate names (e.g. a
or T). Note that in SPARQL [16] and the official OWL
RL documentation variables are indicated with a pre-
ceding “?” (e.g. ?a).

For two functions f : A −→ B and g : B′ −→ C
with B ⊆ B′ we denote with g ◦f , pronounced g after
f , the function A −→ C : x �−→ g(f(x)). For a set of

1Note that by excluding some rules our approach is incomplete
w.r.t. the official OWL RL specification.

2Table 1 reports a list of all the abbreviations used in this paper.
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functions G := {g | g : Bg −→ Cg} with B ⊆ Bg ,
for all g ∈ G we define G ◦ f := {g ◦ f | g ∈ G}.

In Datalog, a signature SIG is a finite set of symbols
which is the disjoint union of the set CONS of con-
stants and the set PRED of predicate symbols. Each
predicate symbol is associated with its arity, a positive
natural number. A database I for SIG is a pair consist-
ing of a finite set dom I, the domain, and an interpre-
tation function ·I whose domain is SIG.

If R ∈ PRED is an n-ary predicate symbol, then
RI, where RI ⊆ (dom I)n, denotes the n-ary relation
named R in the database I. If c ∈ CONS then cI ∈
dom I. For our purposes, we assume CONS = dom I

and cI = c for all c ∈ CONS.
With VAR we denote a countably infinite set of vari-

ables where VAR ∩ SIG = ∅. Thus, the set of all terms
is TERM = VAR ∪ CONS. For every term tuple t̄ we
denote with Var(t̄) the set of all variables in t̄.

If R ∈ PRED is an n-ary predicate symbol and t̄
is an n-ary term tuple, then R(t̄) is called atom. An
atom R(t̄) is called ground atom if t̄ ⊆ CONS. If I is a
database over SIG and R ∈ PRED we write R(ā) ∈ I

if R(ā) is a ground atom and ā ∈ RI. We continue
Var on atoms by setting Var(R(t̄)) := Var(t̄) for every
atom R(t̄).

A substitution is a mapping θ : V −→ TERM
where V ⊆ VAR. The domain V of θ is also de-
noted domθ. We call the substitution θ assignment,
if θ(V ) ⊆ CONS and θ is called variable renaming
if θ(V ) ⊆ VAR and θ is injective. θε : ∅ −→ ∅ is
the empty substitution. Every substitution θ has a con-
tinuation θ̃ on terms, where θ̃(t) = θ(t) if t ∈ V
and θ̃(t) = t if t ∈ TERM \ V . Henceforth, we
will denote θ but always implicitly refer to its con-
tinuation θ̃. Similarly we apply substitutions or rather
their continuations to term tuples θ(t1, . . . , tn) :=
(θ(t1), . . . , θ(tn)) and atoms θ(R(t̄)) := R(θ(t̄)).

We allow ourselves to represent a substitution θ as
a set {t0/t1 | t0 ∈ domθ and θ(t0) = t1}. The set-
representation of θε is simply ∅.

Using substitutions as results for database look-ups
is not unusual and joins (�) over sets of substitu-
tions are particularly used in SPARQL [16]. To de-
fine joins in this way, we need the following notions:
A substitution θ0 is compatible with a substitution θ1
if θ0(t) = θ1(t) for all t ∈ domθ0 ∩ domθ1. For
each pair of compatible substitutions θ0, θ1 we set
θ0 ∪ θ1 to be the substitution which corresponds to
the union of their set-representations. θε is compati-
ble with every substitution θ and is neutral in the sense
that θε ∪ θ = θ ∪ θε = θ. For sets Θ0 and Θ1 of sub-

stitutions we define Θ0 � Θ1 := {θ0 ∪ θ1 | θ0 ∈
Θ0 compatible with θ1 ∈ Θ1}.

Example 1. As an example of a join between substi-
tutions, consider the rule (cax-sco)

T (x,TYPE, z) ← T (x,TYPE, y), T (y,SCO, z)
and let J , B, S, P stand for John, Brother, Sister and
Person. We calculate the join of the two sets of substi-
tutions where the first one can be considered to be the
result of the query T (x,TYPE, y) and the second one
to be the result of T (y,SCO, z) respectively:

{{x/J, y/B}} � {{y/S, z/P}, {y/B, z/P}}
= {{x/J, y/B, z/P}}

If the resulting subsitution is applied to T (x,TYPE, z),
we obtain from John being a Brother and Brothers and
Sisters being Persons that John is of type Person.

Let R(t̄0) and R(t̄1) be two atoms with Var(t̄0) ∩
Var(t̄1) = ∅. A unifier for R(t̄0) and R(t̄1) is a substi-
tution θ : (Var(t̄0) ∪ Var(t̄1)) −→ (t̄0 ∪ t̄1) such that
θ(R(t̄0)) = θ(R(t̄1)). A most general unifier (MGU)
of two atoms R(t̄0) and R(t̄1) is a unifier θ for R(t̄0)
and R(t̄1) such that for each unifier θ′ of R(t̄0) and
R(t̄1) there is a substitution σ with θ′ = σ ◦ θ.3 It is
decidable whether or not a unifier for two given atoms
exists. If it exists, an MGU exists and can be computed.

A Datalog query is an expression q(t̄0) ← R1(t̄1)∧
· · · ∧ Rn(t̄n) where t̄0 is a term tuple, Ri(t̄i) is
an atom for each i ∈ {1, . . . , n} and Var(t̄0) ⊆⋃

1≤i≤n Var(t̄i). We omit t̄0 from q(t̄0) if it is clear or
not of interest. We call q(ā) an answer to q(t̄0) w.r.t.
I if there is an assignment β with β(t̄0) = ā and for
all i ∈ {1, . . . , n} we have β(t̄i) ∈ RI

i . The set of all
answers to q(t̄0) w.r.t. I is denoted as q(t̄0)I.

We call a query atomic if n = 1 and will refer to it
by its sole atom R1(t̄1). Answers in I to an atom query
R1(t̄1) are ground atoms R1(ā) ∈ I such that t̄1 and
ā unify.

Let t̄ and t̄′ be term tuples of the same length. Then
t̄ is an instance of t̄′, t̄  t̄′, if there is a substitution σ
such that σ(t̄′) = t̄. Additionally, if R(t̄) and R(t̄′) are
atoms we define R(t̄)  R(t̄′) and say R(t̄′) is at least
as general as R(t̄) iff t̄  t̄′. R(t̄) equals R(t̄′) up to
variable renaming iff R(t̄)  R(t̄′) and R(t̄′)  R(t̄).

Example 2. (x,TYPE,SYM)  (x,TYPE, y) where
x, y are variables and TYPE and SYM are the abbrevi-
ation of Table 1. Also (x,TYPE, y)  (y,TYPE, x).

3In literature, substitutions are used in post-fix notation, hence the
condition for being an MGU is denoted there as θ′ = θσ.
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Table 1
List of abbreviations for common URIs used in this paper

Abbreviation Full text

TYPE rdf:type

SCO rdfs:subClassOf

SPO rdfs:subPropertyOf

EQC owl:equivalentClass

EQP owl:equivalentProperty

INV owl:inverseOf

SYM owl:SymmetricProperty

TRANS owl:TransitiveProperty

A Datalog rule has the form R0(t̄0) ← R1(t̄1) ∧
· · · ∧Rn(t̄n) such that for each i ∈ {0, . . . , n}, Ri(t̄i)
is an atom and Var(t̄0) ⊆

⋃
1≤i≤n Var(t̄i). We call

R0(t̄0) head atom and all others body atom. With
Var(r) ⊆ VAR we denote the set of all variables oc-
curring in a Datalog rule r. A Datalog program is a
finite set of Datalog rules. A predicate symbol occur-
ing in the head of a rule r ∈ P is called intensional
database predicate (idb) for P , all other predicates are
called extensional database predicate (edb) for P .

For any concrete given Datalog program P or Dat-
alog query q which is applied to I, we always assume
that predicate and constant symbols occurring in P ,
and in the body of q respectively, are elements in SIG.
We will rarely mention the signature since SIG is for a
given database and program implicitly determined.

In our formalization, we denote the immediate con-
sequence operator of a Datalog program P as TP . TP

maps a database I to the database TP (I), where TP (I)
is I extended by all facts that can be non-recursively,
i.e. immediately in one step, inferred from facts in
I under P . More formally, for each rule r ∈ P let
qr(t̄0) ← R1(t̄1) ∧ · · · ∧Rn(t̄n) where the Ri(t̄i) are
the body atoms of r. For each R ∈ PRED let P � R
be the set of rules whose predicate symbol in the head
atom is R. We set RTP (I) := RI ∪

⋃
r∈P �R qIr . We

define T 0
P (I) := I and TP (I) to be the database H

where domH = dom I and RH := RTP (I) for all
R ∈ PRED. We set further Tn+1

P (I) := TP ◦ Tn
P (I).

With ω we indicate the first infinite limit ordinal and
set Tω

P (I) to be the database H where domH = dom I

and RH :=
⋃

n<ω RTn
P (I) for all R ∈ PRED. With

P (I) we denote the fully materialized database of I

under the program P . According to [1, Chapter 12],
we have P (I) = Tω

P (I) and in particular there is
n < ω such that R(ā) ∈ Tn

P (I) for every ground atom
R(ā) ∈ P (I).

Let V be a set of vertices and E ⊆ V × V an edge
relation, then G := (V,E) is called directed graph.

For vertices v0, v1 ∈ V we call v0 predecessor of v1,
and v1 successor of v0 respectively, iff (v0, v1) ∈ E.
A vertex that does not have a successor is called leaf.
We define E(v) := {v′ ∈ V | (v, v′) ∈ E} for each
v ∈ V . For all v ∈ V we define 〈v〉G, the v-subgraph
of G, to be the graph G′ := (V ′, E′) with E′ = E ∩
(V ′×V ′) where V ′ is the smallest set such that v ∈ V ′

and whenever v′ ∈ V ′ then E(v′) ⊆ V ′.
A tree is a graph such that each vertex has exactly

one predecessor, except for one, the root, which has
no predecessor. Trees can be considered to be recur-
sively defined, where a tree G is either a single root,
i.e. V = {v}, or a tree consists of a root v and each of
its successors v′ ∈ E(v) is a root of the tree 〈v′〉G. The
height of a finite tree is recursively derived as follows:
if the root v is a leaf, then its height is 0, otherwise it
is the maximal height of all trees 〈v′〉 plus 1, where
v′ ∈ E(v). For infinite trees, the height might not be
defined.

Let P be a Datalog program and I a database and
R(ā) a ground atom in P (I). We call the pair (G, �) a
Datalog proof-tree for R(ā) in P (I) if all of the fol-
lowing is satisfied: G = (V,E) is a tree with a fi-
nite set V and � : V −→ Atom is a function, the la-
beling function, where Atom is the set of all ground
atoms over SIG. Furthermore the root v0 ∈ V is la-
belled with R(ā), i.e. �(v0) = R(ā), and for every
leaf v ∈ V we have �(v) is a ground atom in I.
For every vertex v ∈ V which is not a leaf there
is a rule r := R0(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n)
and an assignment β : Var(r) −→ dom I, such that
�(v) = β(R0(t̄0)) and there is a bijection ι : E(v) −→
B between the successors of v and the set of body
atoms B := {Ri(t̄i) | 1 ≤ i ≤ n} of r such that
�(v′) = β ◦ ι(v′) for all v′ ∈ E(v).

A Datalog proof-tree thus represents a certain choice
of rules whose application leads from atoms in I to
(possibly) derived atoms in P (I). A proof by induc-
tion upon m < ω shows that every atom in Tm

P (I) has
a Datalog proof-tree of height at most m.

Finally, we define the function lookup: For an
atomic query Q = R(t̄) and a given database I, or
rather a given set of atoms I, we define lookup(R(t̄), I)
to be the set {θ : Var(t̄) −→ dom I | R(θ(t̄)) ∈ I} of
substitutions.

Example 3. For any ground atom R(ā) we have

1. lookup(R(ā), I) = ∅ iff R(ā) /∈ I

2. lookup(R(ā), I) = {θε} iff R(ā) ∈ I.
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Hence lookup(R0(t̄0), I) � lookup(R1(t̄1), I) is
the set containing all assignments θ : (Var(t̄0) ∪
Var(t̄1)) −→ dom I which are assignments for both
atoms so that R0(θ(t̄0)) ∈ I and R1(θ(t̄1)) ∈ I.

3. Hybrid reasoning: Overview

In principle, there are two different approaches to
infer answers in a database with a given rule set: One is
to compute the complete extension of a database under
some given rule set before query time and the other is
to infer only the necessary entries needed to yield a
complete answer from the rule set on-demand, i.e. at
query time.

The former’s advantage is that querying reduces, af-
ter the full materialization, to a mere lookup in the
database and is therefore faster than the latter ap-
proach, where for each answer a proof tree has to be
built.

If, however, the underlying database changes fre-
quently, then a complete materialization before query
time has a severe disadvantage as the whole extension
must be recomputed with each update. In this case, an
on-demand approach has a clear advantage.

Traditionally, each approach has been associated
with an algorithmic method to retrieve the results:
Backward-chaining was specifically aimed at on-
demand retrieval of answers, only materializing as lit-
tle information as necessary to yield a complete set of
answers, while forward-chaining applies the rules of
the given rule set until the closure is reached.

The approach presented in this paper positions itself
in between: the answers for a carefully chosen set of
queries are materialized before query time and added
to the database. Answers to queries later posed by the
user are inferred at query time.

Since we want to avoid complete materialization
of the database, and therefore are only interested in
specific answers, we use backward-chaining in both
instances: we use backward-chaining to materialize
only the necessary information for the carefully cho-
sen queries which we then add to the database, and we
use backward-chaining to answer the user queries.

To this end, we introduce a backward-chaining al-
gorithm which exploits parallel computing power, and
a possible pre-materialization to improve the perfor-
mance. For example, if one of these pre-materialized
queries is requested at query-time, then the backward-
chaining algorithm does not need to build the proof
tree, but a lookup suffices. This optimization becomes

particularly effective if patterns are pre-materialized
that frequently appear during reasoning at user query
time.

To give an idea how this works, consider the follow-
ing example.

Example 4. Consider the two following rules from the
OWL RL rule set:

T (a, p1, b)← T (p,SPO, p1) ∧ T (a, p, b)
T (x,SPO, y)← T (x,SPO, w) ∧ T (w,SPO, y)

where a, b, p, p1, x, y, w represent generic variables,
and SPO is a constant term.

Assume we want to suppress the unfolding of all
atoms of the form T (x,SPO, y), modulo variable re-
naming. Using Datalog to implement these rules in a
program, we can replace each atom by some new atom,
say S, that never appears in the head of the rules. After
the substitution, the previous program would become:

T (a, p1, b)← S(p,SPO, p1) ∧ T (a, p, b)
T (x,SPO, y)← S(x,SPO, w) ∧ S(w,SPO, y)

In general, the two programs do not yield the
same answers for T anymore. To restore this equal-
ity for a given database I we need to calculate all
“T (x,SPO, y)”-triples derivable from I and add them
to the auxiliary relation named S in I. In our example
this would mean that S contains the transitive closure
of all “T (x,SPO, y)”-triples which are inferable under
the rule set in I.

Note that “T (x,SPO, y)”-triples can also be de-
rived with the first rule if p1 = SPO. Furthermore,
if S indeed contains the transitive closure of all
“T (x,SPO, y)”-triples the second rule can be rewritten
as T (x,SPO, y) ← S(x,SPO, y).

In the following, we discuss the backward-chaining
algorithm used in our approach. Then, we will show
that our method to replace the original rules with oth-
ers is, after a small pre-computation, harmless in the
sense that everything which could be inferred under
the original program can be inferred under the altered
program and vice versa.

4. Hybrid reasoning: Backward-chaining

We organize this section as follows. First, we intro-
duce in Section 4.1 the main idea behind backward-
chaining, and present an overview of existing methods
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from which our algorithm is derived. Then, we provide
a theoretical description and analysis of our algorithm
in Section 4.2.

4.1. Backward-chaining

The purpose of a backward-chaining algorithm is to
derive for a given database I and a Datalog program
P all possible ground atoms R(ā) ∈ P (I) that are
answers to a given query atom Q.

Traditionally, users interact with RDF data sets us-
ing the SPARQL language [16] where all the triple pat-
terns that constitute the body of the query are joined
together according to some specific criteria. In this
paper, we do not consider the problem of efficiently
joining the RDF data but focus instead on the process
of retrieving all triples that are needed for the query.
Therefore, we target our reasoning procedure at atomic
queries, e.g., T(x,SCO,y).

The algorithm that we present in the following sec-
tion is a variation of the well-known algorithm QSQ
(Query-subquery) [1,6,23]. The general idea behind
the QSQ algorithm is to recursively rewrite the given
query into many subqueries until no more rewritings
can be performed and the subqueries can only be eval-
uated against the knowledge base.

Example 5. To give an idea on how QSQ works, sup-
pose that our initial query is

T (x,TYPE,Person)

and that we have a generic database I and the OWL
RL rule set as P . Initially, the algorithm will deter-
mine which rules can produce a derivation that is part
of the input query. For example, it could apply the sub-
class and subproperties inheritance rules (cax-sco
and prp-spo1 in the OWL RL rule set). After it
has determined them, it will move to the body of the
rules and proceed evaluating them. In case these sub-
queries will produce some results, the algorithm will
execute the rules and return the answers to the upper
level.

With this process, the algorithm is creating a tree
that has the original query as root and the rules and
subqueries that might contribute to derive some an-
swers as the internal nodes.

This tree represents all the derivation steps that are
taken to derive answers of our initial query (the root)
starting from some existing facts (the leaves). In Fig. 1
we report an example of a part of such a tree for our
query.

The original QSQ algorithm was introduced in
1986 [24]. Unfortunately, the first version of this al-
gorithm was found incomplete, but a fixed-up version
was presented already the year after [6,23].

In principle, the QSQ algorithm extends the stan-
dard SLD resolution technique [22] by applying it to
a set of tuples instead of single ones [6]. An impor-
tant problem of backward-chaining algorithms such as
QSQ concerns the execution of recursive rules. Recur-
sive rules and more in general cycles in the proof tree
are an important threat to termination since they could
create infinite loops in the computation.

To solve this problem, QSQ extends the standard
SLD resolution adding two techniques: an Admissibil-
ity test and a Lemma resolution. The resulting method,
called SLD-AL, rests on the method which QSQ and
all its variants are derived from. By analyzing the prop-
erties of the SLD-AL resolution, the author of QSQ
has proved in [23] that this algorithm always termi-
nates and is complete (i.e. is able to calculate all the
answers).

In this paper, we do not re-propose a complete de-
scription of SLD-AL, and refer the reader to [23,25]
for a more complete explanation. Here, we will simply
sketch some characteristics of the technique which is
important in our context.

In very general terms, SLD-AL is an abstract tech-
nique to construct a computational tree to answer a
given query. This tree, which is called SLD tree, resem-
bles the tree in Fig. 1, and is explored by an algorithm
such as QSQ in order to find all the answers (called
atomic lemmas) that satisfy the input query. It is cru-
cial that the SLD tree is finite and complete, otherwise,
it would be impossible for an algorithm to terminate
and compute all the derivations. These properties do
hold for SLD-AL trees, as shown in [25].

The main idea behind the AL technique is the fol-
lowing: when the algorithm computes a tree and needs
to evaluate a new query, it applies an “admissibility
test”, to verify whether this query can be resolved us-
ing the rules. If the new query is “similar” to a previous
one, then the query is evaluated using only the answers
produced so far (“lemma resolution”). In this way, the
program does not get trapped in a loop generating an
infinite tree.

The SLD tree can be explored in several ways. In
the general case, the search strategy can determine the
completeness of the approach, but in Datalog any strat-
egy is equivalent. For example, the tree can be con-
structed using an iterative depth-first strategy as pro-
posed with the original QSQ algorithm in [24], or
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Fig. 1. Example of the execution of backward-chaining for the input query T (x,TYPE,Person) and the OWL RL rules.

using a more sophisticated constructive search as in
QoSaQ (QSQ+glObAloptimization) [25].

In the early research on these methods, much em-
phasis was put on optimizing the computation to avoid
redundancy. For example, the original QSQ algorithm
traverses the tree using a depth-first strategy, and re-
peats the query execution at every node until it re-
trieves all answers for that subgoal [6]. In this way,
it is able to cache the results for that subquery and
reuse them during the evaluation of the rest of the tree.
QoSaQ [25] goes further than the original QSQ algo-
rithm proposing one more solution to this problem:
here, a copy of the tree is maintained in main mem-
ory and a “waking” mechanism is used to feed new an-
swers derived in one node to other equivalent queries
that appear in other branches of the tree.

These techniques are very efficient in optimizing the
resolution process, but have the drawback that they
are very difficult to be implemented in a parallel (and
possibly distributed) environment. In fact, the original
depth-first strategy used by QSQ requires a sequential
search of the tree, otherwise expensive synchroniza-
tion mechanisms must be used. The “waking” mecha-
nism proposed by QoSaQ cannot be applied in a dis-
tributed environment, since it requires to maintain a
copy of the tree in main memory and this mechanism
would be slowed down by a network access.

Therefore, we adapted the original QSQ algorithm
so that it can be more easily parallelized paying the
price of duplicate derivation and possibly redundant
computation. We will present the algorithm in the fol-
lowing section and show that the properties of termi-
nation soundness, and completeness are still valid.

4.2. Our approach

We introduce two key differences from the original
QSQ algorithm, which aim is to improve the paral-
lelization of the computation:

– Unlike QSQ, our algorithm does not construct the
proof-tree sequentially but in parallel by apply-
ing the rules on separate threads and in an asyn-
chronous manner. For example, if we look back
at Fig. 1, the execution of rules cax-sco and
prp-spo1 is performed concurrently by differ-
ent threads. This execution strategy makes the im-
plementation and the maintenance of the global
data structure, used for caching results of previ-
ous queries, difficult and inefficient. We hence
choose to replace this mechanism with one that
only remembers which queries were already exe-
cuted along single paths of the tree. While such a
choice might lead to some duplicate answers be-
cause the same queries can be repeated multiple
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Algorithm 1 (Backward-chaining algorithm). I and P are global
constants, where I is a finite set of facts and P is a Datalog program.
Tmp and Mat are global variables, where Mat stores results of previ-
ous materialization rounds and Tmp stores the results of the current
round. The parameter Q represents an atomic query, i.e. an atom.
Both functions main and infer return a set of atoms, while the func-
tion lookup returns a set of substitutions. We say Q ∈ PrevQueries
(cf. line 15) iff there is Q′ ∈ PrevQueries s.t. Q � Q′ and Q′ � Q.

1 function main(Q)
2 New, Tmp, Mat := ∅
3 repeat
4 Mat := Mat ∪ New ∪ Tmp
5 New := infer(Q, ∅)
6 until New ∪ Tmp ⊆ Mat ∪ I

7 return New
8 end function
9

10 function infer(Q, PrevQueries)
11
12 //This cycle is executed in parallel
13 all_subst := lookup(Q,I ∪ Mat)
14 for (∀ r ∈ P s.t. Q is unifiable
15 with r.HEAD and Q /∈ PrevQueries)
16 θh := MGU(Q,r.HEAD)
17 subst := {θε}
18 for ∀ p ∈ r.BODY
19 tuples := infer(θh(p),PrevQueries ∪ Q)
20 Tmp := Tmp ∪ tuples
21 subst := subst � lookup(θh(p),tuples)
22 end for
23 all_subst := all_subst ∪ (subst ◦ θh)
24 end for
25
26 return

⋃
θ∈all_subst{θ(Q)}

27
28 end function

times in different parts of the proof tree, it allows
the computation to be performed in parallel limit-
ing the usage of expensive synchronization mech-
anisms;

– Because the proof tree is built in parallel, repeat-
ing every query until no new results are found is
an inefficient operation: the same query can ap-
pear multiple times in different parts of the tree.
Therefore, we replace it with a global loop that
is performed only at the root level of the tree and
that stores during every iteration all the interme-
diate derivations.

. We report the algorithm using pseudocode in Algo-
rithm 1. The procedure main is the main function used
to invoke the backward-chaining procedure for a given
atomic query Q. main returns the derived answers for
the input query. The procedure consists of a loop in
which the recursive function infer is invoked with the
input query. This function returns all the derived an-
swers for Q that were calculated by applying the rules
using backward-chaining (line 5) and all the intermedi-

ate answers that were inferred in the process and saved
in the global variable Tmp. In each loop pass the latest
results in Tmp and New are checked against the accu-
mulated answers of the previous runs in Mat and I. If
no new tuple was derived, then the loop terminates.

After this loop has terminated, the algorithm returns
New (line 7) which contains after the last loop pass all
answers to the input query (cf. line 13).

The function infer is the core of the backward-
chaining algorithm. Using the function lookup, it first
retrieves for the formal parameter Q all answers which
are facts in the database or were previously derived
(line 13). After this, it determines the rules that can be
applied to derive new answers for Q (lines 14–15) and
calculates the substitution θh to unify the head of the
applicable rule with the query Q (line 16).

It proceeds with evaluating the body of the rule
(lines 16–23) storing in tuples and Tmp the retrieved
answers (lines 19–20), and performing the joins neces-
sary according to the rule body (line 21).

In line 23, each assignment in subst is composed
with the unifier under which it has been derived in
the for-loop (line 18–22), which renders it into an as-
signment for Q. All these assignments are eventually
copied into all_subst from which a set of answers for
Q is derived (line 26) The answers are then returned to
the function caller. After the whole recursion tree has
been explored exhaustively, infer returns control to the
function main, where the derived answers are copied
into the variable New. The process is repeated until the
closure is reached.

To facilitate the understanding of this algorithm and
more in particular of the function infer, consider the
following example:

Example 6. Suppose that we have a program P that
consists of a single rule (notice that x, y, z are vari-
ables)

r0 := T (x,TYPE, y) ← T (z,SCO, y)∧T (x,TYPE, z)

the input query is Q := (a,TYPE, u), containing only
one variable, u, and I contains solely the ground atoms
T (a,TYPE,c) and T (c,SCO,d).

The call main(Q) executes infer(Q, ∅) which per-
forms a lookup in line 13, setting all_subst = {{u/c}}.
It is then checked for all rules r whether the head of r
is unifiable with Q (lines 14–15). In our example, only
rule r0 satisfies this condition, and the algorithm com-
putes some MGU θh (line 16), e.g. θh := {x/a, y/u}.
θh is applied to each body atom of r0 and infer is

recursively invoked. In our example, the first recursive
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call would be infer(T (z,SCO, u), {Q}). We obtain at
first the substitution {z/c, u/d} in line 13 which is
stored in the local variable all_subst. Since no rule
head unifies with T (z,SCO, u) the program jumps to
line 26 and returns {{z/c, u/d}(T (z,SCO, u))} =
{T (c,SCO,d)}. Hence the join in line 21 evaluates
to {{z/c, u/d}} and subst = {{z/c, u/d}} after
line 21.

The inner for-loop (lines 18–22) moves to the
next predicate and launches the second recursive call
infer(T (a,TYPE, z), {Q}). Line 13 sets all_subst to
{z/c} and forgoes lines 14–24 since T (a,TYPE, z)
equals Q up to variable renaming and PrevQueries =
{Q}.

Returning {T (a,TYPE,c)} to the computation
one recursion level above, the result of the join
{{z/c, u/d}} � {{z/c}} = {{z/c, u/d}} in line
21 will be stored in subst. Line 23 sets all_subst to
{{u/c}, {z/c, u/d, x/a, y/d}} which is the result of
{{u/c}} ∪ {{z/c, u/d}} ◦ {x/a, y/u}.

Each substitution in all_subst is applied to Q in line
26 and Result := {T (a,TYPE,c), T (a,TYPE,d)} is
returned to the function main where they are stored
in Mat. The function main will repeat the computa-
tion once again to ensure that no more triples can
be derived. In this last loop-pass infer(Q, ∅) returns
the atoms in Result which it obtains this time from a
lookup in line 13. Result is stored in New which is then
returned to the user (line 7).

By definition, unifiers and therefore the MGU rely
on variable disjoint atoms. We will show for the con-
struction of the MGU in line 16 that we may w.l.o.g.
assume that every query Q′ occurring in the compu-
tation of infer(Q, ∅) is variable disjoint to every rule
r ∈ P . In fact, we assume that the for-loop in Algo-
rithm 1 line 14 iterates over variable renamed versions
of rules r ∈ P which are variable disjoint to the given
Q′.

To this end, we show that for every Datalog program
P and atomic query Q a finite variable set V suffices
such that for every query Q′ occurring in the compu-
tation of infer(Q, ∅) and every rule r ∈ P a variable
renaming ρ exists such that the variables in Q′ and the
renamed variables in r are disjoint, i.e.

Var(Q′) ∩ ρ ◦ Var(r) = ∅ and ρ ◦ Var(r) ⊆ V.

To this end let A comprise Q and all atoms occur-
ring in P . We set V0 to be the set of all variables in A
and V := V0∪V1 where V1 is a disjoint copy of V0. We

define Q to be the closure of A under all substitutions
θ : V −→ (V ∪CONS) where CONS are the constants
occurring in A. Obviously, Q is finite.

Lemma 1.

1. For every Q′ ∈ Q and every r ∈ P there is a
variable renaming ρ : Var(r) −→ V \ Var(Q′).

2. We have Q′ ∈ Q for every subsequent procedure
call infer(Q′, PrevQueries) of infer(Q, ∅).

Proof.

1. For a set M we denote with |M | its cardinality.
Let Q′ ∈ Q and r ∈ P be arbitrary. For every
atom R(t̄) ∈ A we know |Var(R(t̄))| ≤ 1

2 |V |.
Since Q′ is the result of a variable substitution
within an atom in A, we have |Var(Q′)| ≤ 1

2 |V |
and hence that |V \ Var(Q′)| ≥ 1

2 |V |. Similarly
we know that |Var(r)| ≤ 1

2 |V |. Hence there is an
injective substitution ρ : Var(r) −→ V \Var(Q′).

2. The proof is carried out via the nesting depth k <
ω of the procedure calls. If k = 0, the procedure
call is infer(Q, ∅) and since Q ∈ Q the claim is
true.
Assume we are in a subsequent procedure call
infer(Q′,PrevQueries) in nesting depth k < ω.
The induction hypothesis yields that Q′ ∈ Q. For
every rule r ∈ P used in a loop pass (line 14–24),
item 1. yields a variable renaming ρ : Var(r) −→
V \ Var(Q′). Let the variables of r be renamed
by ρ, then Var(MGU(Q′, r.HEAD)(p)) ⊆ V for
all body atoms p of r. The argument Q′′ in sub-
sequent procedure calls infer(Q′′,PrevQueries ∪
{Q′}) (line 19) which have nesting depth k + 1
is of the form Q′′ := MGU(Q′, r.HEAD)(p) and
hence Q′′ ∈ Q.

We will now discuss the correctness of our algo-
rithm in three steps, which are termination, soundness
and completeness. We shall first show termination and
soundness, for which we will furnish two further lem-
mas: The first, Lemma 2, conceptualizes the function
calls executed during infer(Q, ∅) as a tree, where ele-
ments are connect by edges of the “calls”-relation, and
shows that this tree has finite depth and thus yields an
argument towards termination. The second, Lemma 3,
shows that all calls in this tree yield only results in
P (I), i.e. Lemma 3 provides a soundness argument.

Consider database I, a Datalog program P and an
atom Q. Let Q be the set of atoms defined above
Lemma 1.
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Lemma 2. Each call infer(Q, ∅) entails at most
finitely many recursive calls to infer.

Proof. An inductive argument over the nesting depth
of procedure calls shows that in the n-th nested pro-
cedure call, PrevQueries contains n elements. Since
PrevQueries ⊆ Q (cf. Lemma 1 item 2.) and both
for-loops iterate over finite sets, infer is called at most
finitely many times.

With � (being a proper super-set) we obtain a well-
founded order on the powerset of Q which we shall use
for further inductive arguments.

Lemma 3. Let P (I) be the materialization of I under
P . If Mat, Tmp ⊆ P (I) then for all Q ∈ Q and all
subsets PrevQueries ⊆ Q we have that

infer(Q, PrevQueries) ⊆ P (I)

and Tmp′ ⊆ P (I) where Tmp′ is Tmp after the execu-
tion of infer(Q, PrevQueries).

Proof. The proof is carried out by induction upon
PrevQueries in the powerset of Q ordered by �. For
the base case let Q ∈ Q be arbitrary and execute
infer(Q,Q). Then lookup(Q, I ∪ Mat) in line 13 re-
turns a set of assignments β : V ar(Q) −→ dom I,
such that β(Q) ∈ (I∪Mat). Since Q ∈ Q, lines 14–24
are skipped and hence

infer(Q,Q) ⊆ P (I)

and Tmp′ = Tmp ⊆ P (I).
For the induction step, let PrevQueries ⊆ Q be ar-

bitrary and assume as induction hypothesis that for all
R with PrevQueries � R ⊆ Q and for all Q ∈ Q
we have that if Mat, Tmp ⊆ P (I) then infer(Q,R) ⊆
P (I) and Tmp′ ⊆ P (I) where Tmp′ is the updated set
Tmp after the procedure call infer(Q,R).

Execute infer(Q,PrevQueries): As in the induction
base, all_subst contains after line 13 only assignments
β such that β(Q) ∈ (I∪Mat). If Q ∈ PrevQueries up
to variable renaming, we skip lines 14–24 ending up
with the same outcome as in the induction base.

Hence assume Q /∈ PrevQueries modulo variable
renamings. In each loop-pass of the outer-loop and
inner-loop, the induction hypothesis yields that

infer(θh(p),PrevQueries ∪ {Q}) ⊆ P (I).

Hence Tmp′ ⊆ P (I).

Similar to line 13, lookup(θh(p), tuples) contains
exactly those assignments β : V ar(θh(p)) −→ dom I

such that β ◦ θh(p) ∈ tuples. Hence every β ∈ subst,
after the join � has been performed (line 22), satis-
fies β ◦ θh(p) ∈ tuples for all p ∈ r.BODY . Dat-
alog requires all variables of the head to be covered
by some atom in the body, so we know that each
β ∈ subst is an assignment for θh(r.HEAD) where
β ◦ θh(r.HEAD) ∈ P (I). Additionally, since θh is
the unifier for Q and r.HEAD, we know that every
β ◦ θh in all_subst is an assignment for Q. Hence, we
have θ(Q) ∈ P (I) for all θ ∈ all_subst which shows
infer(Q,PrevQueries) ⊆ P (I).

4.2.1. Termination
We first concentrate on the termination of the pro-

cedure call infer(Q, ∅) in the function main. Let I be
a database over a finite signature SIG: by definition
domI is finite. Lemma 3 yields that in every repeat-
loop pass (lines 3–6)

New, Tmp,Mat ⊆ P (I) (∗)

where P (I) is the materialization of I under P . An
inductive argument over PrevQueries ⊆ Q shows that
under the precondition (∗) for all Q ∈ Q every proce-
dure call infer(Q,PrevQueries) terminates: Lemma 2
shows that there are only finitely many calls to infer,
but we can now show that also every call to lookup in
line 13 and line 21 yields a finite result (via some finite
computation) and thus � in line 21 terminates.

In every repeat-loop pass, Tmp or New grow or the
loop is terminated. Since Tmp and New are bounded
by P (I), which is finite, the repeat-loop terminates
after finitely many passes. This shows that for every
database I, every Datalog program P and every atomic
query Q the function main(Q) terminates.

4.2.2. Soundness
The return value of main(Q) is the result of the call

infer(Q, ∅) in the last repeat loop pass (cf. line 5 in
Algorithm 1). Hence, in order to show soundness, we
have to show for all repeat-loop passes that the re-
turn value of infer(Q, ∅) only contains answers to Q
from P (I). To this end, assume I is a database, P is
a Datalog program and Q is an atomic query. In ev-
ery repeat-loop pass, infer(Q, ∅) contains only ground
atoms from P (I) that unify with Q: Using Lemma 3,
we know that Tmp,Mat ⊆ P (I) for every repeat-loop
pass (lines 3–6). Thus, line 13 only yields assignments
β such that β(Q) ∈ (I ∪ Mat) and hence such that
β(Q) ∈ P (I). Using Lemma 3 again on line 19, we
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know that β ◦ θh(p) ∈ P (I) for every assignment
β ∈ lookup(θh(p), tuples) in line 21 and every body
atom p of a rule whose head unifies with Q. Hence
β ∈ subst after line 22 is an assignment such that
β ◦ θh(Q) ∈ P (I). Hence the returned set in line 26
only contains ground atoms which are answers to Q
and are in P (I).

4.2.3. Completeness
Let I be a given database, P a given Datalog pro-

gram and Q := R′(t̄′) an atomic query. To show the
completeness of Algorithm 1, we need to prove that
every atom in R′P (I) which unifies with Q can be de-
rived by main(Q). This claim is shown via Proposition
1 below, as the latter holds in particular for all answers
to the input query Q derived under P from I. Propo-
sition 1 however rests on Lemma 4. The lemma states
that if a ground atom R(ā) appears as label in a Data-
log proof-tree for some answer R′(b̄) to Q, then R(ā)
is an answer to some query Qn which will occur dur-
ing a computation of infer(Q, ∅). Note that it does not
show that infer(Q, ∅) derives R(ā).

We call an atomic query Q blocked in the pro-
cedure call infer(Q,PrevQueries) if there is Q′ ∈
PrevQueries such that Q  Q′ and Q′  Q.

Lemma 4. Let Q := R′(t̄′) be an atomic query and
R(ā) a label, which appears in a Datalog proof-tree
(G, �) for some answer to Q in P (I). Then there is
a subsequent procedure call infer(Qn,PrevQueries)
of infer(Q, ∅) such that Qn is a non-blocked atomic
query and R(ā) is an answer to Qn derived under P
in I.

Proof. Let R′(b̄) be an answer to Q which has a Data-
log proof-tree (G, �) in P (I) containing a label R(ā).
We have to show, that there is a sequence of atomic
queries Q0, . . . , Qn such that

1. Q = Q0 and R(ā) unifies with Qn

2. for each i ∈ {0, . . . , n} there is a rule r ∈ P and
θ := MGU(Qi, r.HEAD) such that Qi+1 = θ(p),
where p is some body-atom of r

3. no query is blocked, i.e. there is no subsequence
Qi · · ·Qk with 0 ≤ i < k ≤ n such that Qi is up
to variable renaming equal to Qk (Qi  Qk and
Qk  Qi).

3. guarantees in particular that the condition Q /∈
PrevQueries in line 15 is true when the procedure call
infer(Qi, {Q0, . . . , Qi−1}) is executed. Hence, if 1–3

hold, infer(Q, ∅) will, according to lines 14–24 of Al-
gorithm 1, call in ascending sequence

infer(Qi, {Q0, . . . , Qi−1})

where 0 ≤ i ≤ n.
In a first step we specify a sequence of rules

r0, . . . , rn which leads from R′(b̄) to the atom R(ā)
and then we determine a sequence of queries
Q0, . . . , Qn.

Let R′(b̄) be the atom which unifies with the in-
put query Q and in whose Datalog proof-tree (G, �)
R(ā) appears. Then either (G, �) has height 0 and thus
R′(b̄) = R(ā) and Qn := Q is found, or there is
a sequence of rule applications r0, . . . , rn such that
R′(b̄) unifies with the head of r0 via some MGU θ0
and for all i ∈ {0, . . . , n− 1} some unified body-atom
Bi,ki = θi(Ri,ki(t̄i,ki)) of ri unifies via some MGU
θi+1 with the head of ri+1 and finally R(ā) unifies
with some unified body-atom Bn,kn = θn(Rn(t̄n,kn))
of rn.

Fix this sequence of rules r0, . . . , rn. Since R′(b̄)
is an answer to Q (i.e. a ground atom) and unifies
with the head atom H0 of r0, Q unifies with H0 yield-
ing ϑ0 := MGU(Q,H0). For all i ∈ {0, . . . , n −
1} the unified body-atom Qi := ϑi(Ri,ki(t̄i,ki))
of ri unifies with the head Hi+1 of ri+1 yielding
ϑi+1 := MGU(Qi, Hi+1), so that we finally reach
the body atom Rn,kn(t̄n,kn) of rn where Qn :=
ϑn(Rn,kn(t̄n,kn)) is the query which unifies with
R(ā).

We hence obtain a sequence Q0, . . . , Qn satisfy-
ing items 1 and 2. We shall show that for every se-
quence satisfying items 1 and 2 there is a sequence
Q′

0, . . . , Q
′
m satisfying items 1–2 and 3:

The claim is clear, if the sequence is of length 1:
Q0 is never blocked. Let Q0 . . . Qn be a sequence
of length n + 1 where Qi equals Qk up to vari-
able renaming and 0 ≤ i < k ≤ n. Then the
head of rk+1 unifies with the query Qi. The se-
quence Q0, . . . , Qi, Qk+1 . . . Qn is properly shorter
than Q0 . . . Qn and satisfies items 1–2. The induction
hypothesis yields a sequence Q′

0, . . . , Q
′
m which satis-

fies items 1–3.

Proposition 1. Let P , I and Q be fixed and Q as
defined above Lemma 1. Let R′(b̄) be an answer to
Q which has a Datalog proof-tree (G, �) in P (I)
containing a label R(ā). Then there is a repeat-loop
pass in main(Q) from which onward for every atomic
query Q′ ∈ Q which unifies with R(ā) and for all
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PrevQueries ⊆ Q every call infer(Q′, PrevQueries)
returns R(ā).

Proof. Let R′(b̄) be an answer to Q which has a Data-
log proof-tree (G, �) in P (I) containing a label R(ā).
We prove by induction upon k < ω, that the atom R(ā)
is yielded after the k-th repeat-loop pass by every call
infer(Q′,PrevQueries), if Q′ unifies with R(ā) and the
minimal height of some Datalog proof tree for R(ā) is
equal to k.

If there is a Datalog proof tree for R(ā) of height 0
and Q′ unifies with R(ā), then infer(Q′,PrevQueries)
will produce R(ā) for all PrevQueries ⊆ Q in the
look-up of line 13 which will be returned (cf. line 26)
for all further repeat-loop passes.

Assume there is a Datalog proof tree (G′, �′) for
R(ā) of height k + 1 and we have started the k +
1 repeat-loop pass. Lemma 4 shows that there is
subsequent procedure call infer(Qn,PrevQueries) of
infer(Q, ∅) such that Qn is an unblocked atomic query,
i.e. there is no Q′ ∈ PrevQueries with Qn  Q′ and
Q′  Qn, and R(ā) unifies with Qn.

Since (G′, �′) is of height k + 1 there is a rule
r : R(t̄) ← R1(t̄1) ∧ · · · ∧ Rm(t̄m) and a variable
assignment β such that R(β(t̄)) = R(ā) and for each
i ∈ {1, . . . ,m} the fact Ri(β(t̄i)) has a proof tree of
height at most k under P in I.

The head H of r and Qn unify with the ground
atom R(ā), so there is θ := MGU(Qn, H) and each
Ri(β(t̄i)) unifies with Q′

i := Ri(θ(t̄i)) with i ∈
{1, . . . ,m}. Since Qn is not blocked, the subsequent
procedure call infer(Q′

i,PrevQueries ∪ {Qn}) for all
i ∈ {1, . . . ,m} is issued.

By the induction hypothesis, for all i ∈ {1, . . . ,m},
infer(Q′

i,PrevQueries∪{Q}) yields Ri(β(t̄i)). Hence
R(ā) is returned by infer(Qn,PrevQueries) at the very
latest in the n + 1 repeat-loop pass and eventually
added to Mat (cf. line 4) so that after the n+ 1 repeat-
loop pass for every PrevQueries ⊆ Q every sub-
sequent call infer(Q′,PrevQueries) that unifies with
R(ā) will return this fact as look-up in line 13.

By proving Proposition 1, we have shown that Al-
gorithm 1 is complete: Every answer to a given query
Q has a Datalog proof-tree and is the label of the root
of this proof-tree. Proposition 1 shows that this answer
is eventually derived by infer(Q, ∅) (line 5) and thus
returned by main(Q) (line 7). This completes the three
steps to prove correctness w.r.t. to retrieval of exactly
those answers to Q under P (I).

5. Hybrid reasoning: Pre-materialization

So far, we have made no difference in the descrip-
tion of our backward-chaining algorithm between sub-
queries that are pre-computed and those which are
not. However, the pre-materialization of a selection of
queries allows us to substantially improve the imple-
mentation and performance of backward-chaining by
exploiting the fact that these queries can be retrieved
with a single lookup.

In our implementation, the results of these queries
are stored in main memory so that the joins required
by the rules can be more efficiently executed. Also, the
availability of the pre-materialized queries in memory
allows us to implement another efficient information
passing strategy to reduce the size of the proof tree by
identifying beforehand whether a rule can contribute
to deriving answers for a given query.

In fact, the pre-materialization can be used to de-
termine early failures: Emptyness for queries which
are subsumed by the pre-materialized queries can be
cheaply derived since a lookup suffices. Therefore,
when scheduling the derivation of rule body atoms,
we give priority to those body atoms that potentially
match these pre-materialized queries so that if these
“cheap” body atoms do not yield any answers, the rule
will not apply, and we can avoid the computation of
the more expensive body atoms of the rule for which
further reasoning would have been required.

To better illustrate this concept, we proceed with an
example. Suppose we have the proof tree described in
Fig. 1. In this case, the reasoner can potentially apply
rule prp-symp (concerning symmetric properties in
OWL) to derive some triples that are part of the second
body atom of rule prp-spo1.

However, in this case, rule prp-sympwill fire only
if some of the subjects (i.e. the first component) of
the triples part of T (w,SPO,TYPE) will also be the
subject of T (w,TYPE,SYM). If both patterns are pre-
computed, then we know beforehand all the possi-
ble ‘w’, and therefore we can immediately perform
an intersection between the two sets. If the intersec-
tion is non-empty, the reasoner proceeds executing rule
prp-symp, otherwise it can skip its execution since
the rule will never fire.

It is very unlikely that the same property appears
in all the terminological patterns, therefore an in-
formation passing strategy that is based on the pre-
materialized triple patterns is very effective in signifi-
cantly reducing the tree size and hence improving per-
formance.
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Furthermore, our implementation of this algorithm
applies a sideways information passing strategy [2,3]
to improve the execution of the joins required by the
rules. This technique consists of “passing” admissible
values to the variables of the following queries in order
to limit the retrieval to only facts that can contribute to
the join.

To illustrate this concept, consider Example 6: Here,
when the algorithm needs to invoke the function infer
with the atomic query T (a,TYPE, u), even though the
variable u could in principle assume any value, in prac-
tice the implementation knows already that only the
values of u in subst are admissible (in our case c), be-
cause only those can lead to a successful join. Thus, the
implementation can link these values to the variable u
so that in a subsequent call of, for example, lookup,
the computation is limited to retrieve only these values
and not all possible u. This technique of passing val-
ues between the queries is well-known in rule-based
systems, and applied in nearly all implementations.

The hybrid approach thus consists of materializing
parts of the knowledge base beforehand and then us-
ing on-demand querying techniques to answer user
queries. To this end we pre-materialize certain atomic
queries and store their results in new edb relations be-
fore the user can query the knowledge base. The cor-
responding atoms in the original rules are replaced ac-
cordingly and this new rule set is then used to infer the
answers to the user query.

In order to prove the correctness of our method for
hybrid reasoning, we proceed as follows: First, in Sec-
tion 5.1, we formalize and discuss the completeness of
the pre-materialization algorithm. Next, in Section 5.2,
we show that replacing the pre-materialized body
atoms in the original rules with atoms using the intro-
duced edbs is harmless (after the pre-materialization
algorithm is computed), since this modified program
computes the same answers as the original one. This
last argument finally settles the correctness of our
entire approach, since it ensures that, after the pre-
materialization is computed, no derivation will be
missed at query time.

5.1. Pre-materialization

Let I be a database and P the program with a
set L of atomic queries that are selected for pre-
materialization. The pre-materialization is performed
by Algorithm 2. The reason why we do not simply
introduce auxiliary relations named SQ to I for each
Q ∈ L and populate these by setting SI

Q := main(Q)

Algorithm 2 (Overall algorithm of the pre-computation proce-
dure). L is a set containing all queries that were selected for pre-
materialization, Ruleset is a constant containing a program P and
Database represents I.

1 for every Q ∈ L
2 introduce a new predicate symbol SQ to

Database
3 end for
4
5 for every rule p : R0(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n) in

Ruleset
6 for every Q ∈ L and i ∈ {1, . . . , n}
7 if Ri(t̄i) � Q then
8 replace Ri(t̄i) in p with SQ(t̄i)
9 end if

10 end for
11 add this (altered) rule to NewRuleset
12 end for
13
14 Derivation := ∅
15 repeat
16 Database := Database ∪ Derivation
17 for every R(t̄) ∈ L
18 Perform SR(t̄)(t̄) ← R(t̄) on Database

19 end for
20
21 for every Q in L
22 Derivation := Derivation ∪ main(Q) using

NewRuleset as program on Database
23 end for
24 until Derivation ⊆ Database

(for main cf. Algorithm 1) is that the efficiency of
Algorithm 1 hinges upon the fact that as many body
atoms as possible are not unfoldable, but are edbs for
which merely look-ups have to be performed during
backward chaining.

Therefore, in order to materialize SQ for each Q ∈
L, Algorithm 2 starts main(Q) on the Datalog program
P ′, which is P where predicates in body atoms have
already been replaced by the auxiliary predicates SQ

whenever possible. The auxiliary relations named SQ

with Q ∈ L are thus empty at first and are gradually
filled until SI0

Q = S
P (I)
Q , where I0 is I after Algo-

rithm 2 has terminated. We will, after discussing the al-
gorithm, prove that Algorithm 2 is correct in the sense
that SI0

Q = S
P (I)
Q for all Q ∈ L after Algorithm 2 has

terminated.
In a first step (lines 1–3), the database is extended

with auxiliary relations named SQ for Q ∈ L. Each
rule of the program P is rewritten (lines 5–12) by re-
placing every body atom Ri(t̄i) with the atom SQ(t̄i)
if Ri(t̄i)  Q (cf. page 425), i.e. if the “answers” to
Ri(t̄i) are also yielded by Q.

Clearly, the result of the rewriting need not to be de-
terministic in case there are two or more atomic queries
Q0, Q1 ∈ L with Ri(t̄i)  Q0, Q1. However, we shall
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show that either rewriting is good enough. The new
rule thus obtained is stored in a new program P ′. In
case the rule p contains no body atoms that need to be
replaced, p is stored in P ′ as well.

In each repeat-loop pass (cf. lines 15–24), I is ex-
tended in an external step (lines 17–19) with all an-
swers for Q ∈ L, which are copied into the auxil-
iary relation SI

Q. Since this is repeated between each
derivation until no new answers for any Q ∈ L are
yielded, this is equivalent to adding SQ(t̄) ← R(t̄) for
each Q ∈ L with Q = R(t̄) to P ′ directly.4 One can
derive from this argument that Algorithm 2 terminates
and is sound in the sense that SI0

Q ⊆ QP (I), where I0

is the database I after Algorithm 2 has terminated. As
we shall show in Proposition 2, Algorithm 2 is com-
plete in the sense that, after termination of this algo-
rithm, SI0

Q contains all answers for Q in P (I).

Example 7. Take the altered program from Example 4
and add the appropriate SQ(x,SPO, y) ← Q with Q =
T (x,SPO, y) to it. In this case we obtain

T (a, p1, b)← SQ(p,SPO, p1) ∧ T (a, p, b)
T (x,SPO, y)← SQ(x,SPO, w) ∧ SQ(w,SPO, y)

SQ(x,SPO, y)← T (x,SPO, y)

It is trivially clear, that this program yields for every
Database exactly the same results for T (x,SPO, y) as
the original program

T (a, p1, b)← T (p,SPO, p1) ∧ T (a, p, b)
T (x,SPO, y)← T (x,SPO, w) ∧ T (w,SPO, y)

Proposition 2. Algorithm 2 is complete in the sense
that for the database I0 which we obtain after Algo-
rithm 2 has terminated, SI0

Q ⊇ QP (I) for all Q ∈ L,
i.e. every answer that could be derived from Q under
P in I is contained in SI0

Q .

Proof. Let P ′ be the rewritten program P , defined as
NewRuleset in the pseudocode of Algorithm 2. We
have QP (I) ⊆ QP (I0) (monotonicity) and QP ′(I0) ⊆
SI0

Q (line 18). In order to show QP (I) ⊆ SI0

Q we show
QP (I0) ⊆ QP ′(I0).

As strategy, we take the Datalog proof tree of an
answer to a query Q ∈ L in P (I0) and show that we
can render this proof tree into a Datalog proof tree in
P ′(I0).

4By definition, this would render SQ(t̄) into an idb, which we
thus only propose for the sake of explaining correctness.

Assume no new element could be derived from I0

using the program P ′ but for some Q ∈ L, main(Q)
could derive another yet unknown ground atom from
I0 using the original program P . Let hence Δ :=⋃

Q∈L QP (I0) \ QP ′(I0) and let R(ā) ∈ Δ such that
it has a Datalog proof-tree (G, �) in P (I0) of height
m < ω, where m is for all atoms from Δ the least
height of their Datalog proof-trees in P (I0).

We change the tree (G, �) recursively as follows:
If the root v is a leaf, the tree stays unaltered. Oth-
erwise, there is a rule r ∈ P and an assignment β
such that there is a bijection ι between the succes-
sor set E(v) and the set of body atoms of r such that
�(v′) = β ◦ ι(v′) for all v′ ∈ E(v). As we only ex-
changed predicate names in the rewriting of r ∈ P to
r′ ∈ P ′, there is a bijection ι′ between E(v) and the
body atoms of r′ and we set �′(v′) := β ◦ ι′(v′). For
all v′ ∈ E(v) we have �(v′) = �′(v′) if the body atom
was not replaced during rewriting. If for any v′ ∈ E(v)
�′(v′) has predicate name SQ for some Q ∈ L, prune
its subtree but keep v′. Otherwise recursively continue
to change the subtree 〈v′〉. We thus obtain a new tree
G′ with a labelling function �′.

Line 18 guarantees that SI0

Q = QI0 for all Q ∈
L and since (G, �) was chosen minimal, every leaf of
(G′, �′) is labelled with an atom in I0. Hence (G′, �′) is
a Datalog proof-tree in P ′(I0) for R(ā) and so R(ā) /∈⋃

Q∈L QP (I0) \QP ′(I0). A contradiction!

5.2. Reasoning with pre-materialized predicates

We show now that replacing body atoms with aux-
iliary predicates that contain the full materialization
of the body atom w.r.t. a given database (i.e. after
Algorithm 2), yields the same full materialization of
the database as under the original program. We will
formally define what conditions must be fulfilled and
prove that if they hold, then the two programs will pro-
duce the same derivation (Proposition 3). Finally, we
point out that the output of Algorithm 2 satisfies these
conditions and therefore guarantees the correctness of
our entire hybrid approach.

We start by taking an arbitrary Datalog program P
and a database I. We assume that I has already been
enriched with the results of the pre-materialization and
that S is the name of one of these pre-materialized re-
lations where S is an edb for P .

As an example, assume that this binary relation SI

contains all tuples (x, y) of the query

query(x, y) ← T (x,SPO, y).

under the program P .
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Since S is an edb, it does not appear in the head
of any rule of P and thus cannot be unfolded. So the
evaluation of S during the backward chaining process
is reduced to a mere look-up in the database.

Replacing an atom in a rule body with an atom con-
taining S, S(t̄) say, is harmless only if S(t̄) yields the
“right” answers. Thus, the question arises which ab-
stract conditions must S(t̄) satisfy to allow such a re-
placement: The answer is that we want a rule to fire
under “almost the same” variable assignment as its re-
placement, i.e. the rule with the replaced body atom.
We will formalize this in the following two paragraphs.

Let R(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n) be a rule in
P . We define two queries, one being the body of the
rule and one being the body of the rule where for some
i ∈ {1, . . . , n} the body atom Ri(t̄i) is replaced by
S(t̄) where t̄ is some arbitrary tuple having the arity of
S. Let z̄ := t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n, i.e. the concate-
nation of all tuples except t̄i and

q0(z̄)← R1(t̄1) ∧ · · · ∧Ri(t̄i) ∧ · · · ∧Rn(t̄n)

q1(z̄)← R1(t̄1) ∧ · · · ∧ S(t̄) ∧ · · · ∧Rn(t̄n)
(�)

Now, the rule and its replacement fire under al-
most the same variable assignment iff q0(z̄)

P (I) =
q1(z̄)

P (I), i.e. q0 and q1 yield the same answers under
P in I. We see, that it is “almost the same” variable
assignment, as we do not require variable assignments
to coincide on t̄i and t̄. In this way we do not require,
e.g., SI = R

P (I)
i . S is merely required to contain the

necessary information. This is important, if we want
to apply the substitution to RDF triples, where we lack
distinguished predicate names:

Example 8. Since there is only one generic predicate
symbol T in RDF, requiring SI = TP (I) would mean
that S contains the complete materialization of I under
P which would render our approach obsolete.

Also note that it is not sufficient to merely require
q0(t̄0)

P (I) = q1(t̄0)
P (I), i.e. that both queries yield

the same answer tuples t̄0 under P (I), as the following
example shows.

Example 9. Let the program P which computes the
transitive closure of R0 in R1 consist of the two rules:

R1(x, z) ← R1(x, y) ∧R0(y, z)
R1(x, y)← R0(x, y)

Consider a database I with RI
0 := {(a, b), (b, c), (b, b),

(c, c)}. In the materialization P (I) of P we expect

R
P (I)
1 = {(a, b), (b, c), (a, c), (b, b), (c, c)}. Let S

have the interpretation SI = {(b, b), (c, c)}. Since
R

P (I)
1 is the transitive closure, the following two

queries deliver the same answer tuples under P (I), i.e.

q0(x, z)← R1(x, y) ∧R0(y, z)
q1(x, z)← R1(x, y) ∧ S(y, z)

Yet the program P ′

R1(x, z) ← R1(x, y) ∧ S(y, z)
R1(x, y)← R0(x, y)

will not compute the transitive closure of R0 in R1, as
R

P ′(I)
1 = {(a, b), (b, c), (b, b), (c, c)}.

In Proposition 3, we show that we have chosen the
correct criterion when requiring that rules must fire
under almost the same variable assignments to be re-
placements of each other: We show that substituting
a body atom Ri(t̄i) by S(t̄), under the condition that
the queries in (�) yield the same answer tuples under
P (I), generates the same materialization.

Proposition 3. Let P ′ be the program P where the
rule
R0(t̄0) ← R1(t̄1) ∧ · · · ∧Ri(t̄i) ∧ · · · ∧Rn(t̄n) ∈ P
has, for some tuple t̄ and edb S, been replaced by
R0(t̄0) ← R1(t̄1) ∧ · · · ∧ S(t̄) ∧ · · · ∧Rn(t̄n).
Let q0 and q1 be defined as in (�).

If q0(z̄)P (I) = q1(z̄)
P (I) then P (I) = P ′(I).

Proof. In order to show the implication we assume
q0(z̄)

P (I) = q1(z̄)
P (I). Let TP and TP ′ be the imme-

diate consequence operators (mentioned on page 426)
for each program. We show for all k < ω and every
ground atom R(ā) that if R(ā) ∈ T k

P (I), then there
is an � < ω such that R(ā) ∈ T �

P ′(I) and vice versa.
Since we start out from the same database I we have
T 0
P (I) = T 0

P ′(I) which settles the base case.
For the step case, let R(ā) ∈ T k+1

P (I). Then either
R(ā) ∈ T k

P (I) and we are done or there is some rule
R(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n) and some variable
assignment β such that β(t̄0) = ā and Rj(β(t̄j)) ∈
T k
P (I) for all j ∈ {1, . . . , n}.
If R(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n) ∈ P , i.e. none

of its body atoms where substituted, the induction hy-
pothesis shows for each j ∈ {1, . . . , n} that we can
find �j < ω such that Rj(β(t̄j)) ∈ T

�j
P ′(I). Let �0 :=

max({0} ∪ {�j | 1 ≤ j ≤ n}). Note that we add {0}
for the case where the rule body is empty. In any case,
we have Rj(β(t̄j)) ∈ T �0

P ′(I) for all j ∈ {1, . . . , n}.
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Since all premises of this rule are satisfied, there is
some � := �0 + 1 such that R0(β(t̄0)) ∈ T �

P ′(I).
If R(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n) /∈ P it is a

rule where Ri(t̄i) has been substituted with S(t̄). For
the assignment β we now know β(t̄0 · t̄1 · · · t̄i−1 ·
t̄i+1 · · · t̄n) ∈ q0(z̄)

P (I). Since q0(z̄)P (I) = q1(z̄)
P (I)

we know that there is some assignment β′, which co-
incides with β on (t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n) such that
β′(t̄) ∈ SP (I).

Hence Rj(β
′(t̄j)) ∈ T k

P (I) for all j ∈ {1, . . . , n} \
{i} and S(β′(t̄)) ∈ T 0

P (I) since S is an edb predicate.
The induction hypothesis yields some �j < ω for each
j ∈ {1, . . . , n} \ {i} such that Rj(β

′(t̄j)) ∈ T
�j
P ′(I).

Let �0 := max({0} ∪ {�j | 1 ≤ j ≤ n and j �= i}),
then Rj(β

′(t̄j)) ∈ T �0
P ′(I) for all j ∈ {1, . . . , n} \ {i}

and S(β′(t̄)) ∈ T 0
P ′(I). Since all premises of this

rule are satisfied, there is some � := �0 + 1 such
that R0(β

′(t̄0)) ∈ T �
P ′(I). As β coincides with β′

also on t̄0, i.e. β′(t̄0) = ā, we have in particular
R(ā) ∈ T �

P ′(I).
This shows RP (I) ⊆ RP ′(I) for all predicate names

R ∈ PRED. For the converse, we merely show the
case of the substituted rule: Assume R(ā) ∈ T k+1

P ′ (I)
and there is an assignment β′ such that β′(t̄0) = ā and
Rj(β

′(t̄j)) ∈ T k
P ′(I) for all j ∈ {1, . . . , n} \ {i} as

well as β′(t̄) ∈ SP ′(I).
The induction hypothesis yields for each j ∈

{1, . . . , n} \ {i} some �j < ω with Rj(β
′(t̄j)) ∈

T
�j
P (I). Since S is an edb predicate for P , we have

S(β′(t̄)) ∈ T 0
P (I). Hence for �0 := max({0} ∪ {�j |

1 ≤ j ≤ n and j �= i}) we have Rj(β
′(t̄j)) ∈ T �0

P (I)
for all j ∈ {1, . . . , n} \ {i} and S(β′(t̄)) ∈ T 0

P (I).
This implies β′(t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n) ∈

q1(z̄)
P (I) and since q0(z̄)P (I) = q1(z̄)

P (I) there is an
assignment β coinciding on (t̄0 · t̄1 · · · t̄i−1 · t̄i+1 · · · t̄n)
with β′ such that Ri(β(t̄i)) ∈ T j0

P (I) for some j0 <

ω. Let �1 := max{�0, j0} then Rj(β
′(t̄j)) ∈ T �1

P (I)
for all j ∈ {1, . . . , n}. Since all premises of the rule
R0(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n) are satisfied, there
is some � := �1 + 1 such that R0(β(t̄0)) ∈ T �

P (I),
which shows, as β coincides on t0 with β′ that R(ā) ∈
T �
P (I).
Together with RP (I) ⊆ RP ′(I) this shows RP (I) =

RP ′(I) for all predicate names R ∈ PRED and hence
that P (I) = P ′(I).

It now becomes clear, how Algorithm 2 and Propo-
sition 3 fit together: For a given database I and a set
of atomic queries L, Algorithm 2 computes for each
Q ∈ L the query answers under the program P , which

are stored in the relation SI0

Q , where I0 is I after Al-
gorithm 2 has finished. These SQ are edbs for P .

Let now r : R0(t̄0) ← R1(t̄1) ∧ · · · ∧ Rn(t̄n) be
a rule in this program and Q ∈ L an atomic query
s.t. Ri(t̄i)  Q, then Q = Ri(t̄) such that t̄i  t̄
by definition of . Correctness of Algorithm 2 yields
R(t̄i)

P (I0) = SQ(t̄i)
I0 and hence that q0(z̄)P (I0) =

q1(z̄)
P (I0) where z̄ = t̄0 · · · t̄n and

q0(z̄)← R1(t̄1) ∧ · · · ∧Ri(t̄i) ∧ · · · ∧Rn(t̄n)

q1(z̄)← R1(t̄1) ∧ · · · ∧ SQ(t̄i) ∧ · · · ∧Rn(t̄n)

Proposition 3 guarantees that the substitution of Ri(t̄i)
by SQ(t̄i) in rule r is harmless w.r.t. I. By applying
this argument iteratively, one eventually obtains a pro-
gram P ′ in which all pre-computed atoms have been
replaced and which yields the same materialization for
I0 as P .

In the following section, we apply this rewriting to
the OWL RL rule set.

6. Hybrid reasoning for OWL RL

In the previous sections, we described the two
main components of our method which consist of the
backward-chaining algorithm used to retrieve infer-
ences as well as the pre-materialization procedure to-
gether with the predicate replacement.

We now discuss the implementation of the OWL RL
rules using our approach. In fact, while our method can
in principle be applied to any Datalog program, our
implementation heavily relies on the fact that our pro-
gram consists of inference rules on RDF data and thus,
our prototype is unable to execute generic Datalog pro-
grams.

The official OWL RL rule set contains 78 rules, for
which the reader is referred to the official document
overview [13]. With selected examples from [13] we
illustrate some key features of our algorithm.

Initial assumptions First of all, we exclude some
rules from our discussion and implementation for var-
ious reasons. These are:

– All the rules whose purpose is to derive an incon-
sistency, i.e. rules with predicate false in the head
of the rule. We do not consider them because our
objective is to derive new triples rather than iden-
tify an inconsistency;
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Table 2
Triple patterns that are pre-materialized considering the
OWL RL rules (1 is an abbreviation for the typed literal
“1”^^xsd:nonNegativeInteger)

O
W

L
R

L

p
D
∗

R
D
F
S

(?X rdfs:subPropertyOf ?Y)

(?X rdfs:subClassOf ?Y)

(?X rdfs:domain ?Y)

(?X rdfs:range ?Y)

(?P rdf:type owl:FunctionalProperty)

(?X owl:allValuesFrom ?Y)

(?P rdf:type

owl:InverseFunctionalProperty)

(?X owl:inverseOf ?Y)

(?P rdf:type owl:TransitiveProperty)

(?X rdf:type owl:Class)

(?P rdf:type owl:SymmetricProperty)

(?X rdf:type owl:Property)

(?X owl:equivalentClass ?Y)

(?X owl:onProperty ?Y)

(?X owl:hasValue ?Y)

(?X owl:equivalentProperty ?Y)

(?X owl:someValuesFrom ?Y)

(?X owl:propertyChainAxiom ?Y)

(?X owl:hasKey ?Y)

(?X owl:intersectionOf ?Y)

(?X owl:unionOf ?Y)

(?X owl:oneOf ?Y)

(?X owl:maxCardinality 1)

(?X owl:maxQualifiedCardinality 1)

(?X owl:onClass ?Y)

(?X rdf:type owl:Class)

(?X rdf:type owl:DatatypeProperty)

(?X rdf:type owl:ObjectProperty)

– All the rules which have an empty body. The rules
cannot be triggered during the unfolding pro-
cess of backward-chaining. These rules include
those that encode the semantics of datatypes and
therefore our implementation does not support
datatypes;

– The rules that exploit the owl:sameAs transitiv-
ity and symmetry.5 These rules require a compu-
tation that is too expensive to perform at query
time since they can be virtually applied to every
single term of the triples. These rules can be im-
plemented by computing the sameAs closure and
maintaining a consolidation table.6

This excludes 30 out of 78 rules, leaving 48 rules.
In our approach, we decided to pre-materialize

all triple patterns that are used to retrieve “schema”
triples, also referred to as the terminological triples.
Table 2 reports the set of the patterns that are pre-
materialized using our method described in Section 5.

5These are all rules reported in Table 4 of [13].
6This procedure is explained in detail in [20].

Singling out exactly those triple patterns from Ta-
ble 2 is motivated by the fact that these patterns appear
in many OWL rules, and is grounded on the assump-
tions that (i) their answer sets are very small compared
to the entire input, and (ii) they are not as frequently
updated as the rest of the data.

These characteristics make the set of inferred sche-
ma triples the ideal candidate to be pre-materialized.
All rules which have a pre-materialized pattern among
their body atoms are substituted replacing the pre-
materialized pattern with its corresponding auxiliary
relation as justified by Proposition 3.

After the pre-materialization procedure is com-
pleted, each rule which has a pre-materialized pattern
in its head can be reduced to a mere look-up:

Example 10. Consider (scm-sco) from Table 9 in [13]:

T (x,SCO, z) ← T (x,SCO, y) ∧ T (y,SCO, z)

can be replaced according to Proposition 3 by r′:

T (x,SCO, z) ← Ssco(x,SCO, y) ∧ Ssco(y,SCO, z)

where the answers to T (x,SCO, y) under I are con-
tained in SI

sco. By adding the rule

r′′: T (x,SCO, z) ← Ssco(x,SCO, z)

every rule whose head atom unifies with T (x,SCO, y)
can be deleted. Adding r′′ is harmless; we can render
r′ into r′′ using Proposition 3: Since Ssco is transitive
we may replace an imaginary conjunction with � (the
atom which is always true) in r′ with Ssco(x,SCO, z).
By two more applications of Proposition 3, we can suc-
cessively replace Ssco(x,SCO, y) and Ssco(y,SCO, z)
each by � obtaining r′′.

This allows us to remove from unfolding 20 of the
48 rules after the pre-materialization is completed.

On the implementation of RDF lists Some of the in-
ference rules in the OWL RL rule set use RDF lists to
allow for an arbitrary number of antecedents. The RDF
lists cannot be represented in Datalog in a straightfor-
ward way since they rely on rdf:first and rdf:rest triples
to represent the elements of the list. Therefore, they
need to be processed differently.

In our implementation, at every step of the pre-
materialization procedure, we launch two additional
queries to retrieve all the (inferred and explicit) rdf:first
and rdf:rest triples with the purpose of constructing
such lists. Once we have collected them, we perform
a join with the other schema triples, and determine the
sequence of elements by repeatedly joining the rdf:first
and rdf:rest triples. After this operation is completed,
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from the point of view of the Datalog program, RDF
lists appear as simple list of elements and are used ac-
cording to the various rule logics. For example, if the
rule requires a matching of all the elements of the list
with the other antecedents, then the rule executor will
first use the first element to perform the join, then it
will use the second, and so on, until all the elements
are considered.

6.1. Detecting duplicate derivation in OWL RL

Since the OWL RL fragment consists of a large
number of rules, there is a high possibility that the
proof tree contains branches that lead to the same
derivation. Detecting and avoiding the execution of
these branches is essential in order to reduce the com-
putation.

After empirically analyzing some example queries,
we detected two major duplicate sources in our ex-
periments and devised strategies to avoid them. The
first comes from the nature of the rule set. The second
comes from the input data.

First source of duplicates The most prominent exam-
ple of generation of duplicates of the first type is rep-
resented by the symmetric rules which have the same
structure but have the variables positioned at different
locations. We refer with rule names and tables in the
following list to the OWL RL rule set in [13]:

prp-eqp1 and prp-eqp2 from Table 5
cax-eqc1 and cax-eqc2 from Table 7
prp-inv1 and prp-inv2 from Table 5.

We analyze each of these three cases below.
Let SI

eqp be the pre-materialization of the atomic
query T (x,EQP, y). Together, the rules scm-eqp1
and scm-eqp2 render SI

eqp symmetric. Hence the
query

q(x, p2, y) ← T (x, p1, y) ∧ Seqp(p1,EQP, p2)

yields the same results under P (I) as

q(x, p2, y) ← T (x, p1, y) ∧ Seqp(p2,EQP, p1).

Proposition 3 allows Seqp(p1,EQP, p2) in the rewritten
rule prp-eqp1’:

T (x, p2, y) ← T (x, p1, y) ∧ Seqp(p1,EQP, p2)

to be replaced by Seqp(p2,EQP, p1), which is, up to
variable renaming, the rule prp-eqp2’:

T (x, p1, y) ← T (x, p2, y) ∧ Seqp(p1,EQP, p2)

and thus effectively deleting prp-eqp1’ from the
rule set.

Similarly, rules scm-eqc1 and scm-eqc2 render
the results of the pre-materialized query T (x,EQC, y)
symmetric allowing to delete cax-eqc1 or rather its
rewriting cax-eqc1’ in a similar fashion.

Due to the lack of an appropriate rule, the pre-
materialized query T (x,INV, y) need not yield a sym-
metric result, although the intended relation, “being
the inverse of each other”, is symmetric. We can first
observe that Proposition 3 allows us to replace the
rules prp-inv1 and prp-inv2 by their rewritings

T (y, p, x) ← T (x, q, y) ∧ Sinv(p,INV, q)
T (y, p, x) ← T (x, q, y) ∧ Sinv(q,INV, p)

which defuses the idb atom T (q,INV, p) into the
harmless edb Sinv , for which SI

inv contains all answers
to the query T (x,INV, y). Let this new program be
called P ′. Further, let P ′′ be the program where both
rules have been replaced by

T (x, p, y) ← T (x, q, y) ∧ S′
inv(p,INV, q)

with S′I
inv being the symmetric closure of SI

inv . It is
now not difficult to see, that every model of P ′ is
a model of P ′′ and vice versa. In particular the full
materialization P (I) is equal to the full materializa-
tion P ′′(I). Hence we can replace prp-inv1 and
prp-inv2 by one rule under the condition that we
pre-materialize the symmetric closure of T(x,INV, y).

Second source of duplicates The second type of du-
plicate generation comes from the input data which
might contain some triples that make the application
of two different rules perfectly equivalent.

We have identified an example of such a case in the
Linked Life Dataset, which is a realistic data set that
we used to evaluate our approach. In this data set there
is the triple T (SCO,TYPE,TRANS) which states that
the rdfs:subClassOf predicate is transitive.

In this case, during the pre-computation phase the
query T (x,SCO, y) will be launched several times, and
each time the reasoner will trigger the application of
both the rules scm-sco and prp-trp.

However, since the application of these two rules
will lead to the same derivation, the computation is re-
dundant and inefficient. To detect such cases, we apply
a special algorithm when the system is starting up and
initializing the rule set. A complete description of this
algorithm is outside the scope of this paper and we will
simply illustrate the main idea behind it.

Basically, this algorithm compares each rule with
every other rule in order to identify under which con-
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ditions the two will produce the same output to a
given query. For example, the rules scm-sco and
prp-trp will produce the same derivation if (i) the
input contains the triple T (SCO,TYPE,TRANS) and if
(ii) there is a query with SCO as a predicate.

In order to verify that this is the case, the algorithm
checks whether the triple T (SCO,TYPE,TRANS) ex-
ists in the input and whether there is a matching on the
position of the variables in the two rules (if one rule
contains more variables than the other, then the algo-
rithm will substitute the corresponding terms). If such
a matching exists, then the two rules are equivalent. In
our example, the algorithm will find out that the rule
prp-trp is equivalent to scm-sco if we replace ?p
with SCO. Therefore, if there is an input query with
SCO as predicate, the system will execute only one of
the two rules, avoiding in this way a duplicated deriva-
tion.

7. Evaluation

We have implemented our approach in a Java proto-
type called QueryPIE7 and we have evaluated the per-
formance using one machine of the DAS-4 cluster,8

which is equipped with a dual Intel E5620 quad core
CPU of 2.4 GHz, 24 GB of memory and 2 hard disks
of 1 TB each, configured in RAID-0 mode.

To the best of our knowledge, there is not (yet) a
proper benchmark for reasoning over large data sets
that extensively uses all the new features introduced
with the OWL RL language. Therefore, we chose
to evaluate our method using the most common and
large-scale data sets currently available in order to
evaluate how hybrid reasoning would perform on cur-
rent data and realistic queries. Because of this, we use
two data sets as input: LUBM [9], which is one of
the most popular benchmarks for OWL reasoning and
LLD (Linked Life Data),9 which is a curated collection
of real-world data sets in the bioinformatics domain.

LUBM allows us to generate data sets of different
sizes. For our experiments, we generated a data set of
10 billion triples (which corresponds to the generation
of 80000 LUBM universities). The Linked Life Data
data set consists of about 5 billion triples. Both data

7The experimental code is available at: https://github.com/jrbn/
querypie.

8http://www.cs.vu.nl/das4
9http://www.linkedlifedata.com/

Table 3
Execution time of the pre-materialization algorithm compared to a
full closure

Dataset Reasoning time N. itera-
tions

N. derived
triplesOur ap-

proach
Full mate-
rialization

LUBM 1.0 s 4d4h16m 4 390
LLD 16 m 5d10h45m 7 10 millions

sets were compressed using the procedure described
in [21].

The QueryPIE prototype uses six indices stored
alongside with the triple permutations on disk using an
optimized B-Tree data structure. During the reasoning
process, the inferred triples are stored and cached in
the main memory. Furthermore, the content of the pre-
materialization is indexed at every iteration to facili-
cate the retrieval of the lookup function.

The rest of this section is organized as follows. First,
in Section 7.1 we report on a set of experiments to eval-
uate the performance of the pre-materialization phase.
Next, in Section 7.2 we focus on the performance of
the backward-chaining approach and analyze its per-
formance on some example queries.

7.1. Performance of the pre-materialization
algorithm

We launch the pre-materialization algorithm on the
two data sets to measure the reasoning time neces-
sary to perform the partial closure. The results are re-
ported in the second column of Table 3. Our prototype
performs joins between the pre-materialized patterns
when it loads the rules in memory, therefore, we also
include the startup time along with the query runtimes
to provide a fair estimate of the time requested for the
reasoning.

From the results, we notice that the prematerializa-
tion is about three orders of magnitude faster for the
LUBM data set than for LLD. The cause for this dif-
ference is that the ontology of LUBM requires much
less reasoning than the one of LLD in order to be
pre-materialized. In fact, in the first case the pre-
materialization algorithm derives 390 triples, needing
four iterations to reach a fix point. In the other case, the
pre-materialization required 7 iterations and returned
about 10 million triples.

We compare the cost of performing the partial clo-
sure against the cost of a full materialization, which is
currently considered as state of the art in the field of
large scale OWL reasoning. To this end, the closest ap-
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Table 4
List of example queries

ID Dataset Query

Pattern 1 LUBM ?x ?y <http://www.Department0.University0.edu/GraduateCourse0>
Pattern 2 LUBM ?x <lubm:subOrganizationOf> <http://www.University0.edu>
Pattern 3 LUBM <http://.../GraduateStudent124> <lubm:degreeFrom> <http://www.University114.edu>
Pattern 4 LUBM ?x ?y <http://www.Department0.University0.edu/AssistantProfessor0>
Pattern 5 LUBM ?x <lubm:memberOf> <http://www.Department0.University0.edu>
Pattern 6 LUBM ?x <rdf:type> <lubm:Department>
Pattern 7 LLD ?x ?y <lifeskim:mentions>
Pattern 8 LLD ?x <lifeskim:mentions> <http://linkedlifedata.com/resource/umls/id/C0439994>
Pattern 9 LLD <http://.../resource/pubmed/id/15964627> ?x ?y
Pattern 10 LLD ?x ?y <http://purl.uniprot.org/go/0006952>
Pattern 11 LLD ?x ?y <http://linkedlifedata.com/resource/umls/id/C0439994>
Pattern 12 LLD ?x <http://www.biopax.org/release/biopax-level2.owl#NAME> ?y

proach we can use for a comparison is WebPIE [20],
which has demonstrated OWL reasoning up to the pD∗
fragment to a hundred billion triples. Since WebPIE
uses the MapReduce programming model, an execu-
tion on a single machine would be suboptimal. There-
fore, we launched it using eight machines and multi-
plied the execution time accordingly to estimate the
runtime on one machine (the estimation is in line with
the performance of WebPIE which has shown linear
scalability in [20]).

The runtime of the complete materialization per-
formed with this method is reported in the third col-
umn of Table 3. Note that in both cases a com-
plete materialization requires between four and five
days against the seconds or minutes required for our
method. This comparison clearly illustrates the advan-
tage of our approach in terms of pre-materialization
cost. Note, however, that there could be cases where
our approach becomes particularly inefficient if our
backward-chaining algorithm needs to re-derive the
same intermediate triples to answer different schema
patterns.

In any case, the advantage of performing only a pre-
materialization comes at a price: while after a com-
plete materialization reasoning is no longer needed,
our backward-chaining algorithm still has to perform
some inference at query time. The impact of this oper-
ation on the query-time performance is analyzed in the
next section.

7.2. Performance of the reasoning at query time

In order to analyze the performance of reasoning
at query time, we launch some example queries after
computing the closure using our backward-chaining

algorithm to retrieve the results. For this purpose, we
select six example queries for both the LUBM and
LLD data sets reported in Table 4.

While LUBM provides an official set of queries for
benchmarking, there is unfortunately no official set of
queries that can be used for benchmarking the perfor-
mance on the LLD data set. Therefore, we took some
queries that are reported on the official web page of the
LLD data set and modified them so that they trigger
different types of reasoning.

These queries were selected according to the follow-
ing criteria:

– Number of results: We selected queries that return
a number of results that varies from no results to
a large set of triples;

– Reasoning complexity: Some queries in our ex-
ample set require no reasoning to be answered, in
contrast other queries generate a very large proof-
tree;

– Amount of data processed: In order to answer a
query, the system might need to access and pro-
cess a large set of data. We selected queries that
read and process a variable amount of data to ver-
ify the impact of I/O on the overall performance.

We perform a number of experiments to analyze
three aspects of the performance of our algorithm dur-
ing query time: the absolute response time, the reduc-
tion of the proof tree, and the overhead induced by rea-
soning during query-time. Each of these aspects is an-
alyzed below.

7.2.1. Absolute response time
We report in Table 5 the execution times obtained

launching the selected example queries in Table 4. In



J. Urbani et al. / Hybrid reasoning on OWL RL 443

Table 5
Runtime of the queries in Table 4 on the LUBM and LLD data sets

Q. Runtime (ms) Derived triples I/O access
Cold Warm Total Output # MB

1 60.43 6.39 5 5 43 8
2 1099.28 129.31 463 239 12 205
3 49.18 6 3 1 18 5
4 73.06 11.17 37 29 86 8
5 118.71 13.97 1480 719 18 8
6 4026.27 2590.27 1599987 1599987 2 12
7 228.26 214.57 0 0 670 23
8 23.74 6.29 4466 4466 1 4
9 7064.04 609.4 140 128 3540 105

10 2535.38 1103.48 28446 26860 14372 337
11 2613.37 1883.14 8546 4504 15128 64
12 2334.70 2059.20 1187944 1187944 1 10

the second and third columns we report both the cold
and warm runtime.10 With cold runtime, we identify
the runtime that is obtained by launching the query
right after the system has started. Since the data is
stored on disk, we also measure with the cold runtime
the time to read the data from disk. On the other side,
the warm runtime measures the average response time
of launching the same query thirty more times. Dur-
ing this execution the data is already cached in mem-
ory and the Java VM has already initialized the inter-
nal data structures, so the warm runtime is significantly
faster than the cold one.

The fourth and fifth column, respectively, report the
total number of derivations that were inferred during
the execution of the query, and the number of triples
returned to the user.

The sixth and seventh column report the number
of data lookups required to answer the query and the
amount of data that is read from disk. These two num-
bers are important for estimating the impact of reason-
ing at query time. While querying without reasoning
only requires a data lookup, the backward-chaining al-
gorithm might require to access the database multiple
times. For example, in order to answer query 11 the
program had to access the data indices about 15000
times.

Using the results reported in Table 5, we make sev-
eral observations: First, we notice that the cold run-
time is in general significantly higher than the warm

10Please note that the reported runtime does not include the time
required to compress/decompress the numerical terms to their string
counterpart.

runtime between one and two orders of magnitude.
This is primarily due to the time consuming I/O ac-
cess to disk especially because reasoning requires to
read in different locations of the data indices. There-
fore the system is required to read several blocks of the
B-Tree from the disk. For most of the queries, the I/O
access dominates the execution time. The worst case
presents query 10 where the program reads from disk
about 337 MB of data. We conclude from these results
that the performance of the program is essentially I/O
bounded, if the data is stored on disk. After the data is
loaded in memory, the execution time drops in half of
the experiments by a factor between 6.5 and 11.6 and
in the other half of the experiments by a factor between
1.1 and 3.8.

Another factor that affects the performance is the
number of inferred triples that are calculated during
the execution of the query. In fact, we notice that the
absolute performance is lower in case a large num-
ber of triples is either inferred or retrieved from the
database. This behavior is due to the fact that the al-
gorithm needs to temporarily store these triples as it
must consider them in each repeat-loop pass until the
closure is reached. This means that these triples must
be stored and indexed to be retrieved during the fol-
lowing iterations and the response time consequently
increases.

Summarizing our analysis, we make the following
conclusions: (i) the runtime is influenced by several
factors among which the most prominent is the amount
of I/O access that is requested to answer the query (this
number is proportional to the size of the proof tree)
and the number of derivations produced. (ii) There is
a large difference in the runtime observed in our ex-
periments. In the worst case the absolute runtime is in
the range of a few seconds, while in the best cases the
performance is in the order of dozens of milliseconds.
However, even in the worst case the system can be in-
teractively used since few seconds are acceptable in
most scenarios.

In Section 7.2.3 we compare the response times
to those without reasoning in order to have a better
overview of the overall performance and understand
what the overhead induced by reasoning at query time
is.

7.2.2. Reduction of the proof tree
Our approach relies on the pre-materialization of

some selected queries for a variety of purposes such as
performing efficient sideways information passing, ex-
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Table 6
Estimation of the reduction of the proof tree caused by the pre-
materialization algorithm

Q. # Leaves proof tree Reduction
ratioW/o pre-comp. Our approach

1 16 4 4.0
2 2 1 2.0
3 12 3 4.0
5 26 7 3.7

cluding rules that derive duplicates, and to reduce the
size of the proof tree during query-time.

In this section, we evaluate the effective reduction
of proof-tree size obtained by avoiding performing in-
ference on the pre-materialized patterns. However, we
cannot completely ignore the pre-materialization since
some optimizations (e.g. the pruning strategy) are nec-
essary to avoid an explosion of the proof-tree. To over-
come this problem, we have manually analyzed the ex-
ecution of the LUBM queries with our prototype on a
much smaller data set (of about 100 thousand triples)
and manually constructed the proof trees simulating
the case without pre-materialization (note that we ex-
cluded queries 4 and 6 since in these cases reasoning
did not contribute to derive new answers).

In principle, we identify for each query those
rules which produce its answers and for each pre-
materialized body atom, we add the corresponding
branch that was generated when that query was calcu-
lated during the pre-materialization phase.

We report the results of this analysis in Table 6. The
last column reports the obtained reduction ratio and
shows that the number of leaves shrinks between two
and four times due to our pre-materialization.

The results delivered by this method of evaluation
must be seen as an underestimate, because we did not
deactivate all the optimizations, and therefore in re-
ality the gain is even higher than the one calculated.
Nevertheless, this shows that our pre-calculation is in-
deed effective. For a very small cost in both data space
and upfront computation time, we substantially reduce
the proof tree. Apparently, the pre-materialization pre-
cisely captures small amounts of inferences that con-
tribute substantially to the reasoning costs because
they are being used very often.

7.2.3. Overhead of reasoning during query-time
While we are able to significantly reduce the size

of the proof tree and apply other optimizations to fur-
ther reduce the computation, we still have to perform
some reasoning during the execution of a query. It is

important to evaluate what the cost for the remain-
ing reasoning is when we compare our approach to a
full-materialization approach (which is currently the
de-facto technique for large scale reasoning), where a
large pre-materialization is performed so that during
query time reasoning is avoided altogether.

To this end, we launch a number of experiments ac-
tivating different types of reasoning at query time and
report the warm runtime in Table 7.

We proceed as follows: we first launch the queries,
deactivating all rules at query time, and state their ex-
ecution time in the first column of the table (the ti-
tle “No Ins.” indicates no insertion). We then reissue
the queries activating only the RDFS rules (in the third
column), then the pD∗ rules and finally the OWL RL
ones.

The results reported under the “Ins.” columns (“Ins.”
means insertion) are calculated differently. In fact, in
the previous experiments the number of retrieved re-
sults for a specific query might differ because we
changed the rule set and this can influence the gen-
eral performance. To maintain the number of results
constant, we repeat the same experiment adding to the
knowledge base all the possible results so that even if
reasoning is not activated the same number of results
is retrieved.

From the results presented in the table, we notice
that in both cases (“Ins” and “No Ins.”) the response
time progressively increases as we include more rules.
This behavior is expected since more computation
must be performed as we add new rules. However, in
some cases (like query 12) there is a significant differ-
ence even if the query does not require the application
of any rule. The difference is due to the cost of stor-
ing the results into main memory during the query ex-
ecution to ensure the completeness of the backward-
chaining algorithm. This operation is clearly a non-
negligible contributor to the overall performance.

Furthermore, we notice in our experiments that as
the size of the proof tree increases, so does the poten-
tial derivation of duplicates due to the potential higher
number of combinations. In Section 6.1, we tackled
this problem by proposing some initial algorithms to
limit the number of duplicates. However, our work in
this respect is still preliminary and further research on
this particular aspect might become necessary in order
to scale not only in terms of input size but also in terms
of reasoning complexity.

Finally, we can compare the response times reported
in the third column with the ones of the penultimate
column to compare the performance of the reason-
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Table 7
Runtime (in ms.) of the example queries using different sets of rules

Q. Only lookup RDFS pD* OWL RL
No Ins. Ins. No Ins. Ins. No Ins. Ins. No Ins. Ins.

1 0.81 0.83 1.88 1.79 5.4 6.13 6.39 5.89
2 0.82 1.51 1.56 2.83 128.78 131.05 129.31 138.53
3 0.82 0.83 3.55 2.72 5.50 4.51 6 4.83
4 0.88 0.94 2.01 2.32 10.06 9.48 11.17 10.63
5 1.5 1.61 7.01 4.95 13.58 10.52 13.97 10.8
6 405.42 418.38 2605.68 2630.08 2608.20 2619.17 2590.27 2618.66
7 0.77 0.79 176.19 1.26 203.23 17.93 214.57 16.78
8 1.96 1.89 6.23 6.34 6.39 6.46 6.29 6.36
9 0.84 0.90 262.7 46.53 590.34 277.55 609.4 277.02

10 7.90 7.29 212.57 115.16 903.31 814.95 1103.48 1053.33
11 1.85 1.93 200.55 8.35 1695.73 1468 1883.14 1529.64
12 338.14 337.41 2129.49 2044.34 2055.02 2077.55 2059.2 2062.65

ing at query time of our approach against traditional
full materialization. In fact, because the input data al-
ready contains the whole derivation, a single lookup
can be used to estimate the cost that we would have
to pay if all the inferences were pre-materialized be-
forehand. From the results we notice that on average
the response time is between one and three orders of
magnitude slower. In case the query needs to process
and/or return many triples, the difference is certainly
significant. However, the response time is still in the
order of the hundreds of milliseconds, from the user
perspective, the difference is less noticeable and more
easily tolerated especially considering that a large pre-
computation phase is no longer needed.

Summarizing, we observe in our evaluation that
fairly complex reasoning can be performed rather
quickly (in a matter of few seconds in the worst case)
on a small set of realistic queries and on large data.
However, the reader should keep in mind that there
could be worst-case scenarios (which do not seem to
appear on current data) where the performance is sig-
nificantly worse, and this is mainly due to the theo-
retical high worst-case complexity that is inherently
present in the reasoning process.

8. Related work

Applying rules with a top-down method like back-
ward-chaining is a well-known technique in rule-based
languages like Datalog [6]. Datalog is a generic and
powerful language that can handle an arbitrary num-
ber of rules using predicates of any arity. In our work,
we optimized the implementation to exploit the char-

acteristics of RDF data and to execute a standard rule
set, ignoring features of Datalog that are not necessary
to execute the OWL rules. Therefore, and since there
is, to the best of our knowledge, no Datalog engine
that can load billions of triples, a direct comparison be-
tween our work and similar Datalog engines such as
IRIS [5] or Jena [12] is not possible.

The backward-chaining algorithm that we present in
Section 4 is inspired by the QSQ and the semi-naive
evaluation algorithms which are well-known tech-
niques in logic programming. A similar termination
condition to ours is employed also in the RQA/FQI
algorithm [14].

In our approach, we exploit the availability of the
pre-computation using a sideways information passing
(SIP) technique [3] during the execution of the rules.
This technique is used in other approaches like in the
magic set rewriting algorithm [2]. However, while the
magic set algorithm uses SIP at compile-time to con-
struct rules which are later used in a bottom-up fash-
ion, we employ this technique at runtime to execute
queries in a top-down manner. Also, SIP strategies are
similarly used in generic query processing to prune ir-
relevant results. In [10] the authors propose two adap-
tive SIP strategies where information is passed adap-
tively between operators that are executed in paral-
lel.

A similar technique to our method is memoing [26].
Memoing is a technique where queries that are fre-
quently requested are cached to improve the perfor-
mance. The difference between memoing and our
work is that in memoing caching is dynamic, while
in our approach caching is static: we manually select
which queries that are to be cached.
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Some RDF Stores support various types of in-
ference. 4store [17] applies the RDFS rules with
backward-chaining. Virtuoso [8] supports the execu-
tion of few (but not all) OWL RL rules. BigOWLIM
[4] is an RDF store that supports the OWL 2 RL rule
set by performing a full materialization when the data
is being loaded. Another database system that per-
forms OWL RL reasoning in a similar way is Oracle:
In [11] the authors describe their approach reporting
the performance of the inference over up to seven bil-
lion triples. An approach in which the OWL RL rules
are used is presented in [18] where the authors have
encoded OWL RL reasoning in the context of embed-
ded devices, and therefore optimizing the computation
for devices with limited resources.

Some work has been presented to distribute the
reasoning process using supercomputers or clusters
of machines. In our previous work we used the
MapReduce programming model to improve the scal-
ability [20]. In [27], the authors implement RDFS
reasoning using the Opteron blade cluster. To the
best of our knowledge, none of the mentioned ap-
proaches supports a similarly large subset of OWL RL
rules.

Implicit information can be derived not only with
rule-based techniques. In [15], the authors focus on on-
tology based query answering using the OWL 2 QL
profile [13] and present a series of techniques based on
query rewriting to improve the performance. While we
demonstrate inference over a much larger scale, a di-
rect comparison of our technique with this work is dif-
ficult since both the language and reasoning techniques
are substantially different.

A series of work has been done on reasoning using
the OWL EL profile. This language is targeted to do-
mains in which there are ontologies with a very large
number of properties and/or classes. [7] presented an
extensive survey of the performance of OWL EL rea-
soners analyzing tasks like classification or consis-
tency checking. Again, the different reasoning tasks
and considered language makes a direct comparison
difficult for our approach.

9. Conclusions

Until now, all inference engines that can handle rea-
sonably expressive logics over very large triple stores
(in the orders of billion of triples) have deployed full
materialization. In the current paper we have broken

with this mold, showing that it is indeed possible to do
efficient backward-chaining over large and reasonably
expressive knowledge bases.

The key to our approach is to pre-compute a small
number of inferences which appear very frequently
in the proof tree. This of course re-introduces some
amount of pre-processing, but this computation is mea-
sured in terms of minutes, instead of the hours needed
for the full closure computation.

By pre-materializing part of the inferences up-
front instead of during query-time, we are able to
introduce a number of optimizations which exploit
the pre-computation to improve the performance dur-
ing query-time. To this end, we adapted a standard
backward-chaining algorithm like QSQ to our use case
exploiting the parallelization of current architectures.

Since our approach deviates from standard practice
in the field, we have formalized the computation us-
ing the theory of deductive databases and extensively
analyzed and proved its correctness.

We have implemented our method in a proof-of-
concept Java prototype and analyzed the performance
over both real and artificial data sets of five and ten
billion triples using most of the OWL RL rules. The
performance analysis shows that the query response-
time for our approach is in the low number of mil-
liseconds in the best cases, and increasing up to a few
seconds as the query increases in its complexity. The
loss of response time is offset by the great gain in
not having to perform a very expensive computation
of many hours before being able to answer the first
query.

Obvious next steps in future work would be to in-
vestigate how our approach can further scale in terms
of data size especially when including those rules from
OWL 2 RL which we have not considered so far. We
also need a deeper understanding of which and how
properties of the knowledge base influence both the
cost of the limited forward computation and the size
of the inference tree. It is worth to explore whether re-
lated techniques such as ad-hoc query-rewriting like
the one presented in [15] can be exploited to further
improve the performance.

To the best of our knowledge, this is the first time
that complex backward-chaining reasoning over real-
istic OWL knowledge bases in the order of ten billion
triples has been realized. Our results show that this ap-
proach is feasible, opening the door to reasoning over
much more dynamically changing data sets than what
was possible until now.
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