
Scientific Programming 16 (2008) 101–103 101
DOI 10.3233/SPR-2008-0258
IOS Press

Foreword

Barbara Chapman a and Dieter Kranzlmüller b,c,d

a Department of Computer Science, University of Houston, Houston, TX, USA
b GUP – Institute of Graphics and Parallel Processing, Johannes Kepler University of Linz, Linz, Austria
c Department of Informatics, Ludwig-Maximilian University of Munich, Munich, Germany
d LRZ – Leibniz Supercomputing Centre, Garching, Germany

The current growth in scale and complexity of the
computing systems used for High End Computing
(HEC) is unprecedented. Not only do modern HEC
platforms consist of up to several thousands of in-
terconnected nodes, but the nodes themselves have
become highly complex. Those configured today as
components of large-scale computers are themselves
heterogeneous multicore, potentially multithreading
parallel systems on a chip. Further complexity is intro-
duced by the combination of HEC systems into hetero-
geneous grid infrastructures, which are collaboratively
used for solving scientific problems.

The number of concurrently executing threads that
can be supported on a single node of an HEC sys-
tem is projected to increase rapidly. As a result, such
platforms pose traditional parallel programming chal-
lenges, exacerbated by the scale of the system, and
additionally dramatically increase intra-node program-
ming challenges. The sharing of resources among
threads may lead to resource contention, which affects
the efficiency of the codes on multiple levels: on the
node itself, within the surrounding HEC platform, and
on the grid containing this resource.

The HEC application developer is thus confronted
with computer systems with multiple levels of archi-
tectural parallelism, each with its own set of chal-
lenges. To address this situation, application develop-
ers have begun to experiment with new programming
models, e.g. the combination of MPI and OpenMP,
where the former supports scalable programming across
nodes while the latter provides a widely supported
high-level model for shared memory parallel pro-
gramming within the nodes. Emerging parallel pro-
grams may therefore have multiple levels of paral-
lelism, where the layers of parallelism are potentially
expressed via several different programming models.

The applications themselves are also increasing in
complexity. Current trends in science and engineer-
ing indicate multidisciplinary programs, which may be

multiscale, regionally irregular, and may need to deal
with rapidly growing problem sizes and data sets. They
may be written using several different programming
languages, in order to exploit the most useful features
of each of them where appropriate. In order to fully
tune a program for a given architecture, the applica-
tion developer may thus need to understand in depth
the characteristics of a number of different hardware
and software components, and their interactions, and
may need to tune for multiple languages and multi-
ple parallel programming paradigms. Even power con-
sumption is often an issue that can no longer be ne-
glected. Clearly, the task of developing and deploying
high end applications has reached an unprecedented
level of complexity.

It is the role of programming tools to provide pow-
erful help to overcome these extraordinary difficulties.
Suitable HEC programming tools are expected to aid
the programmer in developing, tuning and deploying
large, complex applications across a variety of comput-
ers from conventional clusters to computational grids.
The tools developers themselves must learn to deal
not only with the details of emerging architectures, but
with the challenge of handling exceptional amounts of
information. They have to master the difficulties in-
herent in gathering, processing and condensing huge
amounts of data on a program and its behavior, or in
monitoring aspects of a huge, distributed system. They
may need to identify the salient facts buried within a
very large amount of relatively unimportant informa-
tion; they will need to help the user to select and inter-
pret information related to a given program or its exe-
cution, in a manner that will enable problems of pro-
gram development and deployment to be resolved. To
accomplish these goals, the tools’ developers may need
to devise new approaches to traditional problems, and
to overcome significant implementation challenges. It
must be their focus to provide means for reducing the
overall complexity of the tasks facing the user. Fortu-

1058-9244/08/$17.00 © 2008 – IOS Press and the authors. All rights reserved

102 Foreword

nately, progress is being made on a number of fronts
and work is already under way to provide software sup-
port to the program developer on new high-end plat-
forms.

In this volume, we are very pleased to present some
of the most important on-going efforts to create soft-
ware and techniques that will enable the next gen-
eration of application developers to accomplish their
goals. These 8 papers are the result of an open call to
the tool developers’ community and have been selected
after extensive review by a group of international ex-
perts over the last few months. Each paper has received
at least 3 reviews, ensuring the usual high level of qual-
ity.

Five of these papers discuss progress in tools that aid
performance analysis and improvement:

• In their contribution, Schulz and colleagues de-
scribe the Open|SpeedShop project, an extensi-
ble set of tools that interoperate with the goal of
making sophisticated performance analyses more
accessible to large-scale application developers.
Key components of their system provide a variety
of common program analysis tasks that can be ex-
ploited by multiple tools in order to facilitate the
integration of new tools.

• Huck, Malony, Shende and Morris describe a
performance analysis framework that is designed
to support the analysis of very large sets of
performance-related data and compare results
from multiple experiments. They describe en-
hancements to PerfExplorer, a framework for par-
allel performance data mining and knowledge
discovery, giving several examples of its use.
PerfExplorer is part of the TAU performance
analysis framework which has been widely de-
ployed to support the tuning of HEC codes.

• Hernandez et al. describe the benefits of integrat-
ing compiler technology with performance tools,
showing how this may potentially provide higher
levels of automation to the end user. The com-
piler can supply context information to help inter-
pret performance data, help to make decisions for
selective instrumentation, and support the task of
bottleneck analysis. Moreover, a methodology for
performing bottleneck analysis is described and
illustrated. Both MPI and OpenMP performance
problems are addressed.

• Chan, Gropp and Lusk explain that one of the
most important requirements for performance vi-
sualization tools such as their own Jumpshot is
the ability to allow the user to examine small time

intervals in considerable detail. They have de-
veloped a hierarchical trace file format, SLOG2,
which enables the display of an arbitrary time
window with time roughly proportional to the
number of events within the window. This enables
them to extract the desired information from very
large trace files without loss of detail.

• Some kinds of behavior only manifest themselves
at extreme scales. Wylie and co-authors demon-
strate the use of the newly-developed
SCALASCA toolset to quantify and isolate a
range of significant performance issues in real
world high-end applications on 3 different sys-
tems with thousands of processors. This toolset is
based upon a redesign and re-engineering of the
KOJAK toolkit to address highest levels of scala-
bility in performance measurement, analysis and
investigation.

The remaining three papers provide the latest re-
search results in the area of tools for grid computing:

• In their contribution, Baker and Boakes report
on a system called Slogger, which supports the
user in gathering and analyzing heterogeneous log
files generated by various layers within a distrib-
uted system. Their tool utilizes emerging Seman-
tic Web technology to obtain and store the data,
and for querying and visualizing potential prob-
lems within the user’s application. The goal of the
tool is to support the understanding of why an ap-
plication in a distributed system is not behaving
as expected.

• The observation of program behavior on grids is
also the focus of the paper by Balis et al., who de-
scribe a tool for the monitoring of scientific grid
workflows. This is exceptionally challenging for
the user, as grid workflows are possibly highly
distributed, loosely coupled in space and time,
heterogeneous, and probably using legacy codes.
The GEMINI monitoring system proposed by the
authors is described together with the data corre-
lation problem and an algorithm for on-line dis-
tributed collection of monitoring data. With ex-
amples from real-world workflows, the authors
demonstrate the usability of their prototype im-
plementation.

• Finally, Peachey et al. presents the latest addition
to the Nimrod framework, where fractional facto-
rial design and associated analysis tools can now
be used for performing parameter sweep experi-
ments on the grid. The resulting environment pro-

Foreword 103

vides a convenient way to automate the design of
an experiment, to execute the jobs on the grid, to
return the results to the user, and to assist the user
in interpreting the results. Nimrod itself has been
extensively used for exploration of scientific data.
The new extension and its associated tools should
enable the execution of carefully designed exper-
iments with the power of distributed systems.

The contributions to a volume such as this one can
only provide insight into the progress made in certain

areas of support for the application developer, and the
tools and technologies described here represent just a
subset of possibilities in this domain. However, we be-
lieve that it is important to raise the application de-
velopers’ awareness of the tools that are being created
to enable them to perform their work with higher lev-
els of productivity, while we also hope that the tools’
providers may also get new ideas for future improve-
ments.

