
Scientific Programming 17 (2009) 343–345 343
DOI 10.3233/SPR-2009-0295
IOS Press

Book Review

Dan Nagle
George Mason University, Computational and Data Sciences, 4311-G Bob Ct., Fairfax, VA 22030, USA
E-mail: dnagle@gmu.edu

The Art of Concurrency, by Clay Breshears, O’Reilly,
Sebastapol, CA, USA, 2009, ISBN 978-0596521530

The Art of Concurrency is subtitled A Thread Mon-
key’s Guide to Writing Parallel Applications. It has a
Preface, 11 Chapters, a Glossary and 285 pages, in-
cluding the index. The author wants to help experi-
enced professional applications programmers master
the task of multi-threaded programming. The idea is
to take simple problems, find a suitable algorithm, and
apply a multi-threaded solution using one (or more)
of OpenMP, pthreads, Intel Threading Building Blocks
(hereinafter TBB), or Windows threads. Most of the
examples require C, except that the TBB examples re-
quire C++. C is a good choice, for it is a lingua franca
of professional programmers and it clearly displays all
the steps involved.

The Preface explains the hardware reasons for multi-
core chips, and the response of software that is now
to be written as multi-threaded applications. This book
is intended for all programmers everywhere. The pro-
grammer should have some familiarity with multi-
threading programming methods, specifically on any
scheme to be actually used. The focus here is algo-
rithms rather than library details. Then an outline of
the chapters is presented. Not that scientific program-
mers are not professionals, but where does this book
fit in the scientific programming literature? Let’s keep
reading, and find the answer to that question.

The first chapter, Want to Go Faster? Raise Your
Hand If You Want to Go Faster! tells us that the au-
thor wants to share his experience parallel program-
ming. And he certainly has a great deal of experience
to share. We next learn that “Thread Monkey” is good,
just like “Grease Monkey” is good. On the other hand,
“Code Monkey” is bad. This not only assuaged my
ego, but it also helped to get my filters adjusted to
the author’s sense of humor. The author clearly defines
and distinguishes parallelism and concurrency. Con-
current means may be in progress at the same time
as something else, parallel means may be executing at

the same time as something else. The author distin-
guishes the kind of parallelism he will discuss from the
scalable and popular, if tedious, message passing. So
why would a programmer need to understand multi-
threading? Because that’s where the hardware is going.
Isn’t multi-threading hard? Not if you follow the rules,
which aren’t all that hard to learn. We’ll assume that
the programmer has a working serial program. What
are the steps towards parallelism? We are told: first,
Analysis: Identify Possible Concurrency; next, Design
and Implementation: Threading the Algorithm; next,
Test for Correctness: Detecting and Fixing Threading
Errors; finally, Tune for Performance: Removing Per-
formance Bottlenecks. And so we’ve already gotten
some guidance. Why not start our parallel application
from scratch? Because then you’ve got two sources of
error: logic (ordinary bugs) and parallelism. Now, we
can examine some idealized hardware (including Par-
allel Random Access Machine, PRAM) and we’re off
to examine algorithms for concurrency.

The next chapter, Concurrent or Not Concurrent,
discusses design models, specifically, data decomposi-
tion and task decomposition. We’ll start with task de-
composition. So we seek tasks that are independent,
that is, that do not have dependencies. How does one
identify independent tasks? Experience, which to the
novice means practice. There are only two data depen-
dencies: Want new value and got old value; or want old
value and got new value. One must guard against both.
One may have first encountered them when vectoriz-
ing.

Try imagining two sections of code executing si-
multaneously. Do they interfere? Then one must ask
how to map tasks to threads, and how much work will
be in each task, that is, the granularity of each task.
The greater the work per thread, the better. The author
warns us away from using Thread Local Storage (TLS)
as requiring high latency and use other language con-
structs to achieve the desired end. How to assign tasks
to threads? With OpenMP and TBB, it’s done automat-
ically, although the programmer can exert some influ-

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

344 Book Review

ence. With bare threads, the programmer must be ex-
plicit with every detail. An example of a numerical def-
inite integral provides concreteness to the discussion.

We advance to data decomposition, and the deci-
sions of how to divvy data into independent chunks.
The issues of load balance and the boundary to interior
ratio come to the fore. Thus, we meet ghost cells. The
game of Life provides the example. Here, we meet the
author’s scorecard. Parallelization is to be judged on
the basis of Efficiency, Simplicity, Portability and Scal-
ability. We end this chapter with a discussion of algo-
rithms that are not parallel, at least, not without some
rearranging.

I won’t repeat it for each algorithm that is paral-
lelized, but one of my favorite characteristics of this
book is the author’s scorecard. Each parallelization ef-
fort is described in terms of the Efficiency, Simplic-
ity, Portability and Scalability mentioned above. The
Efficiency score is especially useful to scientific pro-
grammers, as the author pays close attention to cache
efficiency as well as parallel efficiency. The cache as-
pect of programming is all too often overlooked. Yet it
can have a powerful effect on overall performance of a
code. As more cores populate each chip, the amount of
off-chip memory access will become more critical.

The next chapter, Proving Correctness and Mea-
suring Performance, gives us a technique for proving
correctness. Consider the program to be a sequence
of atomic statements, and then consider the state of
the program when the atomic statements of multiple
threads are interleaved with all possible sequential or-
derings. So armed, we’ll attempt to write code to en-
force mutual exclusion. We’ll fail in four attempts, but
it’s an instructive effort. So we try Dekker’s algorithm,
which works, but is only defined for two threads. It is
better to use the mutual exclusion objects supplied by
our chosen parallelization package. Next, the issue of
scaling and performance is discussed. This, of course,
brings us to Amdahl’s Law and the Gustafson–Barsis
criticism of it. A short further discussion of hardware,
and we’re ready to advance to the next chapter.

The next chapter, Eight Simple Rules for Designing
Multithreaded Applications is exactly what it says it is.
I won’t give the rules away (one should have some in-
centive to buy the book, after all). I will say that these
rules are practical and useful, and they are referenced
in the chapters discussing actual problems. They some-
times provide the decisive argument for choosing be-
tween two serial algorithms to be parallelized.

The next chapter, Threading Libraries, is slightly
misnamed. It also describes OpenMP and TBB, which

is a template library for use with C++. But explicit
threading libraries are discussed, specifically, pthreads
and Windows threads. The chapter contains a short
list of other parallelization schemes, missing are Ada’s
parallelism and, for scientific programmers, glaringly,
Unified Parallel C (UPC, upc.gwu.edu and links from
there).

With the next chapter, Parallel Sum and Prefix Scan,
we commence the main event, the discussion of con-
verting serial codes to parallel codes. We’ll start with a
Parallel Random Access Machine algorithm (PRAMs
were discussed in the hardware section of Chapter 1).
This introduces us to the idea of a logarithmic reduc-
tion scheme. The question becomes one of how to syn-
chronize the algorithm when using threads. This issue
of the decreasing number of threads at work is also ex-
plored. An OpenMP or TBB reduction could be used,
but a pthreads parallel solution is also shown, in all its
gory details. We next investigate a prefix scan, again
starting with a PRAM algorithm. This leads us to find
a Windows threads parallel solution. These solutions
lead to the investigation of the problem of selecting the
kth largest element from an array. We start with a se-
rial selection algorithm, which is then parallelized via
TBB. There’s a discussion of packing by use of the
prefix scan.

The next chapter, MapReduce, shows us how to par-
allelize problems involving the pair of operations, map
and reduce. First, we’ll parallelize map, and then we’ll
parallelize reduce. Along the way, we’ll find the need
for a barrier. The author uses a RED/BLUE color bar-
rier as the barrier implementation. I suspect it’s the
equivalent of the NYU barrier, but I haven’t traced the
execution of both to verify it. Anyway, barriers are
harder to implement than they appear, as the author
shows. So it’s of value to scientific programmers to
have a working barrier presented and explained. The
chapter concludes by applying MapReduce to several
problems.

The next chapter, Sorting, starts with a bubblesort.
A simple parallelization of bubblesort gives data races
all along the array, so we must apply critical sections
liberally, using Windows threads. After some block-
ing, a careful analysis reveals that all is well, the ap-
parent remaining data races are either benign, or, upon
close inspection, nonexistent. Having seen all the lock-
ing in the bubble sort, we move to an Even/Odd Trans-
position sort. This may the considered to be akin to a
red/black scheme, but in one dimension. This is im-
plemented using OpenMP. Final polishing of this code
leads us to try to place the parallelization as far up the

Book Review 345

call tree as possible. We move to a shellsort, along with
a review of insertion sorts. After seeing the serial code,
and modifying it a bit, we see an OpenMP implemen-
tation of a parallel shellsort. We move further to Quick-
sort, with a serial version and a parallel version made
using Windows threads. Lastly, we analyze a radix sort,
producing a parallel version using pthreads. Yes, there
are many ways to sort. But a point raised and answered
here is that the best serial algorithm need not be the
best algorithm to try to parallelize. The author clearly
makes this important point.

The next chapter, Searching, leads us through sorted
and unsorted datasets. For the unsorted dataset, the
data decomposition is easy, and we are lead to n-ary
searches. The issue becomes how to control the stop of
the search when the target is found. For the sorted case,
there’s the binary search, which can be parallelized via
OpenMP, taking advantage of the implicit barriers.

The last chapter describing techniques is Graph Al-
gorithms. This chapter starts with a set of definitions
from graph theory, to get us on a common ground.
We’ll explore depth-first algorithms. We need to con-
sider how many locks are required for a correct search.
Now, we can parallelize the depth first search via Win-
dows threads. To switch to breadth-first algorithms, we
merely exchange our thread-safe stack for a thread-safe
queue. Thus prepared, we tackle an All Pairs Shortest
Path problem and a Minimum Spanning Tree problem.

The very last chapter is a short one, Threading Tools.
This chapter surveys some of the debuggers and ana-
lyzers available for multi-thread applications. The sur-
vey starts with the free yet thread-aware Gnu gdb and
moves to various commercial products before describ-
ing Intel’s thread product set.

This book is aimed towards the professional pro-
grammer, most likely employed by a commercial soft-
ware house, and making home and office applications.
For its intended audience, it’s excellent. The author has
great experience, and he has conveyed it in a clear and
well-organized fashion. Kudos. Where does this book
fit with scientific programmers? That is, where does it
fit with academic and research-oriented programmers,
perhaps having teaching duties as well as research du-
ties?

This book describes parallelizing several algorithms
of use to scientific programmers. In fact, I think I can
say that most, if not all, the algorithms are useful to
scientific programmers in some scientific application
or other. The explanations are clear, and the pointers to
the literature show where to go for further information.

One item I missed is a Bibliography. Several times,
when reading the book, I read past a citation to the liter-

ature as the source of an idea or algorithm. After read-
ing the parallel implementation, and deciding it was
very good indeed, I had to skim backwards, seeking
the italic font used in the citation. The author has great
knowledge of parallel programming and a great library
to support his knowledge. Placing the citations all in
one place would be helpful. When teaching, I might
use this book as a supplemental text. But it lacks exer-
cises at the end of its chapters, so I would want some-
thing else as a primary text. Perhaps I would use it as
a recommended reading book for a second term of an
introductory scientific programming course, or second
year parallel programming course. Or perhaps I would
assign a larger, term-length project that could be built
step-by-step using threads.

I hope the author will bring forward a second edi-
tion of this book after the C and C++ standardiza-
tion committees publish their new standards (C 1× and
C++ 0×), which will have standard threading. The
standardization of threading in the C/C++ languages
will reduce the pthreads versus Windows threads ten-
sion. (A second edition would give a chance to include
a bibliography!)

I think scientific programming is moving in the di-
rection of the Partitioned Global Address Space lan-
guages (UPC, Titanium, Coarray Fortran are the most
popular), rather than threading, as the parallelization
paradigm of favor (at least at the moment). Thus, ex-
amples using UPC, or even standardized Fortran coar-
rays, would be of interest to scientific programmers.
One can get solid strategy ideas from this book, to-
gether with clear explanations. It will be up to the pro-
grammer, however, to translate them into UPC or Coar-
ray Fortran. Even if one wants to stick with threading,
one will need a separate book on the specific thread
scheme chosen. The same publisher has several good
ones, and there are others.

So, if a researcher wants a gentle yet clear intro-
duction to multi-threading, this is a great start. The
serial algorithms are explained, as are the steps to
parallelization, along with the pitfalls and gotchas,
very clearly. The scorecards show how to evaluate
what one’s efforts have produced. The references show
where to seek further information. Somehow, I think
multi-threaded programming ought to be worth more
than the title of “Thread Monkey” but this book cer-
tainly is a solid, and very helpful, introductory expo-
sition of The Art of Concurrency. And that is exactly
what is says it is.

