Hybrid reasoning on OWL RL

Abstract. Both materialization and backward-chaining as different modes of performing inference have complementary advantages and disadvantages. Materialization enables very efficient responses at query time, but at the cost of an expensive up front closure computation, which needs to be redone every time the knowledge base changes. Backward-chaining does not need such an expensive and change-sensitive pre-computation, and is therefore suitable for more frequently changing knowledge bases, but has to perform more computation at query time.

Materialization has been studied extensively in the recent semantic web literature, and is now available in industrial-strength systems. In this work, we focus instead on backward-chaining, and we present a general hybrid algorithm to perform efficient backward-chaining reasoning on very large RDF data sets.

To this end, we analyze the correctness of our algorithm by proving its completeness using the theory developed in deductive databases and we introduce a number of techniques that exploit the characteristics of our method to execute efficiently (most of) the OWL RL rules. These techniques reduce the computation and hence improve the response time by reducing the size of the generated proof tree and the number of duplicates produced in the derivation.

We have implemented these techniques in an experimental prototype called QueryPIE and present an evaluation on both realistic and artificial data sets of a size that is between five and ten billion of triples. The evaluation was performed using one machine with commodity hardware and it shows that (i) with our approach the initial pre-computation takes only a few minutes against the hours (or even days) necessary for a full materialization and that (ii) the remaining overhead introduced by reasoning still allows atomic queries to be processed with an interactive response time. To the best of our knowledge our method is the first that demonstrates complex rule-based reasoning at query time over an input of several billion triples and it takes a step forward towards truly large-scale reasoning by showing that complex and large-scale OWL inference can be performed without an expensive distributed hardware architecture.

1. Introduction

The amount of RDF data available on the Web calls for RDF applications that can process this data in an efficient and scalable way.

One of the advantages of publishing RDF data is that applications are able to infer implicit information by applying a reasoning algorithm on the input data. To this end, a predefined set of inference rules, which is complete w.r.t. some underpinning logic, can be applied in order to derive additional data.

Several approaches that perform rule-based inference were presented in the literature [11,20,27] and demonstrated reasoning upon several billion of triples. These methods apply the rules in a forward-chaining fashion, so that all the possible derivations are produced and stored together with the original input.
While these methods exhibit good scalability because they can efficiently exploit computational parallelism, they have several disadvantages which compromise their use in real-world scenarios. First, they cannot efficiently deal with small incremental updates since they have to compute the complete materialization anew. Second, they become inefficient if the user is only interested in a small portion of the entire input because forward-chaining needs to calculate all derivations.

Unlike forward-chaining, backward-chaining applies only inference rules depending on a given query. In this case, the computations required to determine the rules that need to be executed often become too expensive for interactive applications. Thus, backward-chaining has until now been limited to either small data sets (usually in the context of expressive DL reasoners) or weak logics (RDFS inference).

In this paper, we propose a method which materializes a fixed set of selected queries, before query time, while applying backward chaining during query time. This hybrid approach is a trade-off between a reduction in rule applications at query time and a small, query independent computation of data before query time. Our backward-chaining algorithm exploits the parallel computing power of modern architectures and uses at query time a partial materialization of some selected queries to reduce the computation.

We will show that our backward chaining algorithm is correct, i.e. it terminates, is sound and complete. We shall argue that the correctness is not dependent on a particular rule set but holds for any Datalog program.

For the implementation and evaluation, however, we apply our method considering the semantics of the OWL RL fragment, which is one of the most recently standardized OWL profiles designed to work on a large scale.

To this end, we have implemented the backward-chaining algorithm using the results of the pre-materialized queries in an experimental prototype called QueryPIE and tested the performance using artificial data. In Section 8 we report on related work. Finally, Section 9 concludes and gives directions for future work.

2. Preliminaries

In this section, we set out notational conventions and briefly recall some well-known notions from Database theory, where we mainly follow [1, Chapter 12].

The algorithms we present run on Datalog programs, since the OWL RL inference rules are formulated in Datalog style; therefore most rules of our selected rule set, with a few exceptions (cf. Section 6, On the implementation of RDF lists), can be trivially rendered into a Datalog program.

Throughout this paper, we use abbreviations to indicate well-known URIs for reasons of space. In our notations, we use as a convention fixed-width characters to denote constant terms (e.g. SPO) as well as italics for Datalog variables and predicate names (e.g. a or T). Note that in Sparql [16] and the official OWL RL documentation variables are indicated with a preceding “?” (e.g. ?a).

For two functions \(f : A \rightarrow B \) and \(g : B' \rightarrow C \) with \(B \subseteq B' \) we denote with \(g \circ f \), pronounced \(g \) after \(f \), the function \(A \rightarrow C : x \mapsto g(f(x)) \). For a set of

\(^1\)Note that by excluding some rules our approach is incomplete w.r.t. the official OWL RL specification.

\(^2\)Table 1 reports a list of all the abbreviations used in this paper.
functions $G := \{ g \mid g : B_0 \longrightarrow C_0 \}$ with $B \subseteq B_0$, for all $g \in G$ we define $G \circ f := \{ g \circ f \mid g \in G \}$.

In Datalog, a signature SIG is a finite set of symbols which is the disjoint union of the set CONS of constants and the set PRED of predicate symbols. Each predicate symbol is associated with its arity, a positive natural number. A database \mathcal{D} for SIG is a pair consisting of a finite set $\text{dom} \mathcal{D}$, the domain, and an interpretation function \mathcal{I} whose domain is SIG.

If $R \in \text{PRED}$ is an n-ary predicate symbol, then R^n, where $R^n \subseteq (\text{dom} \mathcal{D})^n$, denotes the n-ary relation named R in the database \mathcal{D}. If $c \in \text{CONS}$ then $c^n \in \text{dom} \mathcal{D}$.

For our purposes, we assume $\text{CONS} = \text{dom} \mathcal{D}$ and $c^n = c$ for all $c \in \text{CONS}$.

With VAR we denote a countably infinite set of variables where $\text{VAR} \cap \text{SIG} = \emptyset$. Thus, the set of all terms is $\text{TERM} = \text{VAR} \cup \text{CONS}$. For every term tuple t we denote with $\text{Var}(t)$ the set of all variables in t.

If $R \in \text{PRED}$ is an n-ary predicate symbol and \bar{t} is an n-ary term tuple, then $R(\bar{t})$ is called atom. An atom $R(\bar{t})$ is called ground atom if $\bar{t} \subseteq \text{CONS}$. If \mathcal{J} is a database over SIG and $R \in \text{PRED}$ we write $R(\bar{a}) \in \mathcal{J}$ if $R(\bar{a})$ is a ground atom and $\bar{a} \in R^3$. We continue Var on atoms by setting $\text{Var}(R(\bar{t})) := \text{Var}(\bar{t})$ for every atom $R(\bar{t})$.

A substitution is a mapping $\theta : V \longrightarrow \text{TERM}$ where $V \subseteq \text{VAR}$. The domain V of θ is also denoted by $\text{dom} \theta$. We call the substitution θ assignment, if $\theta(V) \subseteq \text{CONS}$ and θ is called variable renaming if $\theta(V) \subseteq \text{VAR}$ and θ is injective. $\theta_x : \emptyset \longrightarrow \emptyset$ is the empty substitution. Every substitution θ has a continuation $\theta(t)$ on terms, where $\theta(t) = \theta(t)$ if $t \in V$ and $t \in \mathcal{I}$. Henceforth, we will denote θ but always implicitly refer to its continuation θ. Similarly we apply substitutions or rather their continuations to term tuples $\theta(t_1, \ldots, t_n) := (\theta(t_1), \ldots, \theta(t_n))$ and atoms $\theta(R(\bar{t})) := R(\theta(\bar{t}))$.

We allow ourselves to represent a substitution θ as a set $\{ t_0/t_1 \mid t_0 \in \text{dom} \theta \land \theta(t_0) = t_1 \}$. The set-representation of θ_x is simply \emptyset.

Using substitutions as results for database look-ups is not unusual and joins (\forall) over sets of substitutions are particularly used in SPARQL [16]. To define joins in this way, we need the following notions: A substitution θ_0 is compatible with a substitution θ_1 if $\theta_0(t) = \theta_1(t)$ for all $t \in \text{dom} \theta_0 \cap \text{dom} \theta_1$. For each pair of compatible substitutions θ_0, θ_1 we set $\theta_0 \cup \theta_1$ to be the substitution which corresponds to the union of their set-representations. θ_x is compatible with every substitution θ and is neutral in the sense that $\theta_x \cup \theta = \theta \cup \theta_x = \theta$. For sets Θ_0 and Θ_1 of substitutions we define $\Theta_0 \times \Theta_1 := \{ \theta_0 \cup \theta_1 \mid \theta_0 \in \Theta_0 \text{ compatible with } \theta_1 \in \Theta_1 \}$.

Example 1. As an example of a join between substitutions, consider the rule (cax-sco)

$$
T(x, \text{TYPE}, y) \leftarrow T(x, \text{TYPE}, y), T(y, \text{SCO}, z)
$$

and let J, B, S, P stand for John, Brother, Sister and Person. We calculate the join of the two sets of substitutions where the first one can be considered to be the result of the query $T(x, \text{TYPE}, y)$ and the second one to be the result of $T(y, \text{SCO}, z)$ respectively:

$$
\{ \{ x/J, y/B \} \} \times \{ \{ y/S, z/P \} \} = \{ \{ x/J, y/B, z/P \} \}
$$

If the resulting substitution is applied to $T(x, \text{TYPE}, z)$, we obtain from John being a Brother and Brothers and Sisters being Persons that John is of type Person.

Let $R(t_0)$ and $R(t_1)$ be two atoms with $\text{Var}(t_0) \cap \text{Var}(t_1) = \emptyset$. A unifier for $R(t_0)$ and $R(t_1)$ is a substitution $\theta : (\text{Var}(t_0) \cup \text{Var}(t_1)) \longrightarrow (t_0 \cup t_1)$ such that $\theta(R(t_0)) = \theta(R(t_1))$. A most general unifier (MGU) of two atoms $R(t_0)$ and $R(t_1)$ is a unifier θ for $R(t_0)$ and $R(t_1)$ such that for each unifier θ' of $R(t_0)$ and $R(t_1)$ there is a substitution σ with $\theta' = \sigma \circ \theta$. It is decidable whether or not a unifier for two given atoms exists. If it exists, an MGU exists and can be computed.

A Datalog query is an expression $q(t_0) \leftarrow R_1(t_1) \land \cdots \land R_n(t_n)$ where t_0 is a term tuple, $R_i(t_i)$ is an atom for each $i \in \{ 1, \ldots, n \}$ and $\text{Var}(t_0) \subseteq \bigcup_{1 \leq i \leq n} \text{Var}(t_i)$. We omit t_0 from $q(t_0)$ if it is clear or not of interest. We call $q(\bar{a})$ an answer to $q(t_0)$ w.r.t. \mathcal{J} if there is an assignment β with $\beta(t_0) = \bar{a}$ and for all $i \in \{ 1, \ldots, n \}$ we have $\beta(t_i) \in R_i^3$. The set of all answers to $q(t_0)$ w.r.t. \mathcal{J} is denoted as $q(t_0)^3$.

We call a query atomic if $n = 1$ and will refer to it by its sole atom $R_i(t_i)$. Answers in \mathcal{J} to an atom query $R_i(t_i)$ are ground atoms $R_i(\bar{a})$ in \mathcal{J} such that t_i and \bar{a} unify.

Let t and t' be term tuples of the same length. Then t is an instance of t', $t \subseteq t'$, if there is a substitution σ such that $\sigma(t') = t$. Additionally, if $R(t)$ and $R(t')$ are atoms we define $R(t) \subseteq R(t')$ and say $R(t')$ is at least as general as $R(t)$ if $t \subseteq t'$. $R(t)$ equals $R(t')$ up to variable renaming iff $R(t) \equiv R(t')$ and $R(t') \equiv R(t)$.

Example 2. $(x, \text{TYPE}, \text{SYM}) \subseteq (x, \text{TYPE}, y)$ where x, y are variables and TYPE and SYM are the abbreviations of Table 1. Also $(x, \text{TYPE}, y) \subseteq (y, \text{TYPE}, x)$.

3In literature, substitutions are used in post-fix notation, hence the condition for being an MGU is denoted there as $\theta' = \theta \sigma$.
We will rarely mention the signature since \(\text{SIG} \) and in the body of \(q \) that predicate and constant symbols occurring in \(P \) called extensional database predicate finite set of Datalog rules. A predicate symbol occurs in \(P \).

Table 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full text</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>rdf:type</td>
</tr>
<tr>
<td>SCO</td>
<td>rdfs:subClassOf</td>
</tr>
<tr>
<td>SPO</td>
<td>rdfs:subPropertyOf</td>
</tr>
<tr>
<td>EQC</td>
<td>owl:equivalentClass</td>
</tr>
<tr>
<td>EQP</td>
<td>owl:inverseOf</td>
</tr>
<tr>
<td>INV</td>
<td>owl:SymmetricProperty</td>
</tr>
<tr>
<td>SYM</td>
<td>owl:TransitiveProperty</td>
</tr>
</tbody>
</table>

A Datalog rule has the form \(R_0(t_0) \leftarrow R_1(t_1) \land \cdots \land R_n(t_n) \) such that for each \(i \in \{0, \ldots, n\} \), \(R_i(t_i) \) is an atom and \(\text{Var}(t_i) \subseteq \bigcup_{1 \leq i \leq n} \text{Var}(t_i) \). We call \(R_0(t_0) \) head atom and all others body atom. With \(\text{Var}(r) \subseteq \text{VAR} \) we denote the set of all variables occurring in a Datalog rule \(r \). A Datalog program is a finite set of Datalog rules. A predicate symbol occurring in the head of a rule \(r \in P \) is called intensional database predicate (idb) for \(P \), all other predicates are called extensional database predicate (edb) for \(P \).

For any concrete given Datalog program \(P \) or Datalog query \(q \) which is applied to \(\mathcal{J} \), we always assume that predicate and constant symbols occurring in \(P \), and in the body of \(q \) respectively, are elements in SIG. We will rarely mention the signature since SIG is for a given database and program implicitly determined.

In our formalization, we denote the immediate consequence operator of a Datalog program \(P \) as \(T_P \). \(T_P \) maps a database \(\mathcal{J} \) to the database \(T_P(\mathcal{J}) \), where \(T_P(\mathcal{J}) \) is \(\mathcal{J} \) extended by all facts that can be non-recursively, i.e. immediately in one step, inferred from facts in \(\mathcal{J} \) under the program \(P \). More formally, for each rule \(r \in P \) let \(q_r(t_0) \leftarrow R_1(t_1) \land \cdots \land R_n(t_n) \) where the \(R_i(t_i) \) are the body atoms of \(r \). For each \(R \in \text{PRED} \) let \(R \) be the set of rules whose predicate symbol in the head atom is \(R \). We set \(T_P^\mathcal{J}(\mathcal{J}) := R^\mathcal{J} \cup \bigcup_{R \in \text{PRED}} R^\mathcal{J} \). For every ground atom \(R(\theta) \) and an assignment \(\beta : \text{Var}(\mathcal{J}) \rightarrow \text{dom} \mathcal{J} \), such that \(\ell(v) = \beta(\text{Var}(\mathcal{J})) \) and all other \(R(\theta) \) is a database and \(\mathcal{J} \) a database and \(R(\mathcal{J}) \) a ground atom in \(P(\mathcal{J}) \). We call the pair \((G, \ell) \) a Datalog proof-tree for \(R(\mathcal{J}) \) in \(P(\mathcal{J}) \) if all of the following is satisfied: \(G = (V, E) \) is a tree with a finite set \(V \) and \(\ell : V \rightarrow \text{Atom} \) is a function, the labeling function, where \(\text{Atom} \) is the set of all ground atoms over SIG. Furthermore the root \(v_0 \in V \) is labelled with \(R(\mathcal{J}) \), i.e. \(\ell(v_0) = R(\mathcal{J}) \), and for every leaf \(v \in V \) we have \(\ell(v) \) is a ground atom in \(\mathcal{J} \). For every vertex \(v \in V \) which is not a leaf there is a rule \(r := R_0(t_0) \leftarrow R_1(t_1) \land \cdots \land R_n(t_n) \) and an assignment \(\beta : \text{Var}(\mathcal{J}) \rightarrow \text{dom} \mathcal{J} \), such that \(\ell(v) = \beta(\text{Var}(\mathcal{J})) \) and there is a bijection \(\epsilon : E(v) \rightarrow B \) between the successors of \(v \) and the set of body atoms \(B := \{ R_i(t_i) \mid 1 \leq i \leq n \} \) of \(r \) such that \(\ell(v') = \beta \circ \epsilon(v') \) for all \(v' \in E(v) \).

A Datalog proof-tree thus represents a certain choice of rules whose application leads from atoms in \(\mathcal{J} \) to (possibly) derived atoms in \(P(\mathcal{J}) \). A proof by induction upon \(m < \omega \) shows that every atom in \(\mathcal{T}_P^\mathcal{J}(\mathcal{J}) \) has a Datalog proof-tree of height at most \(m \).

Finally, we define the function \(\text{lookup} \): For an atomic query \(Q = R(l) \) and a given database \(\mathcal{J} \), or rather a given set of atoms \(\mathcal{J} \), we define \(\text{lookup}(R(l), \mathcal{J}) \) to be the set \(\{ \theta : \text{Var}(\mathcal{J}) \rightarrow \text{dom} \mathcal{J} \mid R(\theta(l)) \in \mathcal{J} \} \) of substitutions.

Example 3. For any ground atom \(R(\mathcal{J}) \) we have

1. \(\text{lookup}(R(\mathcal{J}), \mathcal{J}) = \emptyset \) if \(R(\mathcal{J}) \notin \mathcal{J} \)
2. \(\text{lookup}(R(\mathcal{J}), \mathcal{J}) = \{ \theta_e \} \) if \(R(\mathcal{J}) \in \mathcal{J} \).
Hence \(\text{lookup}(R_0(t_0), \mathcal{J}) \cong \text{lookup}(R_1(t_1), \mathcal{J}) \) is the set containing all assignments \(\theta : (\text{Var}(t_0) \cup \text{Var}(t_1)) \rightarrow \text{dom} \mathcal{J} \) which are assignments for both atoms so that \(R_0(\theta(t_0)) \in \mathcal{J} \) and \(R_1(\theta(t_1)) \in \mathcal{J} \).

3. Hybrid reasoning: Overview

In principle, there are two different approaches to infer answers in a database with a given rule set: One is to compute the complete extension of a database under some given rule set before query time and the other is to infer only the necessary entries needed to yield a complete answer from the rule set on-demand, i.e. at query time.

The former’s advantage is that querying reduces, after the full materialization, to a mere lookup in the database and is therefore faster than the latter approach, where for each answer a proof tree has to be built.

If, however, the underlying database changes frequently, then a complete materialization before query time has a severe disadvantage as the whole extension must be recomputed with each update. In this case, an on-demand approach has a clear advantage.

Traditionally, each approach has been associated with an algorithmic method to retrieve the results: Backward-chaining was specifically aimed at on-demand retrieval of answers, only materializing as little information as necessary to yield a complete set of answers, while forward-chaining applies the rules of the given rule set until the closure is reached.

The approach presented in this paper positions itself in between: the answers for a carefully chosen set of queries are materialized before query time and added to the database. Answers to queries later posed by the user are inferred at query time.

Since we want to avoid complete materialization of the database, and therefore are only interested in specific answers, we use backward-chaining in both instances: we use backward-chaining to materialize only the necessary information for the carefully chosen queries which we then add to the database, and we use backward-chaining to answer the user queries.

To this end, we introduce a backward-chaining algorithm which exploits parallel computing power, and a possible pre-materialization to improve the performance. For example, if one of these pre-materialized queries is requested at query-time, then the backward-chaining algorithm does not need to build the proof tree, but a lookup suffices. This optimization becomes particularly effective if patterns are pre-materialized that frequently appear during reasoning at user query time.

To give an idea how this works, consider the following example.

Example 4. Consider the two following rules from the OWL RL rule set:

\[
\begin{align*}
T(a, p1, b) & \leftarrow T(p, \text{SPO}, p1) \land T(a, p, b) \\
T(x, \text{SPO}, y) & \leftarrow T(x, \text{SPO}, w) \land T(w, \text{SPO}, y)
\end{align*}
\]

where \(a, b, p, p1, x, y, w \) represent generic variables, and \(\text{SPO} \) is a constant term.

Assume we want to suppress the unfolding of all atoms of the form \(T(x, \text{SPO}, y) \), modulo variable renaming. Using Datalog to implement these rules in a program, we can replace each atom by some new atom, say \(S \), that never appears in the head of the rules. After the substitution, the previous program would become:

\[
\begin{align*}
T(a, p1, b) & \leftarrow S(p, \text{SPO}, p1) \land T(a, p, b) \\
T(x, \text{SPO}, y) & \leftarrow S(x, \text{SPO}, w) \land S(w, \text{SPO}, y)
\end{align*}
\]

In general, the two programs do not yield the same answers for \(T \) anymore. To restore this equality for a given database \(\mathcal{J} \) we need to calculate all \("T(x, \text{SPO}, y)" \)-triples derivable from \(\mathcal{J} \) and add them to the auxiliary relation named \(S \) in \(\mathcal{J} \). In our example this would mean that \(S \) contains the transitive closure of all \("T(x, \text{SPO}, y)" \)-triples which are inferable under the rule set in \(\mathcal{J} \).

Note that \("T(x, \text{SPO}, y)" \)-triples can also be derived with the first rule if \(p1 = \text{SPO} \). Furthermore, if \(S \) indeed contains the transitive closure of all \("T(x, \text{SPO}, y)" \)-triples the second rule can be rewritten as \(T(x, \text{SPO}, y) \leftarrow S(x, \text{SPO}, y) \).

In the following, we discuss the backward-chaining algorithm used in our approach. Then, we will show that our method to replace the original rules with others is, after a small pre-computation, harmless in the sense that everything which could be inferred under the original program can be inferred under the altered program and vice versa.

4. Hybrid reasoning: Backward-chaining

We organize this section as follows. First, we introduce in Section 4.1 the main idea behind backward-chaining, and present an overview of existing methods.
from which our algorithm is derived. Then, we provide a theoretical description and analysis of our algorithm in Section 4.2.

4.1. Backward-chaining

The purpose of a backward-chaining algorithm is to derive for a given database \(I \) and a Datalog program \(P \) all possible ground atoms \(R(a) \in P(\mathcal{I}) \) that are answers to a given query atom \(Q \).

Traditionally, users interact with RDF data sets using the SPARQL language [16] where all the triple patterns that constitute the body of the query are joined together according to some specific criteria. In this paper, we do not consider the problem of efficiently joining the RDF data but focus instead on the process of retrieving all triples that are needed for the query. Therefore, we target our reasoning procedure at atomic queries, e.g., \(T(x, \text{SCO}, y) \).

The algorithm that we present in the following section is a variation of the well-known algorithm QSQ (Query-subquery) [1,6,23]. The general idea behind the QSQ algorithm is to recursively rewrite the given query into many subqueries until no more rewritings can be performed and the subqueries can only be evaluated against the knowledge base.

Example 5. To give an idea on how QSQ works, suppose that our initial query is

\[
T(x, \text{TYPE}, \text{Person})
\]

and that we have a generic database \(I \) and the OWL RL rule set as \(P \). Initially, the algorithm will determine which rules can produce a derivation that is part of the input query. For example, it could apply the subclass and subproperties inheritance rules (\(\text{cax-sco} \) and \(\text{prp-spol} \) in the OWL RL rule set). After it has determined them, it will move to the body of the rules and proceed evaluating them. In case these subqueries will produce some results, the algorithm will execute the rules and return the answers to the upper level.

With this process, the algorithm is creating a tree that has the original query as root and the rules and subqueries that might contribute to derive some answers as the internal nodes.

This tree represents all the derivation steps that are taken to derive answers of our initial query (the root) starting from some existing facts (the leaves). In Fig. 1 we report an example of a part of such a tree for our query.

The original QSQ algorithm was introduced in 1986 [24]. Unfortunately, the first version of this algorithm was found incomplete, but a fixed-up version was presented already the year after [6,23].

In principle, the QSQ algorithm extends the standard SLD resolution technique [22] by applying it to a set of tuples instead of single ones [6]. An important problem of backward-chaining algorithms such as QSQ concerns the execution of recursive rules. Recursive rules and more in general cycles in the proof tree are an important threat to termination since they could create infinite loops in the computation.

To solve this problem, QSQ extends the standard SLD resolution adding two techniques: an Admissibility test and a Lemma resolution. The resulting method, called SLD-AL, rests on the method which QSQ and all its variants are derived from. By analyzing the properties of the SLD-AL resolution, the author of QSQ has proved in [23] that this algorithm always terminates and is complete (i.e. is able to calculate all the answers).

In this paper, we do not re-propose a complete description of SLD-AL, and refer the reader to [23,25] for a more complete explanation. Here, we will simply sketch some characteristics of the technique which is important in our context.

In very general terms, SLD-AL is an abstract technique to construct a computational tree to answer a given query. This tree, which is called SLD tree, resembles the tree in Fig. 1, and is explored by an algorithm such as QSQ in order to find all the answers (called atomic lemmas) that satisfy the input query. It is crucial that the SLD tree is finite and complete, otherwise, it would be impossible for an algorithm to terminate and compute all the derivations. These properties do hold for SLD-AL trees, as shown in [25].

The main idea behind the AL technique is the following: when the algorithm computes a tree and needs to evaluate a new query, it applies an “admissibility test”, to verify whether this query can be resolved using the rules. If the new query is “similar” to a previous one, then the query is evaluated using only the answers produced so far (“lemma resolution”). In this way, the program does not get trapped in a loop generating an infinite tree.

The SLD tree can be explored in several ways. In the general case, the search strategy can determine the completeness of the approach, but in Datalog any strategy is equivalent. For example, the tree can be constructed using an iterative depth-first strategy as proposed with the original QSQ algorithm in [24], or...
using a more sophisticated constructive search as in QoSaQ (QSQ+glObAloptimization) [25].

In the early research on these methods, much emphasis was put on optimizing the computation to avoid redundancy. For example, the original QSQ algorithm traverses the tree using a depth-first strategy, and repeats the query execution at every node until it retrieves all answers for that subgoal [6]. In this way, it is able to cache the results for that subquery and reuse them during the evaluation of the rest of the tree. QoSaQ [25] goes further than the original QSQ algorithm proposing one more solution to this problem: here, a copy of the tree is maintained in main memory and a “waking” mechanism is used to feed new answers derived in one node to other equivalent queries that appear in other branches of the tree.

These techniques are very efficient in optimizing the resolution process, but have the drawback that they are very difficult to be implemented in a parallel (and possibly distributed) environment. In fact, the original depth-first strategy used by QSQ requires a sequential search of the tree, otherwise expensive synchronization mechanisms must be used. The “waking” mechanism proposed by QoSaQ cannot be applied in a distributed environment, since it requires to maintain a copy of the tree in main memory and this mechanism would be slowed down by a network access.

Therefore, we adapted the original QSQ algorithm so that it can be more easily parallelized paying the price of duplicate derivation and possibly redundant computation. We will present the algorithm in the following section and show that the properties of termination soundness, and completeness are still valid.

4.2. Our approach

We introduce two key differences from the original QSQ algorithm, which aim is to improve the parallelization of the computation:

- Unlike QSQ, our algorithm does not construct the proof-tree sequentially but in parallel by applying the rules on separate threads and in an asynchronous manner. For example, if we look back at Fig. 1, the execution of rules \texttt{cax-sco} and \texttt{prp-spol} is performed concurrently by different threads. This execution strategy makes the implementation of the global data structure, used for caching results of previous queries, difficult and inefficient. We hence choose to replace this mechanism with one that only remembers which queries were already executed along single paths of the tree. While such a choice might lead to some duplicate answers because the same queries can be repeated multiple times, the overall efficiency of the algorithm is significantly improved.
Algorithm 1 (Backward-chaining algorithm). \(J \) and \(P \) are global constants, where \(J \) is a finite set of facts and \(P \) is a Datalog program. \(Tmp \) and \(Mat \) are global variables, where \(Mat \) stores results of previous materialization rounds and \(Tmp \) stores the results of the current round. The parameter \(Q \) represents an atomic query, i.e. an atom. Both functions \texttt{main} and \texttt{infer} return a set of atoms, while the function \texttt{lookup} returns a set of substitutions. We say \(Q \in \text{PrevQueries} \) (cf. line 15) iff there is \(Q' \in \text{PrevQueries} \) s.t. \(Q \sqsubseteq Q' \) and \(Q' \sqsubseteq Q \).

1. \texttt{function main}(Q)
2. \hspace{1em}New, Tmp, Mat := ∅
3. \hspace{1em}repeat
4. \hspace{2em}Mat := Mat \cup New \cup Tmp
5. \hspace{2em}New := \text{infer}(Q, ∅)
6. \hspace{2em}until New \cup Tmp \subseteq Mat \cup J
7. \hspace{1em}return New
8. \texttt{end function}
9.
10. \texttt{function \textbf{infer}}(Q, \text{PrevQueries})
11. \hspace{1em}// This cycle is executed in parallel
12. \hspace{2em}all_subst := \text{lookup}(Q, J \cup Mat)
13. \hspace{2em}for \(\forall r \in P \text{ s.t. } Q \text{ is unifiable} \)
14. \hspace{3em}with \(r.HEAD \) and \(Q \notin \text{PrevQueries} \)
15. \hspace{4em}\(\theta_h := \text{MGU}(Q, r.HEAD) \)
16. \hspace{2em}for \(\forall p \in r.BODY \)
17. \hspace{3em}tuples := \text{infer}(\theta_h(p), \text{PrevQueries} \cup Q)
18. \hspace{4em}Tmp := Tmp \cup tuples
19. \hspace{4em}subst := subst \cup lookup(\theta_h(p), tuples)
20. \hspace{2em}end for
21. \hspace{2em}all_subst := all_subst \cup (\text{subst} \circ \theta_h)
22. \hspace{2em}end for
23. \hspace{1em}return \bigcup_{h \in \text{all_subst}} \{ \theta(Q) \}
24. \texttt{end function}

Times in different parts of the proof tree, it allows the computation to be performed in parallel limiting the usage of expensive synchronization mechanisms;

- Because the proof tree is built in parallel, repeating every query until no new results are found is an inefficient operation: the same query can appear multiple times in different parts of the tree. Therefore, we replace it with a global loop that is performed only at the root level of the tree and that stores during every iteration all the intermediate derivations.

We report the algorithm using pseudocode in Algorithm 1. The procedure \texttt{main} is the main function used to invoke the backward-chaining procedure for a given atomic query \(Q \). \texttt{main} returns the derived answers for the input query. The procedure consists of a loop in which the recursive function \texttt{infer} is invoked with the input query. This function returns all the derived answers for \(Q \) that were calculated by applying the rules using backward-chaining (line 5) and all the intermediate answers that were inferred in the process and saved in the global variable \(Tmp \). In each loop pass the latest results in \(Tmp \) and \(New \) are checked against the accumulated answers of the previous runs in \(Mat \) and \(J \). If no new tuple was derived, then the loop terminates.

After this loop has terminated, the algorithm returns \(New \) (line 7) which contains after the last loop pass all answers to the input query (cf. line 13).

The function \texttt{infer} is the core of the backward-chaining algorithm. Using the function \texttt{lookup}, it first retrieves for the formal parameter \(Q \) all answers which are facts in the database or were previously derived (line 13). After this, it determines the rules that can be applied to derive new answers for \(Q \) (lines 14–15) and calculates the substitution \(\theta_h \) to unify the head of the applicable rule with the query \(Q \) (line 16).

It proceeds with evaluating the body of the rule (lines 16–23) storing in \(tuples \) and \(Tmp \) the retrieved answers (lines 19–20), and performing the joins necessary according to the rule body (line 21).

In line 23, each assignment in \(subst \) is composed with the unifier under which it has been derived in the for-loop (line 18–22), which renders it into an assignment for \(Q \). All these assignments are eventually copied into \(all_subst \) from which a set of answers for \(Q \) is derived (line 26). The answers are then returned to the function caller. After the whole recursion tree has been explored exhaustively, \texttt{infer} returns control to the function \texttt{main}, where the derived answers are copied into the variable \(New \). The process is repeated until the closure is reached.

To facilitate the understanding of this algorithm and more in particular of the function \texttt{infer}, consider the following example:

Example 6. Suppose that we have a program \(P \) that consists of a single rule (notice that \(x, y, z \) are variables)

\[
r_0 := T(x, TYPE, y) \leftarrow T(z, SCO, y) \land T(x, TYPE, z)
\]

the input query is \(Q := (a, TYPE, u) \), containing only one variable, \(u \), and \(J \) contains solely the ground atoms \(T(a, TYPE, c) \) and \(T(c, SCO, d). \)

The call \texttt{main}(Q) executes \texttt{infer}(Q, ∅) which performs a lookup in line 13, setting \(all_subst = \{\{u/c\}\} \). It is then checked for all rules \(r \) whether the head of \(r \) is unifiable with \(Q \) (lines 14–15). In our example, only rule \(r_0 \) satisfies this condition, and the algorithm computes some MGU \(\theta_h \) (line 16), e.g. \(\theta_h := \{x/a, y/u\} \).

\(\theta_h \) is applied to each body atom of \(r_0 \) and \texttt{infer} is recursively invoked. In our example, the first recursive
In the construction of the MGU in line 16 that we may w.l.o.g. assume that every query \(Q' \) occurring in the computation of \(\text{infer}(Q, \emptyset) \) is variable disjoint to every rule \(r \in P \). In fact, we assume that the for-loop in Algorithm 1 line 14 iterates over variable renamed versions of rules \(r \in P \) which are variable disjoint to the given \(Q' \).

To this end, we show that for every Datalog program \(P \) and atomic query \(Q \) a finite variable set \(V \) suffices such that for every query \(Q' \) occurring in the computation of \(\text{infer}(Q, \emptyset) \) and every rule \(r \in P \) a variable renaming \(\rho \) exists such that the variables in \(Q' \) and the renamed variables in \(r \) are disjoint, i.e.

\[
\text{Var}(Q') \cap \rho \circ \text{Var}(r) = \emptyset \quad \text{and} \quad \rho \circ \text{Var}(r) \subseteq V.
\]

To this end let \(A \) comprise \(Q \) and all atoms occurring in \(P \). We set \(V_0 \) to be the set of all variables in \(A \) and \(V := V_0 \cup V_1 \) where \(V_1 \) is a disjoint copy of \(V_0 \). We define \(Q \) to be the closure of \(A \) under all substitutions \(\theta : V \rightarrow (V \cup \text{CONS}) \) where CONS are the constants occurring in \(A \). Obviously, \(Q \) is finite.

Lemma 1.

1. For every \(Q' \in Q \) and every \(r \in P \) there is a variable renaming \(\rho : \text{Var}(r) \rightarrow V \setminus \text{Var}(Q') \).
2. We have \(Q' \in Q \) for every subsequent procedure call \(\text{infer}(Q', \text{PrevQueries}) \) of \(\text{infer}(Q, \emptyset) \).

Proof.

1. For a set \(M \) we denote with \(|M| \) its cardinality. Let \(Q' \in Q \) and \(r \in P \) be arbitrary. For every atom \(R(t) \in A \) we know \(|\text{Var}(R(t))| \leq \frac{1}{2}|V| \).

Since \(Q' \) is the result of a variable substitution within an atom in \(A \), we have \(|\text{Var}(Q')| \leq \frac{1}{2}|V| \) and hence that \(|V \setminus \text{Var}(Q')| \geq \frac{1}{2}|V| \). Similarly we know that \(|\text{Var}(r)| \leq \frac{1}{2}|V| \). Hence there is an injective substitution \(\rho : \text{Var}(r) \rightarrow V \setminus \text{Var}(Q') \).

2. The proof is carried out via the nesting depth \(k < \omega \) of the procedure calls. If \(k = 0 \), the procedure call is \(\text{infer}(Q, \emptyset) \) and since \(Q \in Q \) the claim is true.

Assume we are in a subsequent procedure call \(\text{infer}(Q', \text{PrevQueries}) \) in nesting depth \(k < \omega \). The induction hypothesis yields that \(Q' \in Q \). For every rule \(r \in P \) used in a loop pass (line 14–24), item 1. yields a variable renaming \(\rho : \text{Var}(r) \rightarrow V \setminus \text{Var}(Q') \). Let the variables of \(r \) be renamed by \(\rho \), then \(\text{Var}(\text{MGU}(Q', \text{r.HEAD})(p)) \subseteq V \) for all body atoms \(p \) of \(r \). The argument \(Q'' \) in subsequent procedure calls \(\text{infer}(Q'', \text{PrevQueries} \cup \{ Q' \}) \) (line 19) which have nesting depth \(k + 1 \) is of the form \(Q'' := \text{MGU}(Q', \text{r.HEAD})(p) \) and hence \(Q'' \in Q \).

We will now discuss the correctness of our algorithm in three steps, which are termination, soundness and completeness. We shall first show termination and soundness, for which we will furnish two further lemmas: The first, Lemma 2, conceptualizes the function calls executed during \(\text{infer}(Q, \emptyset) \) as a tree, where elements are connect by edges of the “calls”-relation, and shows that this tree has finite depth and thus yields an argument towards termination. The second, Lemma 3, shows that all calls in this tree yield only results in \(P(\emptyset) \), i.e. Lemma 3 provides a soundness argument.

Consider database \(D \), a Datalog program \(P \) and an atom \(Q \). Let \(Q \) be the set of atoms defined above Lemma 1.
Lemma 2. Each call infer(Q,∅) entails at most finitely many recursive calls to infer.

Proof. An inductive argument over the nesting depth of procedure calls shows that in the n-th nested procedure call, PrevQueries contains n elements. Since PrevQueries ⊆ Q (cf. Lemma 1 item 2.) and both for-loops iterate over finite sets, infer is called at least at most finitely many times.

With ⊇ (being a proper super-set) we obtain a well-founded order on the powerset of Q which we shall use for further inductive arguments.

Lemma 3. Let P(J) be the materialization of J under P. If Mat, Tmp ⊆ P(J) then for all Q ∈ Q and all subsets PrevQueries ⊆ Q we have that

\[\text{infer}(Q, \text{PrevQueries}) \subseteq P(J) \]

and Tmp′ ⊆ P(J) where Tmp′ is Tmp after the execution of infer(Q, PrevQueries).

Proof. The proof is carried out by induction upon PrevQueries in the powerset of Q ordered by ⊇. For the base case let Q ∈ Q be arbitrary and execute infer(Q, Q). Then lookup(Q, J ∪ Mat) in line 13 returns a set of assignments \(\beta : \text{Var}(Q) \rightarrow \text{dom} \ J \), such that \(\beta(Q) \in (J ∪ \text{Mat}) \). Since Q ∈ Q, lines 14–24 are skipped and hence

\[\text{infer}(Q, Q) \subseteq P(J) \]

and Tmp′ = Tmp ⊆ P(J).

For the induction step, let PrevQueries ⊆ Q be arbitrary and assume as induction hypothesis that for all R with PrevQueries ⊆ R ⊆ Q and for all Q ∈ Q we have that if Mat, Tmp ⊆ P(J) then infer(Q, R) ⊆ P(J) and Tmp′ ⊆ P(J) where Tmp′ is the updated set Tmp after the procedure call infer(Q, R).

Execute infer(Q, PrevQueries): As in the induction base, all_subst contains after line 13 only assignments \(\beta \) such that \(\beta(Q) \in (J ∪ \text{Mat}) \). If Q ∈ PrevQueries up to variable renaming, we skip lines 14–24 ending up with the same outcome as in the induction base.

Hence assume Q ∈ PrevQueries modulo variable renamings. In each loop-pass of the outer-loop and inner-loop, the induction hypothesis yields that

\[\text{infer}(\theta_h(p), \text{PrevQueries} \cup \{Q\}) \subseteq P(J). \]

Hence Tmp′ ⊆ P(J).

Similar to line 13, lookup(\(\theta_h(p), \text{tuples} \)) contains exactly those assignments \(\beta : \text{Var}(\theta_h(p)) \rightarrow \text{dom} \ J \) such that \(\beta \circ \theta_h(p) \in \text{tuples} \). Hence every \(\beta \in \text{subst} \), after the join \(\bowtie \) has been performed (line 22), satisfies \(\beta \circ \theta_h(p) \in \text{tuples} \) for all \(p \in r.BODY \). Database requires all variables of the head to be covered by some atom in the body, so we know that each \(\beta \in \text{subst} \), after the execution of line 13 re-iterates over a finite set PrevQueries. Hence, we infer \(\theta(Q) \in P(J) \) for all \(\theta \in \text{all_subst} \) which shows infer(Q, PrevQueries) ⊆ P(J).

4.2.1. Termination

We first concentrate on the termination of the procedure call infer(Q,∅) in the function main. Let J be a database over a finite signature SIG, by definition dom J is finite. Lemma 3 yields that in every repeat-loop pass (lines 3–6)

\[\text{New, Tmp, Mat} \subseteq P(J) \quad (\ast) \]

where P(J) is the materialization of J under P. An inductive argument over PrevQueries ⊆ Q shows that under the precondition (\(\ast \)) for all Q ∈ Q every procedure call infer(Q, PrevQueries) terminates: Lemma 2 shows that there are only finitely many calls to infer, but we can now show that also every call to lookup in line 13 and line 21 yields a finite result (via some finite computation) and thus \(\bowtie \) in line 21 terminates.

In every repeat-loop pass, Tmp or New grow or the loop is terminated. Since Tmp and New are bounded by P(J), which is finite, the repeat-loop terminates after finitely many passes. This shows that for every database J, every Datalog program P and every atomic query Q the function main(Q) terminates.

4.2.2. Soundness

The return value of main(Q) is the result of the call infer(Q,∅) in the last repeat loop pass (cf. line 5 in Algorithm 1). Hence, in order to show soundness, we have to show for all repeat-loop passes that the return value of infer(Q,∅) only contains answers to Q from P(J). To this end, assume J is a database, P is a Datalog program and Q is an atomic query. In every repeat-loop pass, infer(Q,∅) contains only ground atoms from P(J) that unify with Q: Using Lemma 3, we know that Tmp, Mat ⊆ P(J) for every repeat-loop pass (lines 3–6). Thus, line 13 only yields assignments \(\beta \) such that \(\beta(Q) \in (J ∪ \text{Mat}) \) and hence such that \(\beta(Q) \in P(J) \). Using Lemma 3 again on line 19, we
know that \(\beta \circ \theta_{n}(p) \in P(3) \) for every assignment \(\beta \in \text{lookup}(\theta_{n}(p), \text{tuples}) \) in line 21 and every body atom \(p \) of a rule whose head unifies with \(Q \). Hence \(\beta \in \text{subst} \) after line 22 is an assignment such that \(\beta \circ \theta_{n}(Q) \in P(3) \). Hence the returned set in line 26 only contains ground atoms which are answers to \(Q \) and are in \(P(3) \).

4.2.3. Completeness

Let \(J \) be a given database, \(P \) a given Datalog program and \(Q := R'(\vec{v}) \) an atomic query. To show the completeness of Algorithm 1, we need to prove that every atom in \(R'(P(3)) \) which unifies with \(Q \) can be derived by \(\text{main}(Q) \). This claim is shown via Proposition 1 below, as the latter holds in particular for all answers to the input query \(Q \) derived under \(P \) from \(J \). Proposition 1 however rests on Lemma 4. The lemma states that if a ground atom \(R(\bar{a}) \) appears as label in a Datalog proof-tree for some answer \(R'(\bar{b}) \) to \(Q \), then \(R(\bar{a}) \) is an answer to some query \(Q_{n} \) which will occur during a computation of \(\text{infer}(Q, \emptyset) \). Note that it does not show that \(\text{infer}(Q, \emptyset) \) derives \(R(\bar{a}) \).

We call an atomic query \(Q \) blocked in the procedure call \(\text{infer}(Q, \text{PrevQueries}) \) if there is \(Q' \in \text{PrevQueries} \) such that \(Q \subseteq Q' \) and \(Q' \subseteq Q \).

Lemma 4. Let \(Q := R'(\vec{v}) \) be an atomic query and \(R(\bar{a}) \) a label, which appears in a Datalog proof-tree \((G, \ell) \) for some answer to \(Q \) in \(P(3) \). Then there is a subsequent procedure call \(\text{infer}(Q_{n}, \text{PrevQueries}) \) of \(\text{infer}(Q, \emptyset) \) such that \(Q_{n} \) is a non-blocked atomic query and \(R(\bar{a}) \) is an answer to \(Q_{n} \) derived under \(P \) in \(J \).

Proof. Let \(R'(\bar{b}) \) be an answer to \(Q \) which has a Datalog proof-tree \((G, \ell) \) in \(P(3) \) containing a label \(R(\bar{a}) \). We have to show that there is a sequence of atomic queries \(Q_{0}, \ldots, Q_{n} \) such that

1. \(Q = Q_{0} \) and \(R(\bar{a}) \) unifies with \(Q_{n} \).
2. for each \(i \in \{0, \ldots, n \} \) there is a rule \(r \in P \) and \(\theta := \text{MGU}(Q_{i}, r, \text{HEAD}) \) such that \(Q_{i+1} = \theta(p) \), where \(p \) is some body-atom of \(r \).
3. no query is blocked, i.e. there is no subsequence \(Q_{i} \cdots Q_{k} \) with \(0 \leq i < k \leq n \) such that \(Q_{i} \) is up to variable renaming equal to \(Q_{k} \) (\(Q_{i} \subseteq Q_{k} \) and \(Q_{k} \subseteq Q_{i} \)).

3. guarantees in particular that the condition \(Q \not\in \text{PrevQueries} \) in line 15 is true when the procedure call \(\text{infer}(Q_{i}, \{Q_{0}, \ldots, Q_{i-1}\}) \) is executed. Hence, if 1–3 hold, \(\text{infer}(Q, \emptyset) \) will, according to lines 14–24 of Algorithm 1, call in ascending sequence

\[
\text{infer}(Q, \{Q_{0}, \ldots, Q_{i-1}\})
\]

where \(0 \leq i \leq n \).

In a first step we specify a sequence of rules \(r_{0}, \ldots, r_{n} \) which leads from \(R'(\bar{b}) \) to the atom \(R(\bar{a}) \) and then we determine a sequence of queries \(Q_{0}, \ldots, Q_{n} \).

Let \(R'(\bar{b}) \) be the atom which unifies with the input query \(Q \) and in whose Datalog proof-tree \((G, \ell) \) \(R(\bar{a}) \) appears. Then either \((G, \ell) \) has height 0 and thus \(R'(\bar{b}) = R(\bar{a}) \) and \(Q_{n} := Q \) is found, or there is a sequence of rule applications \(r_{0}, \ldots, r_{n} \) such that \(R'(\bar{b}) \) unifies with the head of \(r_{0} \) via some \(\text{MGU} \) \(\theta_{0} \) and for all \(i \in \{0, \ldots, n-1\} \) some unified body-atom \(B_{n,k_{i}} = \theta_{i}(R_{i,k_{i}}(\bar{t}_{i,k_{i}})) \) of \(r_{i} \) unifies via some \(\text{MGU} \) \(\theta_{i+1} \) with the head of \(r_{i+1} \) and finally \(R(\bar{a}) \) unifies with some unified body-atom \(B_{n,k_{n}} = \theta_{n}(R_{n,k_{n}}(\bar{t}_{n,k_{n}})) \) of \(r_{n} \).

Fix this sequence of rules \(r_{0}, \ldots, r_{n} \). Since \(R'(\bar{b}) \) is an answer to \(Q \) (i.e. a ground atom) and unifies with the head atom \(H_{0} \) of \(r_{0} \) \(Q \) with \(H_{0} \) yielding \(\theta_{0} := \text{MGU}(Q, H_{0}) \). For all \(i \in \{0, \ldots, n-1\} \) the unified body-atom \(Q_{i} := \theta_{i}(R_{i,k_{i}}(\bar{t}_{i,k_{i}})) \) of \(r_{i} \) unifies with the head \(H_{i+1} \) of \(r_{i+1} \) yielding \(\theta_{i+1} := \text{MGU}(Q_{i}, H_{i+1}) \), so that we finally reach the body atom \(R_{n,k_{n}}(\bar{t}_{n,k_{n}}) \) of \(r_{n} \) where \(Q_{n} := \theta_{n}(R_{n,k_{n}}(\bar{t}_{n,k_{n}})) \) is the query which unifies with \(R(\bar{a}) \).

We hence obtain a sequence \(Q_{0}, \ldots, Q_{n} \) satisfying items 1 and 2. We shall show that for every sequence satisfying items 1 and 2 there is a sequence \(Q_{0}', \ldots, Q_{m}' \) satisfying items 1–2 and 3:

The claim is clear, if the sequence is of length 1: \(Q_{0} \) is never blocked. Let \(Q_{0}, \ldots, Q_{n} \) be a sequence of length \(n + 1 \) where \(Q_{i} \) equals \(Q_{k} \) up to variable renaming and \(0 \leq i < k \leq n \). Then the head of \(r_{k+1} \) unifies with the query \(Q_{i} \). The sequence \(Q_{0}, \ldots, Q_{i}, Q_{k+1}, \ldots, Q_{n} \) is properly shorter than \(Q_{0}, \ldots, Q_{n} \) and satisfies items 1–2. The induction hypothesis yields a sequence \(Q_{0}', \ldots, Q_{m}' \) which satisfies items 1–3.

Proposition 1. Let \(P, \bar{J} \) and \(Q \) be fixed and \(Q \) as defined above Lemma 1. Let \(R'(\bar{b}) \) be an answer to \(Q \) which has a Datalog proof-tree \((G, \ell) \) in \(P(3) \) containing a label \(R(\bar{a}) \). Then there is a repeat-loop pass in \(\text{main}(Q) \) from which onward for every atomic query \(Q' \in Q \) which unifies with \(R(\bar{a}) \) and for all
Proof. Let \(R'(\bar{y}) \) be an answer to \(Q \) which has a Datalog proof-tree \((G, \ell)\) in \(P(\mathcal{I}) \) containing a label \(R(\bar{a}) \). We prove by induction upon \(k < \omega \) that the atom \(R(\bar{a}) \) is yielded after the \(k \)-th repeat-loop pass by every call \(\text{infer}(Q', \text{PrevQueries}) \), if \(Q' \) unifies with \(R(\bar{a}) \) and the minimal height of some Datalog proof tree for \(R(\bar{a}) \) is equal to \(k \).

If there is a Datalog proof tree for \(R(\bar{a}) \) of height \(0 \) and \(Q' \) unifies with \(R(\bar{a}) \), then \(\text{infer}(Q', \text{PrevQueries}) \) will produce \(R(\bar{a}) \) for all \(\text{PrevQueries} \subseteq Q \) in the look-up of line 13 which will be returned (cf. line 26) for all further repeat-loop passes.

Assume there is a Datalog proof tree \((G', \ell')\) for \(R(\bar{a}) \) of height \(k + 1 \) and we have started the \(k + 1 \) repeat-loop pass. Lemma 4 shows that there is a subsequent procedure call \(\text{infer}(Q_n, \text{PrevQueries}) \) of \(\text{infer}(Q, \emptyset) \) such that \(Q_n \) is an unblocked atomic query, i.e. there is no \(Q' \in \text{PrevQueries} \) with \(Q_n \subseteq Q' \) and \(Q' \subseteq Q_n \), and \(R(\bar{a}) \) unifies with \(Q_n \).

Since \((G', \ell')\) is of height \(k + 1 \) there is a rule \(r : R(\bar{l}) \leftarrow R_1(\bar{t}_1) \land \cdots \land R_m(\bar{t}_m) \) and a variable assignment \(\beta \) such that \(R(\beta(\bar{t}_i)) = R(\bar{a}) \) and for each \(i \in \{1, \ldots, m\} \) the fact \(R_i(\beta(\bar{t}_i)) \) has a proof tree of height at most \(k \) under \(P \) in \(\mathcal{I} \).

The head \(H \) of \(r \) and \(Q_n \) unify with the ground atom \(R(\bar{a}) \), so there is \(\theta := \text{MGU}(Q_n, H) \) and each \(R_i(\beta(\bar{t}_i)) \) unifies with \(Q'_n \) for all \(i \in \{1, \ldots, m\} \). Since \(Q_n \) is not blocked, the subsequent procedure call \(\text{infer}(Q'_n, \text{PrevQueries} \cup \{Q_n\}) \) for all \(i \in \{1, \ldots, m\} \) is issued.

By the induction hypothesis, for all \(i \in \{1, \ldots, m\} \), \(\text{infer}(Q'_n, \text{PrevQueries} \cup \{Q_n\}) \) yields \(R_i(\beta(\bar{t}_i)) \). Hence \(R(\bar{a}) \) is returned by \(\text{infer}(Q_n, \text{PrevQueries}) \) at the very latest in the \(n + 1 \)-repeat-loop pass and eventually added to \(\text{Mat} \) (cf. line 4) so that after the \(n + 1 \) repeat-loop pass for every \(\text{PrevQueries} \subseteq Q \) every subsequent call \(\text{infer}(Q', \text{PrevQueries}) \) that unifies with \(R(\bar{a}) \) will return this fact as look-up in line 13. \(\square \)

By proving Proposition 1, we have shown that Algorithm 1 is complete: Every answer to a given query \(Q \) has a Datalog proof-tree and is the label of the root of this proof-tree. Proposition 1 shows that this answer is eventually derived by \(\text{infer}(Q, \emptyset) \) (line 5) and thus returned by \(\text{main}(Q) \) (line 7). This completes the three steps to prove correctness w.r.t. to retrieval of exactly those answers to \(Q \) under \(P(\mathcal{I}) \).

5. Hybrid reasoning: Pre-materialization

So far, we have made no difference in the description of our backward-chaining algorithm between sub-queries that are pre-computed and those which are not. However, the pre-materialization of a selection of queries allows us to substantially improve the implementation and performance of backward-chaining by exploiting the fact that these queries can be retrieved with a single lookup.

In our implementation, the results of these queries are stored in main memory so that the joins required by the rules can be more efficiently executed. Also, the availability of the pre-materialized queries in memory allows us to implement another efficient information passing strategy to reduce the size of the proof tree by identifying beforehand whether a rule can contribute to deriving answers for a given query.

In fact, the pre-materialization can be used to determine early failures: Emptyness for queries which are subsumed by the pre-materialized queries can be cheaply derived since a lookup suffices. Therefore, when scheduling the derivation of rule body atoms, we give priority to those body atoms that potentially match these pre-materialized queries so that if these “cheap” body atoms do not yield any answers, the rule will not apply, and we can avoid the computation of the more expensive body atoms of the rule for which further reasoning would have been required.

To better illustrate this concept, we proceed with an example. Suppose we have the proof tree described in Fig. 1. In this case, the reasoner can potentially apply rule \text{prp-symp} (concerning symmetric properties in OWL) to derive some triples that are part of the second body atom of rule \text{prp-spol}.

However, in this case, rule \text{prp-symp} will fire only if some of the subjects (i.e. the first component) of the triples part of \(T(w, \text{SP} \text{O}, \text{TYPE}) \) will also be the subject of \(T(w, \text{TYPE}, \text{SYM}) \). If both patterns are pre-computed, then we know beforehand all the possible ‘w’, and therefore we can immediately perform an intersection between the two sets. If the intersection is non-empty, the reasoner proceeds executing rule \text{prp-symp}, otherwise it can skip its execution since the rule will never fire.

It is very unlikely that the same property appears in all the terminological patterns, therefore an information passing strategy that is based on the pre-materialized triple patterns is very effective in significantly reducing the tree size and hence improving performance.
Furthermore, our implementation of this algorithm applies a sideways information passing strategy [2,3] to improve the execution of the joins required by the rules. This technique consists of “passing” admissible values to the variables of the following queries in order to limit the retrieval to only facts that can contribute to the join.

To illustrate this concept, consider Example 6: Here, when the algorithm needs to invoke the function infer with the atomic query $T(a, \text{TYPE}, u)$, even though the variable u could in principle assume any value, in practice the implementation knows already that the values of u in subst are admissible (in our case \subset), because only those can lead to a successful join. Thus, the implementation can link these values to the variable u so that in a subsequent call of, for example, lookups, the computation is limited to retrieve only these values and not all possible u. This technique of passing values between the queries is well-known in rule-based systems, and applied in nearly all implementations.

The hybrid approach thus consists of materializing parts of the knowledge base beforehand and then using on-demand querying techniques to answer user queries. To this end we pre-materialize certain atomic queries and store their results in new edb relations before the user can query the knowledge base. The corresponding atoms in the original rules are replaced accordingly and this new rule set is then used to infer the answers to the user query.

In order to prove the correctness of our method for hybrid reasoning, we proceed as follows: First, in Section 5.1, we formalize and discuss the completeness of the pre-materialization algorithm. Next, in Section 5.2, we show that replacing the pre-materialized body of atomic queries that are selected for pre-materialization, \texttt{Ruleset} is a constant containing a program P and Database represents 3.

Algorithm 2 (Overall algorithm of the pre-computation procedure). L is a set containing all queries that were selected for pre-materialization, \texttt{Ruleset} is a constant containing a program P and Database represents 3.

\begin{verbatim}
1 for every $Q \in L$
2 introduce a new predicate symbol S_Q to Database
3 end for
4 for every rule $p : R_0(f_0) \leftarrow R_1(f_1) \land \ldots \land R_n(f_n)$ in Ruleset
5 for every $Q \in L$ and $i \in \{1, \ldots, n\}$
6 if $R_i(t_i) \subseteq Q$ then
7 replace $R_i(t_i)$ in p with $S_Q(t_i)$
8 end if
9 add this (altered) rule to \texttt{NewRuleset}
10 end for
11 Derivation := \emptyset
12 repeat
13 Database := Database \cup Derivation
14 for every $R(t)$ in L
15 Perform $S_{R(t)}(t) \leftarrow R(t)$ on Database
16 end for
17 for every Q in L
18 Derivation := Derivation \cup main($Q)$ using \texttt{NewRuleset} as program on Database
19 end for
20 until Derivation \subseteq Database
\end{verbatim}

(for main cf. Algorithm 1) is that the efficiency of Algorithm 1 hinges upon the fact that as many body atoms as possible are not unfoldable, but are edbs for which merely look-ups have to be performed during backward chaining.

Therefore, in order to materialize S_Q for each $Q \in L$, Algorithm 2 starts main($Q)$ on the Datalog program P', which is P where predicates in body atoms have already been replaced by the auxiliary predicates S_Q whenever possible. The auxiliary relations named S_Q with $Q \in L$ are thus empty at first and are gradually filled until $S_Q^{n} = S_Q^{P(3)}$, where I_0 is 3 after Algorithm 2 has terminated. We will, after discussing the algorithm, prove that Algorithm 2 is correct in the sense that $S_Q^{n} = S_Q^{P(3)}$ for all $Q \in L$ after Algorithm 2 has terminated.

In a first step (lines 1–3), the database is extended with auxiliary relations named S_Q for $Q \in L$. Each rule of the program P is rewritten (lines 5–12) by replacing every body atom $R_i(t_i)$ with the atom $S_Q(t_i)$ if $R_i(t_i) \subseteq Q$ (cf. page 425), i.e. if the “answers” to $R_i(t_i)$ are also yielded by Q.

Clearly, the result of the rewriting need not to be deterministic in case there are two or more atomic queries $Q_0, Q_1 \in L$ with $R_i(t_i) \subseteq Q_0, Q_1$. However, we shall
show that either rewriting is good enough. The new rule thus obtained is stored in a new program P'. In case the rule p contains no body atoms that need to be replaced, p is stored in P' as well.

In each repeat-loop pass (cf. lines 15–24), J is extended in an external step (lines 17–19) with all answers for $Q \in L$, which are copied into the auxiliary relation S_Q^J. Since this is repeated between each derivation until no new answers for any $Q \in L$ are yielded, this is equivalent to adding $S_Q(l) \leftarrow R(l)$ for each $Q \in L$ with $Q = R(l)$ to P' directly. One can derive from this argument that Algorithm 2 terminates and is sound in the sense that $S_Q^J \subseteq Q^{P(3)}$, where J_0 is the database J after Algorithm 2 has terminated. As we shall show in Proposition 2, Algorithm 2 is complete in the sense that, after termination of this algorithm, $S_Q^{J_0}$ contains all answers for Q in $P(3)$.

Example 7. Take the altered program from Example 4 and add the appropriate $S_Q(x, Q, y) \leftarrow Q$ with $Q = T(x, Q, y)$ to it. In this case we obtain

$$
T(a, p1, b) \leftarrow S_Q(p, Q, p1) \land T(a, p, b)
$$

$$
S_Q(x, Q, y) \leftarrow S_Q(x, Q, w) \land S_Q(w, Q, y)
$$

It is trivially clear, that this program yields for every Database exactly the same results for $T(x, Q, y)$ as the original program

$$
T(a, p1, b) \leftarrow T(p, Q, p1) \land T(a, p, b)
$$

$$
T(x, Q, y) \leftarrow T(x, Q, w) \land T(w, Q, y)
$$

Proposition 2. Algorithm 2 is complete in the sense that for the database J_0 which we obtain after Algorithm 2 has terminated, $S_Q^{J_0} \supseteq Q^{P(3)}$ for all $Q \in L$, i.e. every answer that could be derived from Q under P in 3 is contained in $S_Q^{J_0}$.

Proof. Let P' be the rewritten program P, defined as NewRuleSet in the pseudocode of Algorithm 2. We have $Q^{P(3)} \subseteq Q^{P(3_0)}$ (monotoncity) and $Q^{P(3)} \subseteq S_Q^{J_0}$ (line 18). In order to show $Q^{P(3)} \subseteq S_Q^{J_0}$ we show $Q^{P(3_0)} \subseteq Q^{P(3)}$.

As strategy, we take the Datalog proof tree of an answer to a query $Q \in L$ in $P(3_0)$ and show that we can render this proof tree into a Datalog proof tree in $P'(3_0)$.

Assume no new element could be derived from J_0 using the program P' but for some $Q \in L$, main(Q) could derive another yet unknown ground atom from J_0 using the original program P. Let hence $\Delta := \bigcup_{Q \in L} Q^{P(3_0)} \setminus Q^{P(3)}$ and let $R(\bar{a}) \in \Delta$ such that it has a Datalog proof-tree (G, ℓ) in $P(3_0)$ of height $m < \omega$, where m is for all atoms from Δ the least height of their Datalog proof-trees in $P(3_0)$.

We change the tree (G, ℓ) recursively as follows: If the root v is a leaf, the tree stays unaltered. Otherwise, there is a rule $r \in P$ and an assignment β such that there is a bijection ι between the successor set $E(v)$ and the set of body atoms of r such that $\ell(v') = \beta \circ \iota(v')$ for all $v' \in E(v)$. As we only exchanged predicate names in the rewriting of $r \in P$ to $r' \in P'$, there is a bijection ι' between $E(v)$ and the body atoms of r' and we set $\ell'(v') := \beta \circ \iota'(v')$. For all $v' \in E(v)$ we have $\ell'(v') = \ell(v')$ if the body atom was not replaced during rewriting. If for any $v' \in E(v) \ell'(v')$ has predicate name S_Q for some $Q \in L$, prune its subtree but keep v'. Otherwise recursively continue to change the subtree $\langle \ell' \rangle$. We thus obtain a new tree G' with a labelling function ℓ'.

Line 18 guarantees that $S_Q^{J_0} = Q^{3_0}$ for all $Q \in L$ and since (G, ℓ) was chosen minimal, every leaf of (G', ℓ') is labelled with an atom in J_0. Hence (G', ℓ') is a Datalog proof-tree in $P'(3_0)$ for $R(\bar{a})$ and so $R(\bar{a}) \notin \bigcup_{Q \in L} Q^{P(3)} \setminus Q^{P(3_0)}$. A contradiction! □

5.2. Reasoning with pre-materialized predicates

We show now that replacing body atoms with auxiliary predicates that contain the full materialization of the body atom w.r.t. a given database (i.e. after Algorithm 2), yields the same full materialization of the database as under the original program. We will formally define what conditions must be fulfilled and prove that if they hold, then the two programs will produce the same derivation (Proposition 3). Finally, we point out that the output of Algorithm 2 satisfies these conditions and therefore guarantees the correctness of our entire hybrid approach.

We start by taking an arbitrary Datalog program P and a database J. We assume that J has already been enriched with the results of the pre-materialization and that S is the name of one of these pre-materialized relations where S is an edb for P.

As an example, assume that this binary relation S^3 contains all tuples (x, y) of the query

$$
query(x, y) \leftarrow T(x, Q, y).
$$

under the program P.

***By definition, this would render $S_Q(l)$ into an idb, which we thus only propose for the sake of explaining correctness."
Since S is an edb, it does not appear in the head of any rule of P and thus cannot be unfolded. So the evaluation of S during the backward chaining process is reduced to a mere look-up in the database.

Replacing an atom in a rule body with an atom containing S, $S(t)$ say, is harmless only if $S(t)$ yields the “right” answers. Thus, the question arises which abstract conditions must $S(t)$ satisfy to allow such a replacement: The answer is that we want a rule to fire under “almost the same” variable assignment as its replacement, i.e. the rule with the replaced body atom.

We will formalize this in the following two paragraphs.

Let $R(l_0) \leftarrow R_1(l_1) \land \cdots \land R_n(l_n)$ be a rule in P. We define two queries, one being the body of the rule and one being the body of the rule where for some $i \in \{1, \ldots, n\}$ the body atom $R_i(l_i)$ is replaced by $S(l)$ where l is some arbitrary tuple having the arity of S. Let $\bar{z} \equiv t_0, t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n$, i.e. the concatenation of all tuples except t_i and

$$
q_0(\bar{z}) \leftarrow R_1(l_1) \land \cdots \land R_i(l_i) \land \cdots \land R_n(l_n)
$$

$$
q_1(\bar{z}) \leftarrow R_1(l_1) \land \cdots \land S(l) \land \cdots \land R_n(l_n) \quad (\lor)
$$

Now, the rule and its replacement fire under almost the same variable assignment iff $q_0(\bar{z})^{P(3)} = q_1(\bar{z})^{P(3)}$, i.e. q_0 and q_1 yield the same answers under P in \mathcal{J}. We see, that it is “almost the same” variable assignment, as we do not require variable assignments to coincide on t_i and l. In this way we do not require, e.g., $S^3 = R^3_P(3)$. S is merely required to contain the necessary information. This is important, if we want to apply the substitution to RDF triples, where we lack distinguished predicate names:

Example 8. Since there is only one generic predicate symbol T in RDF, requiring $S^3 = T^3_P(3)$ would mean that S contains the complete materialization of \mathcal{J} under P which would render our approach obsolete.

Also note that it is not sufficient to merely require $q_0(l_0)^{P(3)} = q_1(l_0)^{P(3)}$, i.e. that both queries yield the same answer tuples l_0 under $P(3)$, as the following example shows.

Example 9. Let the program P which computes the transitive closure of R_0 in R_1 consist of the two rules:

$$
R_1(x, z) \leftarrow R_1(x, y) \land R_0(y, z)
$$

$$
R_1(x, y) \leftarrow R_0(x, y)
$$

Consider a database \mathcal{J} with $R_0^3 : = \{(a, b), (b, c), (a, c), (b, b), (c, c)\}$. In the materialization $P(3)$ of P we expect $R_1^{P(3)} = \{(a, b), (b, c), (a, c), (b, b), (c, c)\}$. Let S have the interpretation $S^3 = \{(b, c), (c, c)\}$. Since $R_1^{P(3)}$ is the transitive closure, the following two queries deliver the same answer tuples under $P(3)$, i.e.

$$
q_0(x, z) \leftarrow R_1(x, y) \land R_0(y, z)
$$

$$
q_1(x, z) \leftarrow R_1(x, y) \land S(y, z)
$$

Yet the program P'

$$
R_1(x, z) \leftarrow R_1(x, y) \land S(y, z)
$$

will not compute the transitive closure of R_0 in R_1, as $R_1^{P'(3)} = \{(a, b), (b, c), (b, b), (c, c)\}$.

In Proposition 3, we show that we have chosen the correct criterion when requiring that rules must fire under almost the same variable assignments to be replacements of each other: We show that substituting a body atom $R_i(l_i)$ by $S(l)$, under the condition that the queries in (\lor) yield the same answer tuples under $P(3)$, generates the same materialization.

Proposition 3. Let P' be the program P where the rule

$$
R_0(l_0) \leftarrow R_1(l_1) \land \cdots \land R_n(l_n) \in P
$$

has, for some tuple l and edb S, been replaced by

$$
R_0(l_0) \leftarrow R_1(l_1) \land \cdots \land S(l) \land \cdots \land R_n(l_n).
$$

Let q_0 and q_1 be defined as in (\lor).

If $q_0(\bar{z})^{P(3)} = q_1(\bar{z})^{P(3)}$ then $P(3) = P'(3)$.

Proof. In order to show the implication we assume $q_0(l_0)^{P(3)} = q_1(l_0)^{P(3)}$. Let T_P and $T_{P'}$ be the immediate consequence operators (mentioned on page 426) for each program. We show for all $\ell \in \omega$ and every ground atom $R(\bar{a})$ that if $R(\bar{a}) \in T_P(3)$, then there is an $\ell < \omega$ such that $R(\bar{a}) \in T_{P'}(3)$ and vice versa. Since we start out from the same database \mathcal{J} we have $T_P^3(3) = T_{P'}^3(3)$ which settles the base case.

For the step case, let $R(\bar{a}) \in T_{P'}^{k+1}(3)$. Then either $R(\bar{a}) \in T_P^3(3)$ and we are done or there is some rule

$$
R(l_0) \leftarrow R_1(l_1) \land \cdots \land R_n(l_n)
$$

and some variable assignment β such that $\beta(l_0) = \bar{a}$ and $R_j(\beta(l_j)) \in T_P^3(3)$ for all $j \in \{1, \ldots, n\}$.

If $R(l_0) \leftarrow R_1(l_1) \land \cdots \land R_n(l_n) \in P$, i.e. none of its body atoms where substituted, the induction hypothesis shows for each $j \in \{1, \ldots, n\}$ that we can find $\ell_j < \omega$ such that $R_j(\beta(l_j)) \in T_P^{\ell_j}(3)$. Let $\ell_0 := \max(\{0 \cup \{\ell_j \mid 1 \leq j \leq n\}\}$). Note that we add $\{0\}$ for the case where the rule body is empty. In any case, we have $R_j(\beta(l_j)) \in T_P^{\ell_0}(3)$ for all $j \in \{1, \ldots, n\}$.
Since all premises of this rule are satisfied, there is some \(\ell := \ell_0 + 1 \) such that \(R_0(\bar{\beta}(t_0)) \in T_{P(3)}^\ell \).

If \(R(t_0) \leftarrow R_1(t_1) \land \cdots \land R_n(t_n) \notin P \) it is a rule where \(R(t_i) \) has been substituted with \(S(t_i) \). For the assignment \(\beta \) we now know \(\beta(t_0 \cdot t_1 \cdot \cdots \cdot t_{i-1} \cdot t_{i+1} \cdot \cdots \cdot t_n) \in q_0(\bar{z}) P(3) \). Since \(q_0(\bar{z}) P(3) = q_1(\bar{z}) P(3) \) we know that there is some assignment \(\beta' \) which coincides with \(\beta \) on \((t_0, t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n) \) such that \(\beta'(t_i) \in S P(3) \).

Hence \(R_j(\beta'(t_j)) \in T_P^j(3) \) for all \(j \in \{1, \ldots, n\} \setminus \{i\} \) such that \(R_j(\beta'(t_j)) \in T_P^j(3) \). Let \(\ell_0 := \max(\{0\} \cup \{\ell_j \mid 1 \leq j \leq n \land j \neq i\}) \), then \(R_j(\beta'(t_j)) \in T_P^{\ell_0} \) for all \(j \in \{1, \ldots, n\} \setminus \{i\} \) and \(S(\beta'(t_i)) \in T_P^{\ell_0} \). Since all premises of this rule are satisfied, there is some \(\ell := \ell_0 + 1 \) such that \(R_0(\beta'(t_0)) \in T_P^{\ell_0} \). As \(\beta \) coincides with \(\beta' \) also on \(t_0 \), i.e. \(\beta'(t_0) = \bar{a} \), we have in particular \(R(\bar{a}) \in T_P^{\ell_0} \).

This shows \(R P(3) \subseteq R P(3) \) for all predicate names \(R \in \text{PRED} \). For the converse, we merely show the case of the substituted rule: Assume \(R(\bar{a}) \in T_P^{\ell_0} \) and there is an assignment \(\beta' \) such that \(\beta'(t_0) = \bar{a} \) and \(R_j(\beta'(t_j)) \in T_P^{\ell_0} \) for all \(j \in \{1, \ldots, n\} \setminus \{i\} \) as well as \(\beta'(t_i) \in S P(3) \).

The induction hypothesis yields for each \(j \in \{1, \ldots, n\} \setminus \{i\} \) some \(\ell_j < \omega \) with \(R_j(\beta'(t_j)) \in T_P^{\ell_j} \). Since \(S \) is an edb predicate for \(P \), we have \(S(\beta'(t_i)) \in T_P^{\ell_0} \). Hence for \(\ell_0 := \max(\{0\} \cup \{\ell_j \mid 1 \leq j \leq n \land j \neq i\}) \), we have \(R_j(\beta'(t_j)) \in T_P^{\ell_0} \) for all \(j \in \{1, \ldots, n\} \setminus \{i\} \) and \(S(\beta'(t_i)) \in T_P^{\ell_0} \).

This implies \(\beta'(t_0 \cdot t_1 \cdot \cdots \cdot t_{i-1} \cdot t_{i+1} \cdot \cdots \cdot t_n) \in q_1(\bar{z}) P(3) \) and since \(q_0(\bar{z}) P(3) = q_1(\bar{z}) P(3) \) there is an assignment \(\beta \) coinciding on \((t_0 \cdot t_1 \cdot \cdots \cdot t_{i-1} \cdot t_{i+1} \cdot \cdots \cdot t_n) \) with \(\beta' \) such that \(R_0(\beta(t_0)) \in T_P^{\ell_0} \) for some \(\ell_0 < \omega \). Let \(\ell_1 := \max(\{0, \ell_0\}) \) then \(R_j(\beta(t_j)) \in T_P^{\ell_1} \) for all \(j \in \{1, \ldots, n\} \). Since all premises of the rule \(R_0(t_0) \leftarrow R_1(t_1) \land \cdots \land R_n(t_n) \) are satisfied, there is some \(\ell := \ell_1 + 1 \) such that \(R_0(\beta(t_0)) \in T_P^{\ell_1} \), which shows, as \(\beta \) coincides on \(t_0 \) with \(\beta' \) that \(R(\bar{a}) \in T_P^{\ell_1} \).

Together with \(R P(3) \subseteq R P(3) \) this shows \(R P(3) = R P(3) \) for all predicate names \(R \in \text{PRED} \) and hence that \(P(3) = P^*(3) \).

It now becomes clear, how Algorithm 2 and Proposition 3 fit together: For a given database \(J \) and a set of atomic queries \(L \), Algorithm 2 computes for each \(Q \in L \) the query answers under the program \(P \), which are stored in the relation \(S^Q_{30} \), where \(J_0 = J \) after Algorithm 2 has finished. These \(S_Q \) are edbs for \(P \).

Let now \(r : R_0(t_0) \leftarrow R_1(t_1) \land \cdots \land R_n(t_n) \) be a rule in this program and \(Q \subseteq L \) an atomic query s.t. \(R_0(t_0) \subseteq \exists \), then \(Q = R_0(t) \) such that \(t \subseteq \exists \) by definition of \(\exists \). Correctness of Algorithm 2 yields \(R(t) P(J_0) = S_Q(t) J_0 \) and hence that \(q_0(\bar{z}) P(J_0) = q_1(\bar{z}) P(J_0) \) where \(\bar{z} = t_0 \cdots t_n \) and \(q_0(\bar{z}) \models R \).

Proposition 3 guarantees that the substitution of \(R(t) \) by \(S_Q(t) \) in rule \(r \) is harmless w.r.t. \(J \). By applying this argument iteratively, one eventually obtains a program \(P^* \) in which all pre-computed atoms have been replaced and which yields the same materialization for \(J_0 \) as \(P \).

In the following section, we apply this rewriting to the OWL RL rule set.

6. Hybrid reasoning for OWL RL

In the previous sections, we described the two main components of our method which consist of the backward-chaining algorithm used to retrieve inferences as well as the pre-materialization procedure together with the predicate replacement.

We now discuss the implementation of the OWL RL rules using our approach. In fact, while our method can in principle be applied to any Datalog program, our implementation heavily relies on the fact that our program consists of inference rules on RDF data and thus, our prototype is unable to execute generic Datalog programs.

The official OWL RL rule set contains 78 rules, for which the reader is referred to the official document overview [13]. With selected examples from [13] we illustrate some key features of our algorithm.

Initial assumptions First of all, we exclude some rules from our discussion and implementation for various reasons. These are:

- All the rules whose purpose is to derive an inconsistency, i.e. rules with predicate false in the head of the rule. We do not consider them because our objective is to derive new triples rather than identify an inconsistency;
Singling out exactly those triple patterns from Table 2 is motivated by the fact that these patterns appear in many OWL rules, and is grounded on the assumptions that (i) their answer sets are very small compared to the entire input, and (ii) they are not as frequently updated as the rest of the data.

These characteristics make the set of inferred schema triples the ideal candidate to be pre-materialized. All rules which have a pre-materialized pattern among their body atoms are substituted replacing the pre-materialized pattern with its corresponding auxiliary relation as justified by Proposition 3.

After the pre-materialization procedure is completed, each rule which has a pre-materialized pattern in its head can be reduced to a mere look-up:

Example 10. Consider (scm-sco) from Table 9 in [13]:

\[T(x, \text{SCO}, z) \leftarrow T(x, \text{SCO}, y) \land T(y, \text{SCO}, z) \]

can be replaced according to Proposition 3 by \(r' \):

\[T(x, \text{SCO}, z) \leftarrow S_{\text{SCO}}(x, \text{SCO}, y) \land S_{\text{SCO}}(y, \text{SCO}, z) \]

where the answers to \(T(x, \text{SCO}, y) \) under \(\mathcal{I} \) are contained in \(S_{\text{SCO}}^2 \). By adding the rule

\[r'': \quad T(x, \text{SCO}, z) \leftarrow S_{\text{SCO}}(x, \text{SCO}, z) \]

every rule whose head atom unifies with \(T(x, \text{SCO}, y) \) can be deleted. Adding \(r'' \) is harmless; we can render it into \(r'' \) using Proposition 3: Since \(S_{\text{SCO}} \) is transitive we may replace an imaginary conjunction with \(\top \) (the atom which is always true) in \(r'' \) with \(S_{\text{SCO}}(x, \text{SCO}, z) \). By two more applications of Proposition 3, we can successively replace \(S_{\text{SCO}}(x, \text{SCO}, y) \) and \(S_{\text{SCO}}(y, \text{SCO}, z) \) each by \(\top \) obtaining \(r''' \).

This allows us to remove from unfolding 20 of the 48 rules after the pre-materialization is completed.

On the implementation of RDF lists

Some of the inference rules in the OWL RL rule set use RDF lists to allow for an arbitrary number of antecedents. The RDF lists cannot be represented in Datalog in a straightforward way since they rely on \(\text{rdf:first} \) and \(\text{rdf:rest} \) triples to represent the elements of the list. Therefore, they need to be processed differently.

In our implementation, at every step of the pre-materialization procedure, we launch two additional queries to retrieve all the (inferred and explicit) \(\text{rdf:first} \) and \(\text{rdf:rest} \) triples with the purpose of constructing such lists. Once we have collected them, we perform a join with the other schema triples, and determine the sequence of elements by repeatedly joining the \(\text{rdf:first} \) and \(\text{rdf:rest} \) triples. After this operation is completed,
from the point of view of the Datalog program, RDF lists appear as simple list of elements and are used according to the various rule logics. For example, if the rule requires a matching of all the elements of the list with the other antecedents, then the rule executor will first use the first element to perform the join, then it will use the second, and so on, until all the elements are considered.

6.1. Detecting duplicate derivation in OWL RL

Since the OWL RL fragment consists of a large number of rules, there is a high possibility that the proof tree contains branches that lead to the same derivation. Detecting and avoiding the execution of these branches is essential in order to reduce the computation.

After empirically analyzing some example queries, we detected two major duplicate sources in our experiments and devised strategies to avoid them. The first comes from the nature of the rule set. The second comes from the input data.

First source of duplicates The most prominent example of generation of duplicates of the first type is represented by the symmetric rules which have the same structure but have the variables positioned at different locations. We refer with rule names and tables in the following list to the OWL RL rule set in [13]:

<table>
<thead>
<tr>
<th>prp-eqp1</th>
<th>prp-eqp2</th>
<th>from Table 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cax-eqc1</td>
<td>cax-eqc2</td>
<td>from Table 7</td>
</tr>
<tr>
<td>prp-inv1</td>
<td>prp-inv2</td>
<td>from Table 5</td>
</tr>
</tbody>
</table>

We analyze each of these three cases below.

Let \(S^3_{eqp} \) be the pre-materialization of the atomic query \(T(x, EQP, y) \). Together, the rules \(scm-eqcol \) and \(scm-eqloc2 \) render \(S^3_{eqp} \) symmetric. Hence the query

\[
q(x, p_2, y) \leftarrow T(x, p_1, y) \land S_{eqp}(p_1, EQP, p_2)
\]

yields the same results under \(P(3) \) as

\[
q(x, p_2, y) \leftarrow T(x, p_1, y) \land S_{eqp}(p_2, EQP, p_1).
\]

Proposition 3 allows \(S_{eqp}(p_1, EQP, p_2) \) in the rewritten rule \(prp-eqpl' \):

\[
T(x, p_2, y) \leftarrow T(x, p_1, y) \land S_{eqp}(p_1, EQP, p_2)
\]

and thus effectively deleting \(prp-eqpl' \) from the rule set.

Similarly, rules \(scm-eqcol \) and \(scm-eqloc2 \) render the results of the pre-materialized query \(T(x, EQC, y) \) symmetric allowing to delete \(cax-eqc1 \) or rather its rewriting \(cax-eqc1' \) in a similar fashion.

Due to the lack of an appropriate rule, the pre-materialized query \(T(x, INV, y) \) need not yield a symmetric result, although the intended relation, “being the inverse of each other”, is symmetric. We can first observe that Proposition 3 allows us to replace the rules \(prp-inv1 \) and \(prp-inv2 \) by their rewritings

\[
T(y, p, x) \leftarrow T(x, q, y) \land S_{inv}(p, INV, q)
\]

\[
T(y, p, x) \leftarrow T(x, q, y) \land S_{inv}(q, INV, p)
\]

which defuses the idb atom \(T(q, INV, p) \) into the harmless edb \(S_{inv} \), for which \(S^3_{inv} \) contains all answers to the query \(T(x, INV, y) \). Let this new program be called \(P' \). Further, let \(P'' \) be the program where both rules have been replaced by

\[
T(x, p, y) \leftarrow T(x, q, y) \land S_{inv}(p, INV, q)
\]

with \(S^3_{inv} \) being the symmetric closure of \(S^3_{inv} \). It is now not difficult to see, that every model of \(P'' \) is a model of \(P'' \) and vice versa. In particular the full materialization \(P(3) \) is equal to the full materialization \(P''(3) \). Hence we can replace \(prp-inv1 \) and \(prp-inv2 \) by one rule under the condition that we pre-materialize the symmetric closure of \(T(x, INV, y) \).

Second source of duplicates The second type of duplicate generation comes from the input data which might contain some triples that make the application of two different rules perfectly equivalent.

We have identified an example of such a case in the Linked Life Dataset, which is a realistic data set that we used to evaluate our approach. In this data set there is the triple \(T(SCO, TYPE, TRANS) \) which states that the \(rdfs:subClassOf \) predicate is transitive.

In this case, during the pre-computation phase the query \(T(x, SCO, y) \) will be launched several times, and each time the reasoner will trigger the application of both the rules \(scm-sco \) and \(prp-trp \).

However, since the application of these two rules will lead to the same derivation, the computation is redundant and inefficient. To detect such cases, we apply a special algorithm when the system is starting up and initializing the rule set. A complete description of this algorithm is outside the scope of this paper and we will simply illustrate the main idea behind it.

Basically, this algorithm compares each rule with every other rule in order to identify under which con-
ditions the two will produce the same output to a given query. For example, the rules \texttt{scm-sco} and \texttt{prp-trp} will produce the same derivation if (i) the input contains the triple \(T(\texttt{SCO}, \texttt{TYPE}, \texttt{TRANS}) \) and if (ii) there is a query with \texttt{SCO} as a predicate.

In order to verify that this is the case, the algorithm checks whether the triple \(T(\texttt{SCO}, \texttt{TYPE}, \texttt{TRANS}) \) exists in the input and whether there is a matching on the position of the variables in the two rules (if one rule contains more variables than the other, then the algorithm will substitute the corresponding terms). If such a matching exists, then the two rules are equivalent. In our example, the algorithm will find out that the rule \texttt{prp-trp} is equivalent to \texttt{scm-sco} if we replace \(?p \) with \texttt{SCO}. Therefore, if there is an input query with \texttt{SCO} as predicate, the system will execute only one of the two rules, avoiding in this way a duplicated derivation.

7. Evaluation

We have implemented our approach in a Java prototype called QueryPIE\(^7\) and we have evaluated the performance using one machine of the DAS-4 cluster,\(^8\) which is equipped with a dual Intel E5620 quad core CPU of 2.4 GHz, 24 GB of memory and 2 hard disks of 1 TB each, configured in RAID-0 mode.

To the best of our knowledge, there is not (yet) a proper benchmark for reasoning over large data sets that extensively uses all the new features introduced with the OWL RL language. Therefore, we chose to evaluate our method using the most common and large-scale data sets currently available in order to evaluate how hybrid reasoning would perform on current data and realistic queries. Because of this, we use two data sets as input: LUBM [9], which is one of the most popular benchmarks for OWL reasoning and LLD (Linked Life Data),\(^9\) which is a curated collection of real-world data sets in the bioinformatics domain.

LUBM allows us to generate data sets of different sizes. For our experiments, we generated a data set of 10 billion triples (which corresponds to the generation of 80000 LUBM universities). The Linked Life Data data set consists of about 5 billion triples. Both data sets were compressed using the procedure described in [21].

The QueryPIE prototype uses six indices stored alongside with the triple permutations on disk using an optimized B-Tree data structure. During the reasoning process, the inferred triples are stored and cached in the main memory. Furthermore, the content of the pre-materialization is indexed at every iteration to facilitate the retrieval of the lookup function.

The rest of this section is organized as follows. First, in Section 7.1 we report on a set of experiments to evaluate the performance of the pre-materialization phase. Next, in Section 7.2 we focus on the performance of the backward-chaining approach and analyze its performance on some example queries.

7.1. Performance of the pre-materialization algorithm

We launch the pre-materialization algorithm on the two data sets to measure the reasoning time necessary to perform the partial closure. The results are reported in the second column of Table 3. Our prototype performs joins between the pre-materialized patterns when it loads the rules in memory, therefore, we also include the startup time along with the query runtimes to provide a fair estimate of the time requested for the reasoning.

From the results, we notice that the pre-materialization is about three orders of magnitude faster for the LUBM data set than for LLD. The cause for this difference is that the ontology of LUBM requires much less reasoning than the one of LLD in order to be pre-materialized. In fact, in the first case the pre-materialization algorithm derives 390 triples, needing four iterations to reach a fix point. In the other case, the pre-materialization required 7 iterations and returned about 10 million triples.

We compare the cost of performing the partial closure against the cost of a full materialization, which is currently considered as state of the art in the field of large scale OWL reasoning. To this end, the closest ap-
Table 4
List of example queries

<table>
<thead>
<tr>
<th>ID</th>
<th>Dataset</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern 1</td>
<td>LUBM</td>
<td>?x ?y http://www.Department0.University0.edu/GraduateCourse0</td>
</tr>
<tr>
<td>Pattern 2</td>
<td>LUBM</td>
<td>?x lubm:subOrganizationOf http://www.University0.edu</td>
</tr>
<tr>
<td>Pattern 3</td>
<td>LUBM</td>
<td>http://.../GraduateStudent124 clubm:degreeFrom http://www.University114.edu</td>
</tr>
<tr>
<td>Pattern 4</td>
<td>LUBM</td>
<td>?x ?y http://www.Department0.University0.edu/AssistantProfessor0</td>
</tr>
<tr>
<td>Pattern 5</td>
<td>LUBM</td>
<td>?x lubm:memberOf http://www.Department0.University0.edu</td>
</tr>
<tr>
<td>Pattern 6</td>
<td>LUBM</td>
<td>?x rdf:type clubm:Department</td>
</tr>
<tr>
<td>Pattern 7</td>
<td>LLD</td>
<td>?x ?y lifeskim:mentions</td>
</tr>
<tr>
<td>Pattern 9</td>
<td>LLD</td>
<td>http://.../resource/pubmed/id/15964627 ?x ?y</td>
</tr>
<tr>
<td>Pattern 10</td>
<td>LLD</td>
<td>?x ?y http://purl.uniprot.org/go/0006952</td>
</tr>
</tbody>
</table>

The runtime of the complete materialization performed with this method is reported in the third column of Table 3. Note that in both cases a complete materialization requires between four and five days against the seconds or minutes required for our method. This comparison clearly illustrates the advantage of our approach in terms of pre-materialization cost. Note, however, that there could be cases where our approach becomes particularly inefficient if our backward-chaining algorithm still has to perform some intermediate triples to answer different schema patterns.

In any case, the advantage of performing only a pre-materialization comes at a price: while after a complete materialization reasoning is no longer needed, our backward-chaining algorithm still has to perform some inference at query time. The impact of this operation on the query-time performance is analyzed in the next section.

7.2. Performance of the reasoning at query time

In order to analyze the performance of reasoning at query time, we launch some example queries after computing the closure using our backward-chaining algorithm to retrieve the results. For this purpose, we select six example queries for both the LUBM and LLD data sets reported in Table 4.

While LUBM provides an official set of queries for benchmarking, there is unfortunately no official set of queries that can be used for benchmarking the performance on the LLD data set. Therefore, we took some queries that are reported on the official web page of the LLD data set and modified them so that they trigger different types of reasoning.

These queries were selected according to the following criteria:

- **Number of results**: We selected queries that return a number of results that varies from no results to a large set of triples;
- **Reasoning complexity**: Some queries in our example set require no reasoning to be answered, in contrast other queries generate a very large proof-tree;
- **Amount of data processed**: In order to answer a query, the system might need to access and process a large set of data. We selected queries that read and process a variable amount of data to verify the impact of I/O on the overall performance.

We perform a number of experiments to analyze three aspects of the performance of our algorithm during query time: the absolute response time, the reduction of the proof tree, and the overhead induced by reasoning during query-time. Each of these aspects is analyzed below.

7.2.1. Absolute response time

We report in Table 5 the execution times obtained launching the selected example queries in Table 4. In
Table 5

Runtime of the queries in Table 4 on the LUBM and LLD data sets

<table>
<thead>
<tr>
<th>Q.</th>
<th>Runtime (ms)</th>
<th>Derived triples</th>
<th>I/O access</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cold</td>
<td>Warm</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>60.43</td>
<td>6.39</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1099.28</td>
<td>129.31</td>
<td>463</td>
</tr>
<tr>
<td>3</td>
<td>49.18</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>73.06</td>
<td>11.17</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>118.71</td>
<td>13.97</td>
<td>1480</td>
</tr>
<tr>
<td>6</td>
<td>5026.27</td>
<td>2590.27</td>
<td>1599987</td>
</tr>
<tr>
<td>7</td>
<td>228.26</td>
<td>214.57</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>23.74</td>
<td>6.29</td>
<td>4466</td>
</tr>
<tr>
<td>9</td>
<td>7064.04</td>
<td>609.4</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>2535.38</td>
<td>1103.48</td>
<td>28446</td>
</tr>
<tr>
<td>11</td>
<td>2613.37</td>
<td>1883.14</td>
<td>8546</td>
</tr>
<tr>
<td>12</td>
<td>2334.70</td>
<td>2059.20</td>
<td>1187944</td>
</tr>
</tbody>
</table>

10 Please note that the reported runtime does not include the time required to compress/decompress the numerical terms to their string counterpart.

the second and third columns we report both the cold and warm runtime. With cold runtime, we identify the runtime that is obtained by launching the query right after the system has started. Since the data is stored on disk, we also measure with the cold runtime the time to read the data from disk. On the other side, the warm runtime measures the average response time of launching the same query thirty more times. During this execution the data is already cached in memory and the Java VM has already initialized the internal data structures, so the warm runtime is significantly faster than the cold one.

The fourth and fifth column, respectively, report the total number of derivations that were inferred during the execution of the query, and the number of triples returned to the user.

The sixth and seventh column report the number of data lookups required to answer the query and the amount of data that is read from disk. These two numbers are important for estimating the impact of reasoning during query time. While querying without reasoning only requires a data lookup, the backward-chaining algorithm might require to access the database multiple times. For example, in order to answer query 11 the program had to access the data indices about 15000 times.

Using the results reported in Table 5, we make several observations: First, we notice that the cold runtime is in general significantly higher than the warm runtime between one and two orders of magnitude. This is primarily due to the time consuming I/O access to disk especially because reasoning requires to read in different locations of the data indices. Therefore the system is required to read several blocks of the B-Tree from the disk. For most of the queries, the I/O access dominates the execution time. The worst case presents query 10 where the program reads from disk about 337 MB of data. We conclude from these results that the performance of the program is essentially I/O bounded, if the data is stored on disk. After the data is loaded in memory, the execution time drops in half of the experiments by a factor between 6.5 and 11.6 and in the other half of the experiments by a factor between 1.1 and 3.8.

Another factor that affects the performance is the number of inferred triples that are calculated during the execution of the query. In fact, we notice that the absolute performance is lower in case a large number of triples is either inferred or retrieved from the database. This behavior is due to the fact that the algorithm needs to temporarily store these triples as it must consider them in each repeat-loop pass until the closure is reached. This means that these triples must be stored and indexed to be retrieved during the following iterations and the response time consequently increases.

Summarizing our analysis, we make the following conclusions: (i) the runtime is influenced by several factors among which the most prominent is the amount of I/O access that is requested to answer the query (this number is proportional to the size of the proof tree) and the number of derivations produced. (ii) There is a large difference in the runtime observed in our experiments. In the worst case the absolute runtime is in the range of a few seconds, while in the best cases the performance is in the order of dozens of milliseconds. However, even in the worst case the system can be interactively used since few seconds are acceptable in most scenarios.

In Section 7.2.3 we compare the response times to those without reasoning in order to have a better overview of the overall performance and understand what the overhead induced by reasoning at query time is.

7.2.2. Reduction of the proof tree

Our approach relies on the pre-materialization of some selected queries for a variety of purposes such as performing efficient sideways information passing, ex-
Table 6
Estimation of the reduction of the proof tree caused by the pre-materialization algorithm

<table>
<thead>
<tr>
<th>Q.</th>
<th># Leaves proof tree</th>
<th>Reduction ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W/o pre-comp.</td>
<td>Our approach</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>7</td>
</tr>
</tbody>
</table>

including rules that derive duplicates, and to reduce the size of the proof tree during query-time.

In this section, we evaluate the effective reduction of proof-tree size obtained by avoiding performing inference on the pre-materialized patterns. However, we cannot completely ignore the pre-materialization since some optimizations (e.g. the pruning strategy) are necessary to avoid an explosion of the proof-tree. To overcome this problem, we have manually analyzed the execution of the LUBM queries with our prototype on a much smaller data set (of about 100 thousand triples) and manually constructed the proof trees simulating the case without pre-materialization (note that we excluded queries 4 and 6 since in these cases reasoning did not contribute to derive new answers).

In principle, we identify for each query those rules which produce its answers and for each pre-materialized body atom, we add the corresponding branch that was generated when that query was calculated during the pre-materialization phase.

We report the results of this analysis in Table 6. The last column reports the obtained reduction ratio and shows that the number of leaves shrinks between two and four times due to our pre-materialization.

The results delivered by this method of evaluation must be seen as an underestimate, because we did not deactivate all the optimizations, and therefore in reality the gain is even higher than the one calculated. Nevertheless, this shows that our pre-calculation is indeed effective. For a very small cost in both data space and upfront computation time, we substantially reduce the proof tree. Apparently, the pre-materialization precisely captures small amounts of inferences that contribute substantially to the reasoning costs because they are being used very often.

7.2.3. Overhead of reasoning during query-time

While we are able to significantly reduce the size of the proof tree and apply other optimizations to further reduce the computation, we still have to perform some reasoning during the execution of a query. It is important to evaluate what the cost for the remaining reasoning is when we compare our approach to a full-materialization approach (which is currently the de-facto technique for large scale reasoning), where a large pre-materialization is performed so that during query time reasoning is avoided altogether.

To this end, we launch a number of experiments activating different types of reasoning at query time and report the warm runtime in Table 7.

We proceed as follows: we first launch the queries, deactivating all rules at query time, and state their execution time in the first column of the table (the title “No Ins.” indicates no insertion). We then reissue the queries activating only the RDFS rules (in the third column), then the \(pD^* \) rules and finally the OWL RL ones.

The results reported under the “Ins.” columns (“Ins.” means insertion) are calculated differently. In fact, in the previous experiments the number of retrieved results for a specific query might differ because we changed the rule set and this can influence the general performance. To maintain the number of results constant, we repeat the same experiment adding to the knowledge base all the possible results so that even if reasoning is not activated the same number of results is retrieved.

From the results presented in the table, we notice that in both cases (“Ins” and “No Ins.”) the response time progressively increases as we include more rules. This behavior is expected since more computation must be performed as we add new rules. However, in some cases (like query 12) there is a significant difference even if the query does not require the application of any rule. The difference is due to the cost of storing the results into main memory during the query execution to ensure the completeness of the backward-chaining algorithm. This operation is clearly a non-negligible contributor to the overall performance.

Furthermore, we notice in our experiments that as the size of the proof tree increases, so does the potential derivation of duplicates due to the potential higher number of combinations. In Section 6.1, we tackled this problem by proposing some initial algorithms to limit the number of duplicates. However, our work in this respect is still preliminary and further research on this particular aspect might become necessary in order to scale not only in terms of input size but also in terms of reasoning complexity.

Finally, we can compare the response times reported in the third column with the ones of the penultimate column to compare the performance of the reason-
Table 7
Runtime (in ms.) of the example queries using different sets of rules

<table>
<thead>
<tr>
<th>Q.</th>
<th>Only lookup</th>
<th>RDFS</th>
<th>pD*</th>
<th>OWL RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.81</td>
<td>0.83</td>
<td>1.88</td>
<td>1.79</td>
</tr>
<tr>
<td>2</td>
<td>0.82</td>
<td>1.51</td>
<td>1.56</td>
<td>2.83</td>
</tr>
<tr>
<td>3</td>
<td>0.82</td>
<td>0.83</td>
<td>3.55</td>
<td>2.72</td>
</tr>
<tr>
<td>4</td>
<td>0.88</td>
<td>0.94</td>
<td>2.01</td>
<td>2.32</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.61</td>
<td>7.01</td>
<td>4.95</td>
</tr>
<tr>
<td>6</td>
<td>405.42</td>
<td>418.38</td>
<td>2605.68</td>
<td>2630.08</td>
</tr>
<tr>
<td>7</td>
<td>0.77</td>
<td>0.79</td>
<td>176.19</td>
<td>1.26</td>
</tr>
<tr>
<td>8</td>
<td>1.96</td>
<td>1.89</td>
<td>6.23</td>
<td>6.34</td>
</tr>
<tr>
<td>9</td>
<td>0.84</td>
<td>0.90</td>
<td>262.7</td>
<td>46.53</td>
</tr>
<tr>
<td>10</td>
<td>7.90</td>
<td>7.29</td>
<td>212.57</td>
<td>115.16</td>
</tr>
<tr>
<td>11</td>
<td>1.85</td>
<td>1.93</td>
<td>200.55</td>
<td>8.35</td>
</tr>
<tr>
<td>12</td>
<td>338.14</td>
<td>337.41</td>
<td>2129.49</td>
<td>2044.34</td>
</tr>
</tbody>
</table>

Applying rules with a top-down method like backward-chaining is a well-known technique in rule-based languages like Datalog [6]. Datalog is a generic and powerful language that can handle an arbitrary number of rules using predicates of any arity. In our work, we optimized the implementation to exploit the characteristics of RDF data and to execute a standard rule set, ignoring features of Datalog that are not necessary to execute the OWL rules. Therefore, and since there is, to the best of our knowledge, no Datalog engine that can load billions of triples, a direct comparison between our work and similar Datalog engines such as IRIS [5] or Jena [12] is not possible.

The backward-chaining algorithm that we present in Section 4 is inspired by the QSQ and the semi-naive evaluation algorithms which are well-known techniques in logic programming. A similar termination condition to ours is employed also in the RQA/FQI algorithm [14].

In our approach, we exploit the availability of the pre-computation using a sideways information passing (SIP) technique [3] during the execution of the rules. This technique is used in other approaches like in the magic set rewriting algorithm [2]. However, while the magic set algorithm uses SIP at compile-time to construct rules which are later used in a bottom-up fashion, we employ this technique at runtime to execute queries in a top-down manner. Also, SIP strategies are similarly used in generic query processing to prune irrelevant results. In [10] the authors propose two adaptive SIP strategies where information is passed adaptively between operators that are executed in parallel.

A similar technique to our method is memoing [26]. Memoing is a technique where queries that are frequently requested are cached to improve the performance. The difference between memoing and our work is that in memoing caching is dynamic, while in our approach caching is static: we manually select which queries that are to be cached.

Summarizing, we observe in our evaluation that fairly complex reasoning can be performed rather quickly (in a matter of few seconds in the worst case) on a small set of realistic queries and on large data. However, the reader should keep in mind that there could be worst-case scenarios (which do not seem to appear on current data) where the performance is significantly worse, and this is mainly due to the theoretical high worst-case complexity that is inherently present in the reasoning process.

8. Related work

Applying rules with a top-down method like backward-chaining is a well-known technique in rule-based languages like Datalog [6]. Datalog is a generic and powerful language that can handle an arbitrary number of rules using predicates of any arity. In our work, we optimized the implementation to exploit the characteristics of RDF data and to execute a standard rule set, ignoring features of Datalog that are not necessary to execute the OWL rules. Therefore, and since there is, to the best of our knowledge, no Datalog engine that can load billions of triples, a direct comparison between our work and similar Datalog engines such as IRIS [5] or Jena [12] is not possible.

The backward-chaining algorithm that we present in Section 4 is inspired by the QSQ and the semi-naive evaluation algorithms which are well-known techniques in logic programming. A similar termination condition to ours is employed also in the RQA/FQI algorithm [14].

In our approach, we exploit the availability of the pre-computation using a sideways information passing (SIP) technique [3] during the execution of the rules. This technique is used in other approaches like in the magic set rewriting algorithm [2]. However, while the magic set algorithm uses SIP at compile-time to construct rules which are later used in a bottom-up fashion, we employ this technique at runtime to execute queries in a top-down manner. Also, SIP strategies are similarly used in generic query processing to prune irrelevant results. In [10] the authors propose two adaptive SIP strategies where information is passed adaptively between operators that are executed in parallel.

A similar technique to our method is memoing [26]. Memoing is a technique where queries that are frequently requested are cached to improve the performance. The difference between memoing and our work is that in memoing caching is dynamic, while in our approach caching is static: we manually select which queries that are to be cached.
Some RDF Stores support various types of inference. 4store [17] applies the RDFS rules with backward-chaining. Virtuoso [8] supports the execution of few (but not all) OWL RL rules. BigOWLIM [4] is an RDF store that supports the OWL 2 RL rule set by performing a full materialization when the data is being loaded. Another database system that performs OWL RL reasoning in a similar way is Oracle: In [11] the authors describe their approach reporting the performance of the inference over up to seven billion triples. An approach in which the OWL RL rules are used is presented in [18] where the authors have encoded OWL RL reasoning in the context of embedded devices, and therefore optimizing the computation for devices with limited resources.

Some work has been presented to distribute the reasoning process using supercomputers or clusters of machines. In our previous work we used the MapReduce programming model to improve the scalability [20]. In [27], the authors implement RDFS reasoning using the Opteron blade cluster. To the best of our knowledge, none of the mentioned approaches supports a similarly large subset of OWL RL rules.

Implicit information can be derived not only with rule-based techniques. In [15], the authors focus on ontology based query answering using the OWL 2 QL profile [13] and present a series of techniques based on query rewriting to improve the performance. While we demonstrate inference over a much larger scale, a direct comparison of our technique with this work is difficult since both the language and reasoning techniques are substantially different.

A series of work has been done on reasoning using the OWL EL profile. This language is targeted to domains in which there are ontologies with a very large number of properties and/or classes. [7] presented an extensive survey of the performance of OWL EL reasoners analyzing tasks like classification or consistency checking. Again, the different reasoning tasks and considered language makes a direct comparison difficult for our approach.

9. Conclusions

Until now, all inference engines that can handle reasonably expressive logics over very large triple stores (in the orders of billion of triples) have deployed full materialization. In the current paper we have broken with this mold, showing that it is indeed possible to do efficient backward-chaining over large and reasonably expressive knowledge bases.

The key to our approach is to pre-compute a small number of inferences which appear very frequently in the proof tree. This of course re-introduces some amount of pre-processing, but this computation is measured in terms of minutes, instead of the hours needed for the full closure computation.

By pre-materializing part of the inferences upfront instead of during query-time, we are able to introduce a number of optimizations which exploit the pre-computation to improve the performance during query-time. To this end, we adapted a standard backward-chaining algorithm like QSQ to our use case exploiting the parallelization of current architectures.

Since our approach deviates from standard practice in the field, we have formalized the computation using the theory of deductive databases and extensively analyzed and proved its correctness.

We have implemented our method in a proof-of-concept Java prototype and analyzed the performance over both real and artificial data sets of five and ten billion triples using most of the OWL RL rules. The performance analysis shows that the query response-time for our approach is in the low number of milliseconds in the best cases, and increasing up to a few seconds as the query increases in its complexity. The loss of response time is offset by the great gain in not having to perform a very expensive computation of many hours before being able to answer the first query.

Obvious next steps in future work would be to investigate how our approach can further scale in terms of data size especially when including those rules from OWL 2 RL which we have not considered so far. We also need a deeper understanding of which and how properties of the knowledge base influence both the cost of the limited forward computation and the size of the inference tree. It is worth to explore whether related techniques such as ad-hoc query-rewriting like the one presented in [15] can be exploited to further improve the performance.

To the best of our knowledge, this is the first time that complex backward-chaining reasoning over realistic OWL knowledge bases in the order of ten billion triples has been realized. Our results show that this approach is feasible, opening the door to reasoning over much more dynamically changing data sets than what was possible until now.
Acknowledgments

We would like to thank Stefan Schlobach, Barry Bishop, Boris Motik, and Ian Horrocks for providing useful comments and advice. We also would like to thank Ceriel Jacobs for the support in developing and debugging the prototype used in the evaluation.

A sincere thanks for the long and detailed reviews goes to the reviewers of this article, Aidan Hogan, Matthias Knorr, Raghava Mutharaju, and Peter Patel-Schneider who have significantly improved the quality of this article with a careful review of the work.

This work was partly supported by the LarKC project (EU FP7-215535), the COMMIT project and by the SEALS Project.

References