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Introduction

Computational theories and techniques
in finance

C. Tapiero

Futures and options have unleashed the value of
future states into our present. They have augmented
the supply and the liquidity of money, the availabil-
ity of credit and have contributed immensely to fi-
nancial exchanges and the development of financial
markets. We owe therefore great thanks to the ex-
traordinary contributions of economists such as Ken-
neth Arrow, Gerard Debreu, Lucas, Fisher Black, My-
ron Scholes and Robert Merton. The underlying state
preference theories and their engineered pricing mod-
els have raised numerous challenges to computational
theories and techniques seeking to bridge economic
science with its practical use – even though its ap-
plication might be less than perfect. While financial
modeling requires structured stochastic models with
specific mathematical properties, theoretically justifi-
able within the Arrow–Debreu state preference theory,
its application to real problems can only be assessed
ex-post – whether it works or it does not.

We are all aware that many underlying assumptions
of financial models may be wrong and at times leading
to contradictions to finance’s fundamental theory. For
example, questions arise regarding:

• The predictability of future states and “the nor-
mality of randomness”.

• The inherent complexity arising from reconcil-
ing the future and the present merely based on
what appears to happen at a particular instant.
This includes the effects of a multiplicity of fac-
tors that are not easily accounted for in simple
low-dimensional models.

• The simplifying behavioral rationality of markets
based theories that leads to equilibrium concepts
(fixed point economic equilibrium), etc.

While models are indeed only a partial definition of
an unfolding and mostly unknown reality, seeking to

bridge what we know with what we do not know, com-
putational techniques are meant to provide as close an
approximation as possible to unfolding future events
and their prices and characterize the robustness (or
fragility) of “framed” computational predictions. Com-
putational technologies that recognize the lacunae of
option pricing models are thus essential to make best
do with what we have. Being for-warned of their impli-
cations is as important as their use. Their danger based
on our “seeking comfort in numbers” as Paul Samuel-
son once said. The power of approximation and com-
putational technologies are therefore only means to the
ends of often ill defined models.

For example, if the unlikely is likely, as some Greek
Philosophers claim, then option prices that imply (or
are implied) by future states are anchored in a belief
or sentiments we construct for our comfort. Their fu-
ture usefulness is then no better than a random guess,
resulting from aggregations of an infinite (or finite-
agents) beliefs. Further, assuming that all possible fu-
ture states can be enumerated – namely that finan-
cial systems are “extensive systems” (in a physical
sense, when in fact they are non-extensive systems
and thereby uncertain in the sense of Knight’s defini-
tion of uncertainty), the power of computation of op-
tion prices ought to qualify their “robustness or the
fragility” of such prices due to non-extensive finan-
cial systems. Techniques based on Malliavan calculus
as well as robust computational techniques (based on
systems sensitivities to presumed parameter) are thus
also needed to complement the power of computational
techniques.

If a financial system is extensive, namely, that all
its future states are enumerable and known, then im-
plied future distributions tend to be of the exponential
(or normal) families type. In fact asset prices may in-
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dicate kurtosis, fat tails, long run and short run mem-
ory, dependence across many variables and other de-
viations from the fundamental pricing models. These
require both theoretical constructs as well as approx-
imate computational techniques that can account for
such mathematical–statistical behaviors.

Computational techniques are intimately related to
underlying theories and have an effect which cannot
be neglected. Explicitly, a computational technology
based on “fundamental and complete financial market
models” can introduce (and probably introduces) an
incompleteness by altering the underlying model for
computational purposes. For example, discretizing the
underlying Brownian motion in a Black–Scholes op-
tion pricing model by say a quadrinomial model in-
duces incompleteness since prices will no longer be
unique as would be the case if it were a binomial ap-
proximation. Now say that we use a binomial approx-
imation that maintains the underlying process com-
plete. Since there are other binomial approximations
that will lead to other prices then to what extent is
the approximation valid? In other words, the price is
technique sensitive (which is in contradiction with the
unique price assumption of fundamental models of fi-
nancial markets).

Technically, computational power is efficient only
within a true model. Since all market models are sta-
tistical, these models are in fact a hypothesis and not a
certainty. If this is the case, common option prices do
not treat such models as hypothesis but as mostly one
or two-variables stochastic processes while everything
we know about financial systems points to their uncer-
tainty and to the many intervening variables in deter-
mining their prices.

Computational approaches are essentially anchored
in past information. While prices are anchored on fu-
ture states and the complex inter-temporal games that
participants are engaged in exchanges that define op-
tion prices. Such games are notoriously difficult to an-
alyze and their solutions are also defined by broadly
varying rationalities. For example, is the Nash conjec-
ture a proper rationality? Are all financial agents truly
maximizing their well being without taking into ac-
count others well being? Simple assumptions prevalent
in most models can lead to an equilibrium theory for
prices – in fact it is a fixed point theory. What if equi-
librium was dynamic? What would then be an appro-
priate model? Is this an economic rather than a compu-
tational problem?

Nonetheless, being warned is being forwarned.
Banks routinely use complex and extensive models to

price their assets, their portfolios and their options. An-
alytical results to these models are mostly impossible.
And if they were, they would still be subject to models
default and may still be constructed to lead to different
results.

For example, when reducing an underlying financial
stochastic model to one where prices can be calculated,
computational techniques are still required to obtain
specific solutions. A number of approaches may then
be used:

• A probabilistic approach consisting in reducing
the underlying process to one that meets the strin-
gent requirements of a complete financial mar-
ket probability model (namely, a Martingale and
more precisely the Martingale which is consis-
tent with market prices). At the same time, dis-
crete state probabilistic models such as trinomial,
quadrinomial and Markov chains may lead to
prices that are not the same.

• Time and/or state discretization of underlying
models (such as difference schemes) may also
lead to broadly varying prices. For example, dis-
cretization of partial differential equations can be
reached in a number of ways, be consistent and
yet lead to differing prices.

• A reduction approach based on an iterative solu-
tion of a pricing model based on a specific model
we know how to solve analytically is also used.
In particular such an approach is used by Olivier
Pironneau paper’s in this issue. Perturbation tech-
niques approaches applied in stochastic control
may also be used to provide subsequent and con-
verging computational techniques when calculat-
ing a price.

• In many cases, computational techniques falter
due to their complexity in which case Monte
Carlo simulation techniques are used. However,
applications of such techniques are often mis-
leading and inefficient. They usually neglect tech-
niques and algorithms of stochastic approxima-
tions as well as other schemes. Nevertheless,
when all else fail (analytical and numerical tech-
niques), Monte Carlo simulation remains the es-
sential technique we can use.

In most cases, there are available software which are
adapted to the techniques one may use, most of which
are non-transparent and therefore can be assessed only
ex-post, once future prices unfold to confirm a given
computational price.
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This Special Issue consists of a number of important
contributions of both theoretical and practical interest
for computational finance.

Olivier Pironneau’s paper, “Reduced basis for va-
nilla and basket options” outlines an approach and
numerical–empirical results that provide a solution to
potentially complex models of option prices based on
the analytical solution of the Black–Scholes’ option
pricing model. This technique provide an alternative to
the finite difference/element methods commonly used
in banks by constructing an appropriate basis, smaller
in size of the basis, and larger support. Instead of us-
ing an orthogonal decomposition, a set of rescaled
calls with constant volatilities are used to form a better
and more treatable Proper Orthogonal Decomposition
(POD). The results are based however on certain prop-
erties of the solution and are shown to lead to a practi-
cally useful and computationally efficient method that
can compute very fast option prices. Examples and nu-
merical results are used to confirm the computational
technique’s efficiency.

Bally and De Marco’s paper, “Some estimates in ex-
tended stochastic volatility models” demonstrates that
for log-normal like stochastic volatility models with
additional volatility functions, the tails (both the right
and the left tails) of the cumulative distribution of log-
returns is decreasing as an exponential function with a
parameter which is a function of the underlying model.
The technique used in this paper is to construct a solu-
tion about a deterministic model and therefore is sim-
ilar in spirit to perturbation techniques. Subsequently,
bounds for the cumulative distribution function and
moments are calculated and their minimization leads to
sharp bounds on estimates of option prices. The prac-
ticality of these results, assuming a given set of param-
eters provide then a fast computation of prices range.
Further, the approach is used is shown to be imple-
mentable to non-fixed time marginals as well as to bar-
rier options and exotic models.

Caramellino and Zanette’s paper, “Monte Carlo
methods for pricing and hedging American options
in high dimension”, addresses an important practi-
cal problem in Financial Engineering, the pricing of
American options, for which no formula like Black–
Scholes exists. The major difficulty comes from the
curse of dimensionality. Analytically, the problem is
to solve a parabolic variational inequality. Then, stan-
dard techniques like finite differences fail. This paper
considers the possibilities offered by Malliavin calcu-
lus. Pure Malliavin calculus is not the best choice. The
authors show that combining Malliavin calculus with

other approaches like the Barraquand–Martineau algo-
rithm, one can get satisfactory results for computing
the price and the delta, with sufficient precision and af-
fordable computational cost. A very detailed numerical
analysis supports the analysis.

Ma’s paper, “w-MPS risk aversion and continuous
time MV analysis in presence of Levy jumps”. In this
article the Author solves a continuous time Markowitz
problem with underlying stochastic processes being
Levy processes. The efficiency is expressed in main-
taining an expected growth rate throughout the hori-
zon, while minimizing the portfolio risk at maturity.
The Author shows that the Dynamic programming ap-
proach holds and closed form solutions can be ob-
tained. Although some results are reminiscent of well
known results for the static Markowitz problem, sig-
nificant differences in the concept of efficient frontier
as well as in the Mutual Fund theorem are mentioned.
The concept of weak form mean-preserving-spread is
also discussed in connection with the MV analysis.

Ndiaye’s paper, “Non-Gaussian optimization mode
for systematic portfolio allocation: How to take advan-
tage of market turbulence”, shows how to build a sys-
tematic quantitative portfolio allocation strategy using
non-Gaussian risk metrics and market turbulence de-
tection.

The algorithmic approach proposed in this article
has been built step by step from practice. It will there-
fore be of particular interest to the Academic Commu-
nity in order to develop its theoretical aspects.

The Author discusses ways to improve the reac-
tivity of the estimates of the covariance matrix in a
Markowitz portfolio optimization problem. Moreover,
he shows how the risk can be taken into account better
by combining variance and skewness in the objective.
One of the key novelties lies in the use of non-convex
optimization theory. In this context, the author illus-
trates the interest of this approach to the 2008 financial
crisis.

Finally, the paper by Zengjing Chen and Agnes
Sulem, is more of a theoretical nature. It provides an
important insight in connecting various tools and con-
cepts in probability and analysis. Also it connects the-
ories which have developed at different times. The im-
portant Choquet capacity theory has been developed in
the fifties in the context of potential theory. The con-
cept of g-expectation has been introduced by Shi Ge
Peng in the last decade. The authors study the relation
between these two concepts, and deduce useful consid-
erations for PDE and financial mathematics.


