
Supplementary materials 

Detailed algorithm steps 

Color clustering: Target color is determined using the hue, saturation and luminance (HSL) values of each pixel. For 

each 𝑝𝑖𝑥𝑒𝑙 we define 𝐻𝑢𝑒𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) ∈ {0,⋯ ,360}, 𝑆𝑎𝑡𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) ∈ {0,⋯ ,1} and 𝐿𝑢𝑚𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) ∈ {0,⋯ ,1} to 

denote its hue, saturation and luminance values respectively. 

Let 𝑓𝑐𝑜𝑙𝑜𝑟(𝑝𝑖𝑥𝑒𝑙) = argmin𝑐𝑜𝑙𝑜𝑟∈{𝑅𝑒𝑑,𝐺𝑟𝑒𝑒𝑛,𝐵𝑙𝑢𝑒,𝑌𝑒𝑙𝑙𝑜𝑤}|𝐻𝑢𝑒𝑉𝑎𝑙(𝑐𝑜𝑙𝑜𝑟) − 𝐻𝑢𝑒𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙)| 

The color of each 𝑝𝑖𝑥𝑒𝑙 will then be: 

𝐶𝑜𝑙𝑜𝑟(𝑝𝑖𝑥𝑒𝑙) =

{
 
 

 
 

𝐵𝑙𝑎𝑐𝑘, 𝐿𝑢𝑚𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) < 𝐷𝑎𝑟𝑘𝑇ℎ𝑟

𝑊ℎ𝑖𝑡𝑒, (

𝐿𝑢𝑚𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) > 𝐵𝑟𝑖𝑇ℎ𝑟 |

(
𝐿𝑢𝑚𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) > 𝐷𝑎𝑟𝑘𝑇ℎ𝑟 &

𝑆𝑎𝑡𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) < 𝑆𝑎𝑡𝑇ℎ𝑟
)
)

𝑓𝑐𝑜𝑙𝑜𝑟(𝑝𝑖𝑥𝑒𝑙), 𝑒𝑙𝑠𝑒

 

Where 𝐷𝑎𝑟𝑘𝑇ℎ𝑟 = 0.05, 𝐵𝑟𝑖𝑇ℎ𝑟 = 0.9, and 𝑆𝑎𝑡𝑇ℎ𝑟 = 0.13. 

The HSL space can be portrayed as a cylindrical space where the pixel hue value is the angle of rotation around the 

cylinder’s base circle, thus making both 0 and 360 hue values red. This cylindrical representation demands an 

additional manipulation in the 𝑓𝑐𝑜𝑙𝑜𝑟 function that does not appear in the equation for simplicity reasons. Sample 

color clustering results are shown in Fig. 3A. 

Instrument-to-color mapping: Red is mapped to a Reggae organ, Green to a Rapman’s Reed, Blue to Brass 

instruments, Yellow to string instruments, White to a Choir and Black to silence (Fig. 1A).  

Instrument recording: A set of 24 wave files per instrument were recorded using a sampler (Native Instruments 

Kontakt 4; 44100Hz, 16-bit, 1-channel, 5 sec duration) representing all notes ranging from C2 up to G6 on a 

pentatonic scale (C, D, E, G, A), corresponding to the 24 vertical pixels accommodated by the EyeMusic. Recordings 

were then normalized (for each sample, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒, in the recording) according to the following:  

Let 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑓𝑖𝑙𝑒 denote all the samples between the 2nd and 4th seconds for each recorded .wav 𝑓𝑖𝑙𝑒. Let 

𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑥𝑖𝑚𝑢𝑚 denote the largest sample within all recorded .wav files. Then 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒 =
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒

𝑆𝐷(𝑆𝑎𝑚𝑝𝑙𝑒𝑠) × 𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑥𝑖𝑚𝑢𝑚
 



Pixel attenuation: The volume of each pixel is attenuated using the luminance value of that pixel and is set per 

sample according to: 

𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒 × 𝐿𝑢𝑚𝑉𝑎𝑙(𝑝𝑖𝑥𝑒𝑙) 

Resulting audio file construction: For each column, the algorithm combines all its non-silent rows in order to create 

the resulting audio representing that column. The number of samples constituting a column varies and depends on 

the configurable output audio file duration. Let 𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑟 be sample number 𝑖 in row number 𝑟, then: 

𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑖 =
(𝑠𝑎𝑚𝑝𝑙𝑒𝑖1 + 𝑠𝑎𝑚𝑝𝑙𝑒𝑖2 +⋯+ 𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑁)

√𝑁
 

Where 𝑖 spans the number of samples in the pre-recorded normalized .wav files that constitute the relevant 

column and 𝑁 is the number of non-silent rows. 

Resulting audio file duration: The user can configure the desired output duration which is set by default to 2 sec. 

This yields 50 msec of playback time for each column. 

 


