
83

Letter to the Editors

This note was written in June 1998 and sent to vari-
ous people I knew to be active in the Fortran commu-
nity. I also posted it to comp.lang.fortran where a good
discussion took place regarding this issue. I would urge
people to look at the archives from that newsgroup for
late June and July. While I learned a great deal from
that discussion, nothing I read changed the fundamen-
tal concerns I express below.

X3J3, the standards committee developing Fortran
2000, has been tasked by its parent organization with
adding object-oriented capability to Fortran 2000. This
is something that I doubt has received much press
in the Fortran community and even less debate. Per-
sonally, after some intial enthusiasm for the OOPs
paradigm (though not for some of the OOPs languages
other there), I am finding myself increasingly question-
ing of the utility of object-oriented programming for
scientific applications, largely based on my observa-
tions of the enormous difficulties people have encoun-
tered in doing scientific programming in C++ (in par-
ticular the very steep learning curve involved, the diffi-
culty of maintaining the C++ codes, and the difficulties
of reusing C++ code). The problems of using an OOP
paradigm for scientific computing may yet be solved
down the road, but I would prefer Fortran not add this

paradigm to its already hefty bulk until this paradigm
has had a chance to either mature in a truly useful one
for scientific programming or to fade into the wood-
work.

To back up my concerns with opinions other than
my own, below is an excerpt from a recent article by
William Press and Saul Teukolsky, two of the authors
of the booksNumerical Recipes. Some of what they
discuss is specific to C++, but much of it is related
more to object-oriented programming than any specific
implementation of that paradigm.

I would be curious for other people’s opinions, par-
ticularly those who have had experience with non-
trivial numerical computer codes written in C++ or
Java. I would also urge people to contact X3J3 and ex-
press an opinion.

John K. Prentice
Quetzal Computational Associates, Inc.
3455 Main Avenue, Suite 4
Durango, CO 81301
USA
Tel.: +1 970 382 8979
Fax: +1 970 382 8981
E-mail: john@quetzalcoatl.com

From “Numerical recipes: Does the paradigm have
a future?” by William H. Press and Saul A. Teukolsky,
Computers in Physics11(5) (1997), 416–424.

The following is excerpted from pages 422–423:

And what about C++?

Indeed, what about C++? This language would
seem to meet all our requirements: It allows arbitrary
high-level constructions through the mechanisms of a
class library, yet its underlying C syntax is even more
primitive, and closer to the machine, than old For-
tran 77.

We have spent a lot of time in the last five years
scratching our heads over C++ (and over Java in the
last couple of years). Probably a “Numerical Recipes

in C++” would have value. There are several reasons,
however, that we have not produced such a version.

First, the original “democratic” dream of object-
oriented programming, that every programmer would
accumulate an idiosyncratic collection of useful object
classes whose reusability would allow moving to ever
higher levels of programming abstraction in the course
of a career — this dream seems dead. Instead, today’s
trend is toward a fixed, universal object-class library
(Microsoft’s MFC, more or less) and is discouraging
of more than a miminal amount of idiosyncratic pro-
gramming at the object-class-definition level. The re-
sult is that C++ has become essentially a large, but
fixed, programming language, very much oriented to-
ward programming Microsoft Windows software. (For-
tran 90, on the other hand, is strongly biased toward
scientific computing — it is a poor language in which
to write native Window’s applications!)

Scientific Programming 7 (1999) 83–84
ISSN 1058-9244 / $8.00 1999, IOS Press. All rights reserved

84 Letter to the Editors

Second, there is a genuinely unresolved debate re-
garding what should be the fundamental structure of
a scientific programming library in C++. Should it be
true to the language’s object-oriented philosophy that
makes methods (that is, algorithms) subsidiary to the
data structure that they act on? If so, then there is a
danger of ending up with a large number of classes for
highly specific data structures and types, quite compli-
cated and difficult to learn, but really all just wrap-
pers for a set of methods that can act on multiple
data types or structures. There exist some ambitious
class libraries for scientific computing (see, for exam-
ple, Ref. 14) that suffer, to one extent or another, from
this problem.

Confronting just this issue, a competing viewpoint,
called “generic programming with the Standard Tem-
plate Library (STL)” has emerged. Here algorithms
and data structures (“containers”) have more-equal
claims to primacy, with the two being connected by

“iterators” that tell the algorithm how to extract data
from the container. STL is implemented as C++ tem-
plate classes that naturally allow for multiple data
types (for example, single versus double precision).

We do not feel ready to choose one of these C++
methodologies, and we have only just begun think-
ing about what we might conceivably propose as
an alternative. One possibility would be to define a
generic, very-high-level, interface that encapsulates a
set of objects and methods comparable to everything
in Fortran 90, but not in itself dictating any particu-
lar template or class-inheritance structure for its im-
plementation. Then, a variety of compatible imple-
mentations could be written, optimized quite differ-
ently for today’s serial or tomorrow’s parallel ma-
chines. Our preliminary efforts along these lines are at
http://nr.harvard.edu/nr.cpp, and we would be grateful
for thoughts and comments from our readers.

