Scientific Programming 17 (2009) 275-277
DOI 10.3233/SPR-2009-0284
I0S Press

Book Review

275

David H. Bushnell

ARC-TI, Metrica, Inc., USA
E-mail: david.h.bushnell @nasa.gov

Beautiful Code, by Andy Oram and Greg Wilson
(eds), O’Reilly Media, Inc., Sebastopol, CA, USA,
2007, ISBN: 0596510047.

Introduction

“Beautiful Code” is an intriguing title for a book
on software. As developers, we occasionally talk about
beautiful code, but the idea of devoting an entire book
to it may seem a bit questionable. After all, our daily
responsibilities have more to do with our products’ cor-
rectness and scalability, ease-of-use and salability than
anything as tenuous as the beauty of something no-one
but our fellow coders will ever see.

But consider beauty applied to some of the hardest,
most objective areas of human endeavor imaginable:
bridge design, quantum physics, and abstract mathe-
matics. Among civil engineers and architects, John and
Washington Roebling are famous for the graceful lines
of the Brooklyn Bridge. Physicists talk of the “double
slit, single electron diffraction experiment” as the most
beautiful in physics (http://physicsworld.com/cws/
article/print/9746). G.H. Hardy’s famous book,
“A Mathematician’s Apology”, is a paean to beautiful
mathematics:

The mathematician’s patterns, like the painter’s or
the poet’s must be beautiful; the ideas like the
colours or the words, must fit together in a har-
monious way. Beauty is the first test: there is no
permanent place in the world for ugly mathemat-
ics.

But what of programming? Is beautiful code either
necessary or desirable? Product managers certainly do
not schedule for it. Customers do not care. It is the
first thing that even programmers drop when a dead-
line looms. One person, when asked to contribute to
“Beautiful Code”, refused because:

Yes, we all strive for beautiful code. But that
is not what a talented young programmer needs
to hear. I wish someone had instead warned me
that programming is a desperate losing battle

against the unconquerable complexity of code, and
the treachery of requirements. (Jonathan Edwards,
http://alarmingdevelopment.org/?p=79)

And yet, given a choice, is there a programmer alive
who would be happier working on ugly code than
beautiful code? Is there a programmer alive who has
not at some point apologised, “This is an ugly hack,
but the schedule was tight...”? Is a beautiful design
or a beautiful algorithm not something we all would
be proud of? So there is something to the thought that
beauty matters even in programming.

Surveying the book

We often hear the complaint that practitioners in
software development know something about how to
design or code, but they do not seem to know much
about creating code that others can read and appreci-
ate. Since most code is read far more often than it is
written, this is a problem.

Andy Oram and Greg Wilson have recognised this
problem and created this book to address it. As Greg
Wilson writes in the forward,

Architects are taught to look at buildings and com-
posers study one another’s scores, but program-
mers — they look at each other’s work only when
there is a bug to fix; even then, they try to look
as little as possible. We tell students to use sensi-
ble variable names, introduce them to some basic
design patterns, and then wonder why so much of
what they write is so ugly.

This book is our attempt to fix this.

“Beautiful Code” starts from a great idea, but ul-
timately disappoints with its delivery. The idea was
to ask great software developers and computer sci-
entists to describe in depth the most beautiful piece
of code they knew. The results would be collected
in a book and we could all learn to produce beau-

1058-9244/09/$17.00 © 2009 — IOS Press and the authors. All rights reserved

276 Book Review

tiful code by reading the essays and applying their
lessons.

Unfortunately, something was lost when this great
idea was put into practice. What went wrong?

For one thing, the essays in “Beautiful Code” have
no discernible order; they are a mish-mash. Code, de-
sign, and architecture follow each other without pat-
tern. So there is no common theme or progression to
help you as you move through the essays. What you
learn in one has no relation to what you learn in the
next. There is no opportunity to show how good archi-
tecture leads to good design and on to good code.

The haphazard arrangement and lack of progression
are particularly apparent in the repetition. Some things
(regular expressions, ruby, python) are explained sev-
eral times. Other things (Perl in Chapter 11) are as-
sumed as background.

The multitude of languages (C, Perl, Fortran, Lisp,
Scheme, Haskell, and so on) also presents problems.
This is not to say that a book must use only the pop-
ular language-du-jour. Learning new and unusual lan-
guages can stretch your mind. And sometimes (soft-
ware transactions and Haskell) a particular language
makes something especially easy or clear. But hav-
ing too many in a book like this just distracts the
reader. Very few of us are going to know them all
and the authors must waste their allotment of pages
on language tutorials unrelated to the purpose of the
book.

The better chapters

So that is what is bad about “Beautiful Code”. What
is good about it?

What is good is that among the chapters are some of
the best writing about software you will find anywhere.
The better chapters start with an interesting problem,
lead you to a solution that is clean and elegant, and end
with a guide to where you can go from there. Here are
a few of those better chapters.

A Regular Expression Matcher by Brian Kernighan

This chapter (the first in the book) is a wonderful
presentation on regular expression matcher first writ-
ten by Ron Pike. The matcher is a simplified version of
grep, but even so it is surprising how much can be ac-
complished with a few lines of well thought out code.
The chapter starts with a very quick history of regu-
lar expressions and their utilities in the Unix world,
presents a stripped-down version that still preserves the
most interesting aspects of the problem, and ends with
an overview of roads not taken and further extensions.

Subversion’s Delta Editor: Interface as Ontology by
Karl Fodel

Karl was one of the authors of Subversion’s delta ed-
itor. (For those not familiar with Subversion, it is one
of the more popular source control tools.) The “delta
editor” handles a problem whose importance should be
clear to any developer: computing the differences be-
tween two directory trees in terms of how one tree must
be modified to produce the other.

In this essay, Karl presents the editor’s design via
its APL. As he walks you through the requirements,
you learn some of the subtleties involved. But then you
learn how, given the right perspective, these subtleties
lead not to a complex and ugly design, but to one that is
clean, simple and elegant. Finally, you learn how well
the design has held up through Subversion’s evolution.
This is the definitive sign of a beautiful design.

Distributed Programming with MapReduce by Jeffrey
Dean and Sanjay Ghemawat

Distributed programming is hard and that has helped
Google’s MapReduce system become such a popular
topic of study. This chapter presents a high level view
of that system.

Jeffrey and Sanjay make writing about beautiful
code seem easy. Just start with a problem statement
sure to catch your attention: use thousands of comput-
ers to count unique word occurrences in 400 terabytes
of text spread over 20 billion documents. Present a
naive solution that anyone could write for counting the
unique words in twenty documents on their own ma-
chine. Extend the solution step by step to something
that solves the problem but is complex and ugly. Intro-
duce MapReduce and it all falls into place: a beautiful
solution is obvious. If only it were this easy for the rest
of us.

Writing Programs for “The Book” by Brian Hayes

Brian Hayes is well known as the author of the
“Computing Science” column for the American Scien-
tist magazine. In this 33rd and final chapter of “Beau-
tiful Code”, Brian writes about a seemingly simple
problem from computational geometry, deciding when
three geometric points are collinear.

The chapter follows the familiar path for the well
written essays in this book: motivate the problem, solve
it in a way the readers will instantly understand, show
where that solution fails, and guide them through the

Book Review 277

pitfalls to the ultimate solution. Brian does this all with
such practiced skill that along the way the readers will
learn both beautiful code and an interesting bit of com-
putational geometry.

In summary

In the end, “Beautiful Code” suffers from serious
flaws offsetting its important strengths. It would have

been a better book with fewer contributors present-
ing longer studies under stronger editors enforcing a
more coherent theme. This is a book that you, the pro-
grammer and designer, will find worth your time. But
I would be satisfied to check it out from a library or
borrow it from a friend.

