
Scientific Programming 22 (2014) 53–55 53
DOI 10.3233/SPR-130364
IOS Press

Book Review

Salvatore Filippone
E-mail: salvatore.filippone@uniroma2.it

Abstract. The book by Arjen Markus is a veritable tour de force among the possibilities opened up by the latest incarnation of
Fortran, the longest-lived programming language on the planet and still one of the favourites by scientific programmers. It is not
an introduction to the syntax and semantics of the latest language standard: it is more of a gourmet cookbook showing off a wide
range of examples of what the new features allow a daring programmer to do.

Arjen Markus, Modern Fortran in Practice, Cam-
bridge University Press, 2012.

1. Introduction

Your reviewer likes this book a lot. It is one of the
lucky events when I find myself resonating positively
with that person on the other side of the printed pages,
the author.

To begin with, I think the title is a very good one.
Like the latest incarnation of the reference book by
Metcalf, Reid and Cohen [2], it prominently displays
on the cover a very important statement: that “Modern”
and “Fortran” can and actually do coexist in a single
sentence without it being an oxymoron. This is espe-
cially important given a widespread negative attitude
of dismissing Fortran programming, and the related
techniques, by people who more often than not end up
reinventing the same ideas under different names, and
hitting the same pitfalls.

The book is packed full of relevant and sometimes
intriguing examples, ranging from “traditional” root
finding and numerical integration schemes to GUI and
network interfacing, with databases thrown in between.
The reader will embark on a tour de force touching on
multiple facets of the language, covering areas that are
at first sight quite distant from each other; this is all
the more important in the current age when program-
mers increasingly need to interface different compo-
nents and tools, each of them carrying its own bag of
tricks.

The important difference with other excellent books
is the point of view: a systematic introduction to the
Fortran language (such as [2]) will walk you through
the language features giving examples. This book is
solving what in mathematical terms might be called an

“inverse problem”: you (the programmer) are facing
this the situation, these language features may help you
in figuring out a solution.

If this is enough to whet your appetite, keep reading!

2. Contents

The book starts off with a brief review in Chapter 1
of the history of the Fortran language from the For-
tran 77 standard to the latest Fortran 2008 incarnation,
with a summary of what changed in each revision. This
is a very necessary step, given the long history of the
language and the sometimes surprising number of new
features available today; few if any people know them
all.

Chapter 2 discusses topics related to the array-
programming feature set, specifically the use of func-
tions with array-valued results and the properties of el-
emental functions and subroutines.

In Chapter 3, we are introduced to how a judicious
use of procedure pointers can lead to an extremely con-
cise and high-level style of programming, very close to
a blackboard description of the underlying mathemat-
ics.

Chapter 4 gets back to the more mundane topic of
memory management, and how the various types of
dynamic arrays available in the modern Fortran stan-
dards can help. The chapter is full of sensible advice,
and more importantly the advice is backed by perfor-
mance data. After all, a Fortran programmer is likely
to be interested in extracting the best possible perfor-
mance from his/her computing platform.

Chapter 5 deals with a problem that has haunted de-
velopers of general purpose libraries for a long time:
how to provide a procedure that is of general use even
though it sits between a caller and a callee that are both

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

54 Book Review

defined by the user and contain dependencies on very
specific data configurations. The reader is presented
with a dozen possible alternatives, from old ones al-
ready known from the Fortran 77 days to the ones
made possible by the latest standards, and after read-
ing through will have gained the perspective needed to
plan a course of action appropriate to the situation at
hand.

Chapters 6 and 7 deal with a very important issue for
present-day professionals: how to interact with exter-
nal tools developed in other languages and with very
different constraints. Specifically, Chapter 6 presents
the C-interoperability features that enable a standard
solution to the vexing problem of figuring out the
needed conventions for interlanguage calls. Chapter 7
provides advice on how to output data in graphical for-
mat and/or how to interact with structured data on the
Internet, taking as a reference example the XML for-
mat.

Chapters 8 and 9 take us on a detour into software
development techniques, namely unit testing and code
reviews. While these two chapters are by no means
an exhaustive introduction to software engineering, let
us not forget that many Fortran programmers are ap-
plication developers in their respective fields and may
not have had specific training into modern techniques
for managing the software development process; there-
fore, they will find this introduction quite useful.

Chapter 10 goes back to a “traditional” topic, one
that probably is the bread and butter of any scien-
tific programmer: devising robust versions of a number
of simple numerical algorithms including interpolation
and root finding.

Chapter 11 takes us into the territories of object-
oriented programming with a crash-course introduc-
tion to such topics as type-bound procedures, abstract
data types, generic programming and design patterns.
Chapter 12 finishes with a look at parallel program-
ming alternatives, including the coarray model that is
part of the Fortran 2008 standard; the various possible
approaches are compared with reference to a specific
example.

3. Comments

I believe any serious Fortran developer should take
a close look at this book. I personally found the sec-
tion on object-oriented programming to be very well-
written and to provide a very good overview of most
important points about how to use OOP in practice.

This overview includes the introduction of the concept
of Design Patterns, which is familiar to computer sci-
entists but much less so to scientific programmers; the
interested reader may delve further into this particular
subject with the book by Rouson, Xia and Xu [3].

Markus goes far enough to propose his idea about
how to emulate template programming: while I may
have slightly different opinions on how to tackle this
problem, his examples are nonetheless intriguing and
well thought-out.

The chapter on parallel programming provides a
good demonstration of how the Fortran environment
supports many different solutions, including OpenMP,
MPI and coarrays, to the issue of programming par-
allel machines. We can see here an application of an
important fact: Fortran is the only language that has
an international standardization body that views high-
performance, scientific programmers as its primary tar-
get audience. This cannot, in my opinion, be overem-
phasized: modern computing machines are very com-
plicated devices; any hardware/software designer must
make multiple trade-offs; and these may well have mo-
tivations that are not immediately conducive to high-
performance solutions to the problems of interest to the
scientific programming community. The Fortran stan-
dards committee has done a wonderful job of navigat-
ing over the years through sets of conflicting requests
to find a good design point allowing both expressive-
ness of the resulting language as well as leaving com-
piler implementors the leeway necessary to do a good
job.

Does the compiler solve all problems? Certainly not,
some knowledge of where performance bottlenecks
arise is necessary for all programmers. Consequently
the chapters on memory management, on the robust
implementation of algorithms, and the Appendix B
“Caveats”, will be extremely useful to scientists de-
veloping their application and to programmers com-
ing from other languages to learn the Fortran mindset
along with the Fortran syntax.

At this point I need to warn the reader that a working
knowledge of the language is needed to wade through
the chapters to bring home the valuable lessons they
contain.

Therefore, if you, the reader, are not already famil-
iar with Fortran 2003/2008, you are cordially invited to
complement this book with one of the many introduc-
tory and/or reference books on the language, of which
the aforementioned text [2] is but one example.

Furthermore, I highly recommend any reader of this
book to download the code samples in the compan-

Book Review 55

ion web site and to complement reading each chap-
ter with perusing (and testing) the actual codes them-
selves, delving into the many details that make up the
complete solutions.

Most chapters can be read independently of each
other; the book can be used as a quick reference on
many topics.

If I have given so far the impression that this is a
perfect book, this is (alas!) not true. Among the things
that I would have liked to see spelled out differently
are:

• The URL for the software is not correct; it is easy
to find the right one by searching for the author
and book title, but this ought to be fixed in future
printings. (Yes, I am wishing to see this book do-
ing well enough to warrant further printings.)

• In Section 3.4 we are introduced to the wonders
of integer operations; however the magic behind
the type(integer_relation) is not revealed, and the
reader has to look carefully through the software
in the companion web site to figure out what is
going on (as a side issue, the only relation imple-
mented is equality and is coded with the integer
value “1” whereas I would have found it in better
taste to define a parameter with a symbolic name,
to make it clear that the approach is easily exten-
sible).

• In Chapter 4, about memory management, the
author very rightly underlines the differences in
performance between allocatable, automatic and
pointer arrays; in doing so, however, he takes for
granted that the reader knows the difference be-
tween allocating on the stack or on the heap. This
may or may not be the case. A self-contained
explanation would probably have been feasible
with a few lines. Moreover, at the end of Section
4.4 the author mentions a strategy to reallocate
a string to ever-increasing length in an iteration
loop; I found surprising that there is no mention of
the quadratic cost that such an approach entails.

• A couple of code fragments, e.g., the type
point_2d of Section 11.1, contain syntax errors in
the printed version; the corresponding code in the
companion web site is correct.

• In many other cases (e.g., Section 4.4) the code
fragments make use of auxiliary/support routines
without defining them explicitly, thus leaving the
reader to wonder whether they are part of the lan-
guage or not. A careful look at the software from
the companion web site will solve all such doubts,
and I heartily recommend this option to all read-
ers.

It is I think fair to say that if the author had spelled
out in full details all the items contained in the book,
the book would have become significantly larger; nev-
ertheless, a reader coming from a different language
background may be slightly disoriented. If you are not
familiar with the Fortran 90 syntax, either because you
are a Fortran 77 programmer or because you have a
totally different background, get yourself acquainted
with it first, and then you can appreciate this book.

4. Summary

In a nutshell: if you want to brush up your Fortran,
or if you want to see for yourself whether Fortran is
really a language suited only for dinosaurs, then this
book will be very useful to you. By all means, check it
out.

References

[1] J.C. Adams, W.S. Brainerd, R.A. Hendrickson, R.E. Maine,
J.T. Martin and B.T. Smith, The Fortran 2003 Handbook,
Springer, 2008.

[2] M. Metcalf, J. Reid and M. Cohen, Modern Fortran Explained,
Oxford Univ. Press, 2011.

[3] D.W.I. Rouson, J. Xia and X. Xu, Scientific Software Design:
The Object-Oriented Way, Cambridge Univ. Press, 2011.

