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Abstract. The Digital Earth [13] aims at developing a digital representation of the planet. It is motivated by the need for inte-
grating and interlinking vast geo-referenced, multi-thematic, and multi-perspective knowledge archives that cut through domain
boundaries. Complex scientific questions cannot be answered from within one domain alone but span over multiple scientific
disciplines. For instance, studying disease dynamics for prediction and policy making requires data and models from a diverse
body of science ranging from medical science and epidemiology over geography and economics to mining the social Web. The
naïve assumption that such problems can simply be addressed by more data with a higher spatial, temporal, and thematic resolu-
tion fails as long as this more on data is not supported by more knowledge on how to combine and interpret the data. This makes
semantic interoperability a core research topic of data-intensive science. While the Digital Earth vision includes processing ser-
vices, it is, at its very core, a data archive and infrastructure. We propose to redefine the Digital Earth as a knowledge engine and
discuss what the Semantic Web has to offer in this context and to Big Data in general.

‘Considerable data regarding the environment are avail-
able through the myriad of remote-sensing programs,
however, this data is not directly compatible with the
models. It has been observed that scientists and engi-
neers spend more than 60% of their time just preparing
the data for model input or data-model intercomparison.
This is an inefficient use of the precious time of NASA
scientists and engineers.’ [28]

Beyond the general-purpose Web

Initially, the Semantic Web [3,17] was proposed as
a successor of the document Web that makes the stored
content understandable to software agents and enables
them to extract, process, and combine this information.
At this time, the Web was still dominated by authori-
tative sources and different from the social read-write
Web that we know today. During these early days, data

on the Web was assumed to be relatively stable, author-
itative, and fit for a given, predefined purpose. Thus, in
analogy to catalogs, it was assumed that data providers
would invest in creating intelligent metadata to im-
prove retrieval and reuse. This made semantic tech-
nologies capable of handling sophisticated ontologies
a promising research vision.

These days, however, the Web is based on funda-
mentally different principles. The volume of data is
growing at a higher rate than our capacities for long-
term archiving. New data is added at a velocity, sur-
passing our ability to consume it. Instead of a lim-
ited number of data providers and formats, data is con-
tributed by a myriad of human users, software agents,
and technical sensors in a variety of different multi-
media formats. While these three V’s are character-
istic for the omnipresent Big Data, we argue that a
fourth V addressing the value of the created data is rel-
evant as well. Finally, the general-purpose Web in it-
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self is losing ground with traffic constantly declining
since more than 10 years and the increasing success of
single-purpose apps [1].

These new realities call for a new perspective on
the vision of a semantic Web. Central assumptions
such as that data providers would invest into creat-
ing sophisticated and stable ontologies do not hold any
longer. To the contrary, the Web calls for pattern-like,
application-driven schema knowledge that can be eas-
ily adopted and makes data reusable for use cases not
envisioned by the data provider beforehand. In fact,
Linked Data [4] can be understood as such a novel
view on Web semantics. It takes up the successful idea
of Web links and enriches them with names and types,
proposes a decentralized and open network of inter-
linked data providers, makes data uniquely reference-
able using URIs, and argues for lightweight ontologies.
Schema.org, a schema collection for embedded seman-
tic markup for Web pages, launched by Google, Ya-
hoo, and Microsoft in 2011 points into a similar direc-
tion. Even more, Google’s Knowledge Graph imple-
ments such a lightweight version of a semantics-based
search on Web scale.

Is there no need for more powerful knowledge rep-
resentation and reasoning? There is, but we have to re-
alize that different settings require different methods.
We have to look beyond the general-purpose Web to
communities that have an intrinsic need for more in-
telligent metadata and conceptual modeling. In terms
of the Big Data V’s, volume and velocity in them-
selves do not motivate the need for more elaborate se-
mantic technologies, but may, indeed, be best served
with lightweight approaches. It is the variety and value
dimension of data that motivates the investment into
technologies for modeling and reasoning over complex
knowledge. In the following we argue that interdisci-
plinary science offers just this setting, in which hetero-
geneous data is painstakingly created, collected, main-
tained, and integrated to answer complex scientific and
social questions, and to support policy making.

The Digital Earth

Introduced by Al Gore in 1998 [13] and refined
over the years, the Digital Earth envisions a highly
interdisciplinary knowledge archive and service in-
frastructure for geo-referenced, interconnected, multi-
dimensional, multi-thematic, and multi-perspective
data [8]. The 2011 symposium of the International
Society for Digital Earth, for example, was themed

The Knowledge Generation and investigated the role
of Digital Earth technologies for economic and social
sustainable development, disaster mitigation, environ-
mental protection, conservation of natural resources,
as well as the improvement of living standards.1 The
Digital Earth is motivated by the insight that complex
scientific questions cannot be answered from within
one domain alone but span over multiple scientific dis-
ciplines ranging from the natural and earth sciences
to the social sciences, information science, and engi-
neering. Essentially, the Digital Earth is about the ex-
change, integration, and reuse of heterogeneous data.
This makes semantic interoperability a major research
topic. Over the years some of the initial Digital Earth
goals have been realized by virtual globes such as
NASA World Wind or Google Earth. However, these
solutions are mostly focused towards visualization and
simple retrieval tasks.

Instead of establishing interoperability by sacrific-
ing semantic heterogeneity, the Digital Earth calls for
methods to reason in the presence of heterogeneous
and contradicting conceptual models, while maintain-
ing the variety brought in by different scientific do-
mains. A key problem in exchanging scientific data
and using such data for policy making is that the mean-
ing of categories used to share knowledge is not made
explicit. Hence, the same terms have radically differ-
ent meanings. This is especially troublesome for terms
that seem to be part of common everyday language.
Consequently, they are often not defined when pub-
lishing scientific data. Typical examples include city,
forest, or boundary [23]. Moreover, the theories and
methods used to produce these categories are most of-
ten not shared together with the data which limits our
ability to reproduce scientific results [7].

In the past, description logics-based knowledge rep-
resentation languages have often been mistaken as a
replacement to numerical and statistical modeling. In-
stead, ontologies are best understood as a thin com-
munication and exchange layer. Thin, in this context,
should not be confused with unimportant; in fact, on-
tologies are the decisive glue between models, data,
and users. Ontologies should assist in answering ques-
tions such as whether a specific model can be mean-
ingfully applied to a particular dataset and whether this
dataset is compatible with the user’s conceptualization
of the domain at hand. For instance, ontologies and
reasoning systems could assist users in selecting study
areas and datasets to test their scientific hypotheses.

1http://www.isde7.net/



K. Janowicz and P. Hitzler / The Digital Earth as knowledge engine 215

We argue that in the light of IBM’s DeepQA ar-
chitecture [10] and recent progress on Semantic Web,
Linked Data [4], and geospatial semantics [25], the
Digital Earth should be envisioned as a distributed
knowledge engine and question answering system that
supports scientists beyond mere data retrieval. While
the need for ontologies and semantic technologies is
widely acknowledged, crucial components to realize
such a vision are missing: how to assist scholars in
defining micro-ontologies that support the conceptual-
ization of their local models, how to arrive at the prim-
itives, i.e., base symbols, for such ontologies, how to
ground primitives in real observations and align them
to knowledge patterns, how to track categorical data
back to measurements using provenance, how to make
ontologies first class citizens of statistic methods, and,
finally, how to reason over heterogeneous, incomplete,
and contradicting micro-ontologies to foster interop-
erability and for checking integrity constrains before
reusing data [23]? In other terms, how do we enable
domain scientists to become knowledge engineers and
at the same time keep the underlying Semantic Web
machinery transparent?

Sources of variety

The variety of Big Data in general and the Digital
Earth in specific stems from different sources.

First, and most obviously, different scientific disci-
plines use the same terms while the underlying mean-
ing often differs to a degree where they become incom-
patible. A good example is the use of the term scale
in geography versus most other sciences. Intuitively,
a large scale study in, say, ecology or economy, cov-
ers a large extent in surveyed space; where the notion
of a space is not restricted to its spatial meaning but
includes attribute spaces as well. Modeling the global
economic impact of the 2009 flu pandemic based on
public heath data, for instance, would be called a large
scale study.

In contrast, geography is following the traditional
cartographic definition of scale. Here, scale is the rep-
resentative fraction between the distance on a map
and the corresponding distance on the ground. For ex-
ample, while each unit on a 1/24 000 map represents
24 000 units, e.g., centimeter, on the ground, each unit
on a 1/500 000 map corresponds to 500 000 units on
the ground. As the first fraction is greater than the sec-
ond, a 1/24 000 map is a large scale map covering a
small extent of the Earth’s surface in detail. To the con-

trary, a small scale covers large areas, such as conti-
nents, at the cost of representing less details.

While the example just given is multi-thematic,
streets are often used to illustrate multiple perspectives
on geographic space and categorization. A street is a
connection from A to B from the view point of trans-
portation science, while it is a disruptive separation
that cuts a habitat into segments from the view point of
ecology and conservation.

Differences in the meaning of the used terms are
even more troublesome when they happen within sci-
entific communities as a common agreement is often
wrongly assumed. Meaning is not static but dynam-
ically reconstructed during language use. While hu-
mans can perform this reconstruction by situated simu-
lation [2,15], terms used in metadata records are static
and de-contextualized. Consequently, the challenge is
to understand what was meant with a keyword used to
annotate data many years ago [30]. As Scheider puts
it the problem is not that machines are unable to com-
municate, but that humans misunderstand each other
if communicating via machines [29]. Finally, meaning
does not only vary across and within scientific commu-
nities, but also as a function of language, space, cul-
ture, age, social structure, and many other factors.

A second and related source for variety lies in the
very nature of knowledge itself. While some scien-
tists favor a Platonic realism and argue for an inde-
pendent ontological existence of universals, this posi-
tion is difficult to defend in case of highly multidis-
ciplinary research that cuts through the boundaries of
social and natural sciences. Acknowledging that the
classes we define in our ontologies are constructed and
that knowledge is an evolving process of adaptation to
our experiential reality [31] implies that there is (and
will be) more than just one way to construct. Con-
sequently, Big Data should not be approached with
equally big theories that try to arrive at a universal and
static agreement, but by a network of theories that fos-
ter interoperability without giving up on semantic het-
erogeneity (and, thus, the long-tail of science).

A third reason for variety in Big Data is what could
be called an observation versus definition mismatch.
For example, a transportation infrastructure ontology
may model watercourses in terms of water depth, cur-
rents, and hazard to navigation, while another source
may model watercourses by their Strahler number, i.e.,
by their branching complexity. While both models are
useful and may be applied to describe the same enti-
ties on the surface of the Earth, the observation data of
the first one cannot be transformed to match the sec-
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ond definition and vice versa. While this is related to
the multi-purpose argument made before, it adds the
additional problem that the definition of terms cannot
be reconstructed out of the available observation data.

Finally, another source of variety stems from the
way how data and conceptual models are produced.
This ranges from different scientific workflows and
measurement procedures to different cultures and
file formats. To give a concrete example, authorita-
tive providers such as the U.S. Geological Survey
(USGS) aim at a high degree of standardization, a
stable schema level, maintainable data products, and
well defined measures for data quality. In contrast, so-
called Volunteered Geographic Information [11] such
as known from OpenStreetMap, Ushahidi, and geo-
referenced Flickr images and tweets, are created and
maintained by a highly-heterogeneous user commu-
nity with different backgrounds and application ar-
eas in mind. This kind of citizen science, which is
also very popular in other scientific domains, relaxes
the typical rules under which data is collected for the
benefit of providing the most up-to-date data. From
the viewpoint of Digital Earth research this source
of variety opens up new possibilities for science and
especially for the evaluation of data. For instance,
Flickr images can be used to validate tweets about the
Arab Spring, and volunteered crisis mapping can show
a complementary picture of the 2011 Earthquake in
Japan.

Research challenges

In the previous sections, we argued that a distributed
knowledge engine that cuts through scientific domains
may be a promising vision for the next decade of se-
mantics research. We explained why the variety and
value dimensions of Big Data will benefit most from
semantics research which enables a more efficient pub-
lishing, retrieval, reuse, and integration of scientific
data, models, and methods. In the following, we high-
light selected research challenges that would have to
be addressed to realize the vision of the Digital Earth
as a knowledge engine.

Fields and objects

Data can typically be represented as fields or as
objects [12]. For example, terrain can be modeled as
a continuous surface of elevation values or by dis-
crete objects, e.g., hills and mountains. In scientific

workflows, sensor data is often collected as fields
and transformed into objects later (if at all) during
analysis or information visualization. A typical ex-
ample is the classification of continuous absorption
and reflection patterns of electromagnetic radiation
collected by remote sensing instruments into discrete
land cover classes. The classed data is often shared as
objects, e.g., polygons representing forests. Semantic
Web technologies and the methods by which we define
ontologies have mostly focused on the object view and
neglect field data. This does not only exclude a huge
amount of relevant datasets but also fails to prevent se-
mantic interoperability problems at an early stage.

The Linked Data postulate of assigning URIs to
identify entities is a good example showing how much
current work is focused on objects. It is not clear how
to assign URIs to field data. For instance, remote sens-
ing instruments collect data in a range defined by their
swath width and cut down the data into manageable
chunks. The resulting data scenes often span thousands
of square miles and consist of millions of pixels hold-
ing the measured values. Assigning URIs to each of
these pixels is meaningless. The same is true for as-
signing a single URI to each scene as they are artifacts
of data collection and often dissect relevant features,
e.g., rivers.

The observations just made prompt the question,
how field-based data can become a first class citizen of
Linked Data and the Semantic Web, in order to tran-
scend the current object-centric perspectives.

Accuracy of categorization

Understanding data quality is crucial for the in-
tegration and analysis of heterogeneous data; posi-
tional accuracy, attribute accuracy, logical consistency,
and completeness come to mind. In terms of geo-
referenced data, for example, positional error distribu-
tion is measured by comparing digitized locations to
those on the ground, i.e., by ground truthing to higher-
precision measures or convention. Similarly, logical
consistency is determined by (topological) rules; e.g.,
roads and buildings must not overlap. However, we
lack methods to describe the semantic accuracy of cat-
egorical data in the same way.

To give a concrete example, if a dataset catego-
rizes neighborhoods in a city according to a particu-
lar land cover ontology and declares a certain area as
21. Developed, Open Space while remote sensing data
shows a highly developed area with apartment com-
plexes and industry, then the assigned category is more
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“off” than a second dataset classifying the same area as
23. Developed, Medium Intensity. Note that this does
not require a true categorization, but rather a reference
dataset. Similarly as positional accuracy is measured
via spatial distance, semantic similarity and analogy
have been proposed as a semantic distance between
classes defined in ontologies [24].

While we have only discussed the accuracy of cate-
gory assignment here, the general challenge will be to
develop measures for ontology quality, fitness for pur-
pose, conceptual drift and evolution, as well as a more
detailed understanding of the social construction of ge-
ographic feature types (which especially also includes
events and processes).

Exploratory interfaces

The ability to semi-automatically create faceted user
interfaces based on the underlying ontologies is one
of the great achievements of the Semantic Web. This
is made possible by shifting parts of the application
logic into the data and combining it with well stan-
dardized reasoning services and querying capabilities.
However, more complex queries and scientific work-
flows require new, exploratory interfaces, dialog sys-
tems, and new reasoning services based on analogies
and similarity [24].

For example, researchers may want to evaluate a
particular finding made in their study region by search-
ing for related regions. In terms of analogy-based rea-
soning, they are searching for a region that differs in
some properties, e.g., location, culture, mean temper-
ature, or population density, while the properties to be
evaluated, e.g., the spread of a disease, remain invari-
ant. Semantic similarity enabled interfaces can assist
users in browsing and navigating data while requir-
ing less knowledge about the underlying ontologies.
Besides improving semantics-based search interfaces,
they also enable paradigms such as query-by-example.
Instead of explicitly querying for particular terms or
classes, users can provide concrete examples which are
then used to automatically extract their commonalities,
i.e., those properties that should remain invariant, and
exploit them for information retrieval or recommender
systems [24].

Combining analogy reasoning and similarity-based
query-by-example, enables searching for the Riviera of
the United States2 or the Deepwater Horizon oil spill
of the 1980s. In each of these examples, and key for the

2Which is claimed to be Santa Barbara, but this can be tested now.

construction of analogies, particular characteristics re-
main invariant or are generalized to their super-classes
and super-relations, while other characteristics are ad-
justed by the system to compute results.

Dynamic typing & the dynamic nature of links

One of the core claims of Linked Data is that by
breaking up data silos we enable new and dynamic
ways in which data can be reused and combined. A
typical example is the extraction and triplification of
data from Web document. However, while separat-
ing data from documents improves accessibility it puts
more burden on the interpretation. Documents encap-
sulate information by providing reference frames and
context for the inherent data and, thus, support the pro-
cess of interpretation, i.e., the reconstruction of what
was meant with the data. As a consequence, it is theo-
retically possible to run queries over the Linked Data
Web that span over multiple sources to answer com-
plex questions and establish new links between data
on-the-fly, in practice, however, retrieving meaningful
results is challenging or even impossible. We assume
that these problems can be approached by ontologies
and semantic annotations, i.e., by developing more in-
telligent and machine-interpretable metadata.

Surprisingly, in some cases this may have the oppo-
site effect. If we type data too early and with classes
that are loaded in terms of their ontological com-
mitments and domain specific views, we may restrict
reusability instead of fostering it. In fact, scientists
should rather prefer those classes that can be decon-
structed to observations. They should also publish
provenance data describing the used procedures and
workflows, as well as further contextual information
that may assist in the interpretation of data. For in-
stance, whether a particular area that is covered with
trees constitutes a forest [26], should be determined
when the data is reused in a given context and not pre-
maturely declared while publishing the data.

This does not mean that ontologies should not in-
troduce classes such as Forest but that these ontolo-
gies should be available as external sources in ontol-
ogy repositories and combined with the data at run-
time. To realize the vision of a Digital Earth as knowl-
edge engine, scientists should be able to create ontolo-
gies for their specific needs (or reuse existing ontolo-
gies) and then integrate Linked Data based on the se-
lected ontologies. As will be argued below, ontology
design patterns and micro-ontologies may enable such
a flexible selection and combination. To give a con-
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crete example, loading the same forestry dataset from
the Linked Data Web using a forest definition from
Germany produces radially different forests than ap-
plying the Portuguese definition to the same data [26].
What can the Semantic Web learn from dynamic and
late typing approaches that have been successful in
software engineering? How do we determine the 20%
of knowledge engineering that enables 80% of seman-
tic interoperability without over-engineering and re-
stricting reusability?

The same argument made in proposing to uncou-
ple domain-specific ontologies from the data level and
its observation-driven ontologies, does also hold for
links. Many data providers, such as libraries or sci-
entists, wanting to share their data do not realize that
linking on the Web is a highly dynamic process. The
target of their link may change in content frequently
and is outside of their control – even more, relations
such as owl:sameAs are symmetric. How can this be
brought in line with the quality and archival needs of
the scientific community.

Knowledge representation and reasoning

The idea of a Digital Earth as knowledge engine ex-
poses several issues which have so far not been re-
solved in Knowledge Representation and Reasoning
(KR) research – or in fact have even been neglected.
We discuss some of them in the subsequent para-
graphs.

Real data – even if we abstract from syntactic issues
– is usually noisy. Noisiness is here used as a catch-
all phrase indicating all kinds of issues which make
data integration and interoperability difficult, includ-
ing measurement and modeling errors, use of differ-
ent design patterns, different viewpoints (i.e., semantic
heterogeneity), vagueness (which includes uncertainty
in the fuzzy set theory sense, and probabilistic data),
and so forth. While some of these issues have been
studied on the schema level (see below), KR research
has not yet produced a significant body of research re-
sults which deals with data noisiness in the sense of
ground facts, i.e., the ABox. To a certain extent, some
approaches from fuzzy logic, probabilistic logics, and
from inconsistency handling can be carried over. Some
approaches related to, e.g., default (and related) log-
ics may be helpful for bridging semantic heterogene-
ity and diverging design patterns. But overall, there is
little work or experience in handling data noisiness at
large scale, and in uncontrolled settings like the Dig-
ital Earth. It could be conjectured that the reason for

this neglect lies in the fact that these issues just have
not really arisen in practice so far. However, the vision
presented here – and in more generality problems re-
lated to the handling of Big Data or Linked Data – do
raise these issues and give the finding of solutions to
them immediate practical relevance.

If we move from the data level to the schema level
(TBox), i.e., to domain modeling with ontologies, then
again we find that some issues important for the re-
alization of a Big Data knowledge engine are under-
developed, i.e., the state of the art does not provide
ready-to-use solutions for some central problems. Ex-
amples for such central issues can easily be found
when considering some aspects of human cognition
which would have to be reflected in KR solutions. In
particular, humans excel in navigating different view-
points, different scales, and different contexts, which
are all aspects which could be summarized under the
notion of semantic heterogeneity. We humans seem
to be able to effortlessly integrate such semantically
heterogeneous information in most situations. Some-
what more tangible based on the current state of the
art appear issues like the handling of stereotypes or de-
faults, the mixing of open- and closed-world perspec-
tives, and dealing with vagueness. However, even with
respect to the latter list, it is rather unclear how to adapt
the state of the art to a modeling context with delib-
erate semantic heterogeneity – and scalability and us-
ability issues also remain to be resolved.

The systematic use of well-designed ontology de-
sign patterns may provide a partial technical solution
to dealing with knowledge integration and data inter-
operability in the presence of semantic heterogeneity.
Indeed, ontology design patterns which have been cre-
ated based on a consensus by different stakeholders
are naturally amenable to different viewpoints, yet pro-
vide a single pattern across usages and domains which
can be leveraged for integration. This seems to indicate
that they are more suitable for heterogeneity preser-
vation when integrating knowledge, than the use of
foundational ontologies, which necessarily forces the
strong ontological commitments made for the founda-
tional ontology onto the domain ontologies. A hope
would be, that a critical supply of (application domain
specific) ontology design patterns could give rise to a
network of local micro-ontologies which capture spe-
cific definitions and ontological commitments required
for a specific modeling or engineering task, in such
a way that these micro-ontologies are horizontally in-
terconnected and interconnectible through the fact that
they are based on the same design patterns [22].
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Indeed a systematic use of ontology design patterns
would be a much preferable alternative to the com-
mon shallow modeling first, deep modeling (hopefully)
later approach, which is bound to create more trouble
than solutions [20]. The trouble comes from the ex-
perience that it is usually impossible to start model-
ing with an inexpressive language, in the hope to be
able to add stronger ontological commitments later: af-
ter initial “shallow” modeling it will usually turn out
that due to the initial ambiguity of terms and model-
ing patterns, the resulting knowledge base is no longer
semantically homogeneous, and thus cannot be se-
mantically strengthened in a way which is consistent
with the knowledge and data already present. A re-
cent and rather prominent example for the fallacies
in this approach is the use of the owl:sameAs lan-
guage construct in Linked Data: While it occurs in
very substantial quantities,3 its usage is mostly infor-
mal and in particular is not aligned with the formal
semantics that it should inherit from OWL [14] – a
problem which, at hindsight, could have been avoided
by taking deep semantics, in this case, the formal
meaning which owl:sameAs has been given by the
OWL formal semantics [27], into consideration in the
first place. By adhering to well-designed ontology de-
sign patterns, modeling could at first be restricted to
dealing with the patterns, while well-designed pat-
terns will easily be amenable to semantic strengthen-
ing.

On the algorithmic side, it has been proposed to
transcend the deductive paradigm by viewing ontol-
ogy reasoning, at least partially, from an information
retrieval perspective [18]. The key idea is to under-
stand a deductive reasoning task (which in its basic
form yields a yes or a no as answer) as a classifica-
tion problem (classify the input query as “yes” or as
“no”). From this perspective, deductive reasoning can
at least in principle be approached with information re-
trieval (i.e., non-deductive) methods, the performance
of which can be assessed in terms of precision and re-
call, with the output of a deductive reasoner as base-
line. It could then be hoped, that such non-deductive
reasoning approaches could carry over to noisy or se-
mantically heterogeneous settings. Indeed, the poten-
tial power of such non-deductive methods for question
answering has been shown at scale, and in an impres-
sive way, by the performance of IBM’s Watson system
in the Jeopardy! game show.

3See http://stats.lod2.eu/.

Ontology alignment

Ontology alignment [9] refers to the creation of
formal relationships between entities in different on-
tologies. In the simplest and most well-studied case,
these relationships take the form of subsumption
(rdfs:subClassOf), class equivalence (owl:
equivalentClass), or equality (owl:sameAs).
Even for such simple relationsships, which are well-
studied in the ontology alignment literature, the noisy
nature of Linked Data initially prevented many estab-
lished systems from performing well, so that new ap-
proaches had to be established [19,21].

In order to deal with semantic heterogeneity, ontol-
ogy design patterns, and micro-ontologies, the simple
ontology alignment setting just described needs to be
lifted considerably towards more complex alignments.
Complexity, in this case, refers to at least the following
two dimensions.

(i) On the one hand, alignments need to be able to
map different modeling choices onto each other, by
making use of complex logical expressions. E.g., an
example in [18] shows that the seemingly simple piece
of information that “Nancy Pelosi voted in favor of the
2009 health care bill” is modeled in GovTrack using
8 rather convoluted RDF triples, while a straightfor-
ward attempt to model the same piece of knowledge, at
the presented granularity, would probably need much
fewer triples with a much clearer structure. A com-
plex alignment (expressible in OWL [16] or RIF [5])
could then easily be described which maps one struc-
tural representation to the other and vice versa. While
this example resides on the data level, it easily gener-
alizes to the schema level, where such complex align-
ments promise to be even more powerful.

(ii) On the other hand, alignment primitives need
to be established which differ in semantic strength,
such that they can be used to effectively map between
ontologies which are semantically heterogeneous. An
early but limited example of this is C-OWL [6], which
can be used to align ontologies in such a way that the
combined knowledge remains (somewhat) usable even
if some of the ontologies in the combination are incon-
sistent. In a similar, but more fine-grained way, ontol-
ogy alignment methods need to be established which
control not only potential causes for inconsistencies,
but also cater for default alignments (which may have
exceptions), stereotypes, etc.

The research issue of providing such kinds of align-
ment primitives can in fact not be separated from re-
search into dealing with micro-ontologies – essen-
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tially, the same primitives which will be useful for
(weakly; semantically heterogeneously) integrating
micro-ontologies will also be the primitives which
have to be studied for ontology alignment. As before,
the role of well-designed ontology design patterns as
kernels for integration and alignment should not be
underestimated; indeed in the case of reused patterns,
some part of the alignment problem becomes almost
trivial.

The big research issue with both kinds of complex
ontology alignments is, obviously, how to create such
alignments using automated methods. Indeed, there is,
as yet, embarrassingly little research on this issue.

Conclusion

Realizing the laid out vision of a Digital Earth as a
knowledge engine requires to develop generic meth-
ods and tools driven by a concrete but vast goal. For
example, with respect to ontology reasoning, this re-
quires the development of practically applicable inte-
grated methods for dealing with stereotypes and de-
faults, with weak notions of equivalence, with noise
and inconsistency in the data, etc., all of which have
been studied in the ivory tower but have not yet had
substantial impact on practice [18]. Similar advances
are required in other fields, driven by a concrete ap-
plication vision. Such a channeling of resources has
the potential to be catalytic for future research and
to be a showcase for the added value and strength
of the Semantic Web, in a similar way in which
RoboCup transformed robotics.

If we resist the temptation to follow the seemingly
simple path by trying to resolve semantic heterogene-
ity, but instead accept heterogeneity as the motor of
science, we can expect that work on semantics-driven
integrity constraint checking, ontology matching and
alignment, reasoning in the presence of inconsistencies
and uncertainty, defaults, semantic negotiation, simi-
larity and analogy reasoning, bottom-up semantics, in-
ductive approaches, and so forth will play a key role
in interdisciplinary research. It is a common miscon-
ception that interoperability could only be achieved by
a rigid standardization process that results in a small
number of foundational and domain level ontologies.
Instead, we should exploit the power of Semantic Web
technologies and knowledge patterns to directly estab-
lish interoperability between purpose-driven ontolo-
gies without having to agree on a universal level be-
fore.

Finally, as a research community, we need to em-
phasize the paradigm shift proposed by the Seman-
tic Web and Linked Data and abstract from specific
technological solutions. We need to explain how to
derive ontologies from scientific workflows and data
and demonstrate the added value of publishing Linked
Data in a way that relates to the immediate needs of
individual researchers. What are the minimal require-
ments for these researchers to actively participate and
contribute their data?
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