
Reviews

A Scientist’s and Engineer’s Guide to Workstations and Supercomputers: Coping with Unix, RISC, Vec-
tors, and Programming, by Rubin H. Landau and Paul J. Fink Jr. ISBN 0-471-53271-1 (paperback), 1993,
$49.95, xxi+349 pp., IBM PC-compatible 5-1/4” 1.2 Mb diskette included. Available from John Wiley &
Sons, Inc., New York, NY.

Not another introduction to Unix and workstations!
Aren’t there already enough of these? What’s the point?

One of the goals of the book is to introduce scien-
tists and engineers to Unix. While this goal is at least
partly met, one can find better introductory Unix texts.
However, Landau and Fink contribute more to scientific
programmers than just another introduction to Unix; they
have written what might be called a guide to how a non-
computational scientist can progress to the fuller use of
Unix-based computers to do science; if, in the journey, the
scientist needs to find supplementary guidebooks, at least
the authors have provided an overview. Experienced sci-
entific programmers should also find value in this book,
as I hope to demonstrate later.

In their introduction, Landau and Fink also ask the
question of why two physicists are writing a book about
computers. Their answer is that the computer is a tool to
“advance science and engineering”, which they hope will
“help increase the creativity, productivity, and effective-
ness” of scientists and engineers. Implicit in this claim
is the assumption that most scientists and engineers are
not now using computers effectively, productively, or cre-
atively; such a claim may or may not be true, of course.

Specifically, the authors advocate Unix as the operat-
ing system of choice for serious computational science,
by which they mean the use of computers to solve com-
plex scientific problems, whether through conventional
“number crunching”, or through techniques such as vi-
sualization and graphics to assist in the understanding of
various phenomena.

Their choice of Unix seemed at first surprising, since
one of the authors (Fink) is employed by IBM. However,

 1997 IOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 391–393 (1997)

as the authors point out, Unix has the considerable advan-
tage of letting the user write more-easily portable code
than it is possible to do on other operating systems. In
addition, the availability of many applications for Unix
platforms, much of it in the public domain, allows the
user to collect many tools quickly and relatively inexpen-
sively. An equivalent collection for other operating sys-
tems would be either very hard to find, or very expensive,
or both.

Let me confess from the outset that I am not a ‘Unix
person’, although I have used, and do use, Unix systems. I
found the first part of the text to be a reasonably complete
and reasonably understandable introduction to Unix, one
which taught me some things I had not known. However
(as is true throughout this text), there is in one sense too
much material, and in another sense too little. As an ex-
ample of too little information, Landau and Fink men-
tion the vi editor, but limit their discussion quite severely,
although they present a one-page summary of vi com-
mands. Anyone who has tried to use vi know that the edi-
tor demands more; similarly, their discussion of Emacs is
crammed into two pages. Part of this brevity may result
from their stated bias in favor of X windows systems; part
may stem from the need to keep the text at a reasonable
length.

On the other hand, in Chapter 2, Landau and Fink dis-
cuss at length the use of subdirectories, along with sug-
gestions for naming conventions, and then unnecessarily
repeat much of the information in Chapter 3. In Chapter 2,
which introduces Unix, and discusses file systems, Unix
commands, home directories, and shells, the authors are
careful to specify commands for the System V and for the
BSD versions where necessary. Likewise, if a command
is different in the C shell, the Korn shell, and the Bourne
shell, the difference in the commands is specified. One
item, however, should be mentioned in connection with

392 REVIEWS

the names of shells: the Bourne shell is almost invariably
called the ‘Borne’ shell, but once it is the ‘Born’ shell,
and once it is the ‘Bourne’ shell. This is an inconsistency
– and a set of errors – which I found quite distracting.

On the positive side, in their discussion of hardware
and how it works, Landau and Fink present valuable in-
formation (supplemented by programs on the included
floppy disk, which the reader can freely copy) about
the effect of different word sizes, single-precision and
double-precision representations of numbers, and fixed-
or floating-point specifications on different computers; all
of these affect the results of calculation, of course, and
must be taken into consideration in design and creation
of programs – and all work differently on different hard-
ware, even if the computers use the same implementation
of the same operating system. The book explains the con-
sequences of the various choices, and give examples of
pseudocode (a term which goes undefined, by the way)
to help determine how a particular computer’s design is
related to the results of the programs.

Landau and Fink provide an overview of workstation
hardware, definitions of various components, and an ex-
planation of how to begin using a workstation. They sug-
gest some guidelines for managing a Unix system; and
they very sensibly note that learning to use the work-
station should come before any attempts to configure it.
They show how to set variables; how to manage files, de-
vices, and the system itself; and how to enable or disable
the various shell programs.

Their information on networking, which will be useful
if a workstation is already networked, does not help the
novice Unix user set up a node on a network. (Perhaps
the authors assume the workstation will be networked
by whatever support personnel are available.) Their dis-
cussion of networks and network commands presupposes
connection to the Internet, or at least to a TCP/IP net-
work, in one form or another. For example, they show
how to use nslookup and telnet to find and connect to the
computer physics.orst.edu. They then discuss use of tape
drives, the tar command with tapes and floppy diskettes,
and the mt command for tape drives.

Chapter 4, computer–computer interactions, contains
a lot of information, not all of it new. The authors return
to networks, reprise information about the telnet com-
mand and about the Internet (which they don’t usually
capitalize), and discuss mail systems and remote login
programs. The chapter also contains information on file
transfer, both between computers on a network, and be-
tween a host and a client computer (e.g., a PC and a main-
frame) using a terminal-emulation program.

One area of difficulty, which Landau and Fink point
out in the text, but do little to help the beginning Unix
user solve, concerns the problem of using the files on the
DOS-formatted floppy disk included with the book. There

are approximately 300 kb of information on the disk, in-
cluding graphics files, sample programs of various kinds,
and sample shell scripts and formatting control files (for
example, the LaTeX control files which they used in for-
matting the text). The authors could have put, say, a ver-
sion of Kermit, and perhaps several other public-domain
or copyable programs, on the disk rather than leave the
other 900 kb empty. Fortunately for the beginning user,
they do include on the floppy a script for copying all
files from the floppy disk to a workstation – after the
user manually copies the script file to the workstation.
(In fairness, let me say that Landau and Fink recognize
the ‘catch-22’ nature of file transfer, pointing out that one
must have a file-transfer program in order to get a file-
transfer program. Also, they do discuss the Unix dosread
and doswrite commands.)

Of all their chapters, I found the one on X Windows
the most difficult to read and the least useful. It was dif-
ficult because it presumed more knowledge of the X sys-
tem than I have, even though it is intended as an introduc-
tion to X Windows. It is the least useful mainly because
it is too ambitious for a novice, particularly in connec-
tion with configuring X Windows system. While the more
experienced user may be confident – dare I say ‘coura-
geous’? – enough to integrate different pieces of X sys-
tems from different vendors and to attempt more than mi-
nor personalization of X Windows, it appears to me that
Landau and Fink have provided just enough information
to get the novice into trouble.

This appears to be a classic case of “a little knowledge
is a dangerous thing”. On the other hand, the floppy disk
does provide a configuration file (.mwmrc) for Mosaic
Windows Manager, which the reader can use for experi-
mentation – assuming the presence of Mosaic, of course,
on the user’s workstation. Other included dot files help
the user set X defaults and initialization parameters.

From the point of view of the scientist or engineer
for whom the book is written, the chapters on graphics
packages and on programming in Fortran or C on Unix
systems are quite useful: Landau and Fink offer specific
examples of how or where a particular application can
be used. Most of their examples are based on problems
which would be familiar to the intended audience, for
example, the use of Gnuplot to draw a surface plot of
an antikaon–nucleon T matrix (p. 169). Data files for
the various examples are included on the floppy disk. In
many cases, the authors also describe where to find the
packages by ftp on the Internet, thus helping the begin-
ning scientific programmer assemble a working library
of tools.

I found the discussion of Fortran and C compilers
and compiler options both interesting and valuable. Al-
though Landau and Fink go into more detail than the be-
ginning scientist or engineer needs, their examples and

REVIEWS 393

explanations would reward more-advanced programmers,
and thus are of interest even to those who have experi-
ence in scientific programming. For example, their dis-
cussion of matrices and of the difference in row-major or-
der (in C and in Pascal) and column-major order (in For-
tran) in connection with the programming of nested loops
clearly shows the importance of matching program flow
to the characteristics of the language being used and to
the implementation of that language by a specific combi-
nation of compiler and operating system. Unfortunately,
the illustration accompanying the discussion on if–then–
else constructions suffers from poor proofreading: Fig-
ure 11.5, p. 261, shows both results of an if-test leading
to the same action.

RISC and supercomputer architectures are covered at
length, as is the difference between vector and scalar pro-
cessing. In discussing architectures, authors show how
optimization of code is related to both the extent of vec-
torization and the architecture; and they provide a princi-
pled way to decide which parts of a program one should
attempt to vectorize, and to decide at which point the at-
tempt becomes self-defeating. Again, this discussion is
more likely to be understood by someone who has exten-
sive programming experience than by their intended audi-
ence. But for that experienced person, the explanation is
quite worthwhile, as are their examples and discussions
of good and bad code in relation to cache and register
architectures, and vector and scalar loops and of when to
unroll loops. Similarly, their discussion of supercomputer
architectures can serve as an introduction to the topic for
the more-experienced programmer.

For the novice, much of this text is too sophisticated;
for the experienced scientific programmer, especially one
who knows something about the various architectures and

the difference between CISC and RISC computers, much
of the information is ‘old hat’. However, both groups can
benefit from this text. As the beginner becomes more pro-
ficient, the more advanced parts of the text becomes ac-
cessible.

Particularly intriguing, to me at least, was the discus-
sion of the future of computing. Landau and Fink believe
that “the technical work on which [their] book focuses,
and the present desktop computing paradigm in which we
now exist, will continue within the next paradigm, which
is believed to be ‘networked computing”’. They predict
the further development of open systems; of Unix as a
major operating system; of Fortran and C as the program-
ming languages of choice (although with an emphasis on
massively-parallel versions of these languages), through
the further development of Fortran 90 and its successors
(and analogous C and C++ programming languages); of
transparently-networked computers which share tasks as
required; and of “a continuing emphasis on structuring,
documentation and publication”. If they are correct, read-
ers of this journal might best begin now to learn much
more about the parallel processing and vectorizing tech-
niques which Landau and Fink discuss, in order to pre-
pare themselves to work on the next generation of com-
puters and of programming languages.

Louis “Lou” Hillman
Department of English

SUNY College at Brockport
Brockport, NY 14420, USA

and
Applied Computer Technology Department

Rochester Institute of Technology
Rochester, NY 14618, USA

