
Scientific Programming 14 (2006) 41–42 41
IOS Press

Book Review

Accuracy and Reliability in Scientific Computing,
by Bo Einarsson, ed., SIAM, Philadelphia, USA, 2005.
ISBN: 0 89871 584 9

This book is a collection of 13 articles dealing
with accuracy and reliability of scientific comput-
ing. Bo Einarsson of Linkoping University in Swe-
den edited the volume, but there are numerous con-
tributing authors, many of whom I will individually
name below since I believe they should receive recog-
nition for their contributions. One very useful fea-
ture of the book is an accompanying website con-
taining updates, computer codes and other material:
http://www.nsc.liu.se/wg25/book.

The overall theme of the book is the increasingly
critical problem of reliability in technical computing.
These issues are coming to the fore in part because
of the enormous scale of many present-day computa-
tions, typically running on hundreds or even thousands
of CPUs, and involving many terabytes of data. Such
large-scale computations greatly magnify many types
of error conditions, ranging from numerical round-off
errors and inadequate grid resolution to old-fashioned
coding errors. Given the scarcity of highly expert pro-
fessionals in this area, there is a compelling need to de-
sign software, systems and application programs with
a significantly greater level of built-in reliability.

The editor Bo Einarsson leads off the volume by list-
ing a number of the classic examples of disastrous re-
sults from dealing improperly with the realities of error
in technical computing. These include the 1991 Patriot
missile malfunction (after 100 hours of operation the
projected positions of a Scud missile were off by 573
meters due to round-off error), and the 1991 Norwe-
gian oil platform collapse (shear stress was underesti-
mated by 47% because of misusing some finite element
software).

In Chapter 2, Ronald Boisvert, Ronald Cools and
Bo Einarsson present an encyclopedic listing of the
many different types of errors that can arise, and then
mention some specific techniques for code verifica-
tion (test suites, etc.). In Chapter 3, Cools presents
a case study of the potential pitfalls of numerical cal-

culation in the context of a simple example – using
the Gauss-Legendre numerical integration facility in
Matlab to find the maximum of a parameterized func-
tion. In Chapter 4, Sven Hammarling presents a tuto-
rial on condition numbers, stability and error analysis.
In Chapter 5, Francoise Chaitin-Chatelin and Elisabeth
Traviesas-Cassan discuss the issue of the reliability of
scientific computation from a more fundamental per-
spective, discussing issues such as exact versus inexact
computation and effective computability. These two
authors continue in Chapter 6 with a discussion of the
PRECISE package, which is a toolbox designed to as-
sess the quality of numerical software in scientific and
engineering applications. In Chapter 7, Wayne Enright
discusses tools for verification of ordinary differential
equation software.

Chapter 8 addresses language issues related to sci-
entific computing and reliability. Individual subsec-
tions target specific languages, discussing features such
as error handling, array layout, dynamic data, user-
defined data structures and operator overloading. Brian
Wichmann and Kenneth Dritz handle the Ada subsec-
tion. Craig Douglas and Hans Petter Langtangen dis-
cuss C, C++ and Python. Van Snyder addreses For-
tran, including Fortran-77, Fortran-90, Fortran-95 and
Fortran-2003. Ronald Boisvert and Roldan Pozo dis-
cuss Java. I for one particularly appreciated the frank
discussion of various limitations of these languages for
scientific computing. For example, Boisvert and Pozo
candidly note Java’s lack of a complex datatype and
multidimensional arrays.

The next two chapters focus on interval arithmetic.
In Chapter 9, William Walster describes in considerable
detail the actual usage and implementation of interval
datatypes. In Chapter 10, Siegfried Rump discusses
computer-assisted proofs and self-validating methods,
and their connection to interval arithmetic. One partic-
ularly interesting note in this chapter is the mention of
a “theorem” that was included for some time in text-
books 100 years ago, with the proof dismissed as “ob-
vious,” but which was later shown to be false by any
of several simple counter-examples. Rump emphasizes
that even conventional mathematical proofs involve, to

ISSN 1058-9244/06/$17.00 © 2006 – IOS Press and the authors. All rights reserved

42 Book Review

a large degree, mutual trust among mathematicians that
qualified researchers have carefully worked through the
proof and are convinced that it is sound. In a similar
vein, the technical computing field needs to establish
standards of verification that mathematicians and com-
puter scientists collectively agree are effective tests of
program soundness.

The book draws to a close with chapters on hardware-
assisted algorithms (by Douglas and Lantangen), is-
sues of reliable computing in a parallel computing en-
vironment (by William Gropp), and software reliability
engineering (by Mladen Vouk).

In general, this is an excellent collection of articles
on the topic of reliable scientific computing. Several
of the individual chapters are by themselves worth the
purchase price. Many persons have worked hard in
preparing this work, and are to be congratulated for the
quality of the final product.

My only disappointment in reading this material
is that there was no significant space given to high-
precision computation as a means to detect and rectify
numerical difficulties. From my experience, this is the
most straightforward solution to this class of problems.
There are certainly numerous qualified authors who
could have written material in this area. And with any
of several readily available software packages, it is quite
easy to convert even fairly large codes, particularly in
Fortran, C or C++, to perform many or all floating-
point operations using some form of higher-precision
arithmetic. Double-double (approximately 31 base-10
digits), quad-double (approximately 62 digits) or even
arbitrary precision packages are available, and, in most

cases, conversion is facilitated by means of translation
modules that employ operator overloading and custom
datatypes. For that matter, many vendor-supplied For-
tran compilers have built-in support for real*16 arith-
metic, and many C compilers support a “long double”
format. And if the major computer vendors can be
coaxed into providing hardware support for the IEEE
128-bit floating-point standard in the widely used mi-
croprocessors, then the expansion factor in run time
could be greatly reduced, from a typical factor of ten
today, to possibly to only a factor of two or three.

In any event, this book is a very nice reference, one
that presents in a very accessible and yet effective man-
ner the daunting issues of reliability that we now face
in scientific computing. It will do much to raise aware-
ness of these issues and focus attention on what needs
to be done all across the scientific computing culture to
improve the reliability of our technology.

Hopefully some day we will not only have hardware
and software that is inherently more reliable, but even
application programmer will recognize the need to in-
clude extensive built-in validity checks, recognizing
that their code may be used for many years by persons
who do not fully appreciate the many ways in which it
can be go wrong. When that day comes, we can thank
the authors of this book for their efforts in helping to
make it happen.

David H. Bailey
Lawrence Berkeley National Laboratory

Berkeley, CA, USA

