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Abstract. Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) harmonize and act synergistically
in clinical practices. About 70-80% of diabetic patients develop NAFLD. At the same time, NAFLD existence increases
T2DM development. Meanwhile, the presence of T2DM increases the progression to liver disease such as NAFLD, and
to non-alcoholic steatohepatitis (NASH). The most prevalent chronic liver disease worldwide is a NAFLD. NAFLD and
(T2DM) have a two-way pathophysiologic relationship, with the latter driving the development of the former into NASH.
Nonetheless, NASH enhances the threat of cirrhosis as well as hepatocellular carcinoma (HCC), both cases in turn need
transplantation of the liver. The only treatment for NAFLD is still lifestyle management because there are no FDA-approved
drugs for the condition. In the current study, we review how curcumin (a naturally occurring phytopolyphenol pigment) treats
NAFLD. Also we showed broad insights on curcumin-based therapy, by severe reduction of hepatic inflammation. Thus, our
review showed that curcumin ingestion considerably decreased glycemic parameters (fasting blood glucose, glycosylated
hemoglobin, insulin resistance index (HOMA-IR), and free fatty acids) and adipocyte-fatty acid binding protein (A-FABP),
and adipokine released from adipocytes. Clinical trials are needed to evaluate the effects of curcumin and its specific dosage
on liver enzymes, glycemic consequences, among NAFLD coexist with T2DM patients.

Keywords: Hepatocellular carcinoma, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, lifestyle management,
type 2 diabetes
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Fig. 1. Schematic illustration of the pathophysiological mechanism through which T2DM and NAFLD cause an increase in oxidative stress
and inflammation. One of the most common cardiac complications in diabetic patients, diabetic cardiomyopathy (DCM), is associated with
oxidative stress, which results from a serious imbalance between the production of reactive oxygen species and/or reactive nitrogen species.

over previous 10 years was due to T2DM and its
effects. Although glycemic control and diabetes treat-
ment have made tremendous strides recently, the
frequency of cardiovascular problems among T2DM
patients continues to be a significant problem [4].
Despite the availability of numerous anti-diabetic
medications managing hyperglycemia, therapeutic
strategies addressing additional DM-related disor-
ders as dyslipidemia and oxidative stress have also
received significant attention. Oxidative stress may
be the main reason for the emergence of T2DM.
T2DM, upsurge oxidative species generation and
decreased anti-oxidant capability have frequently
been observed [5]. By increasing the flow of the
polyol pathway, activating protein kinase C, chang-
ing the metabolism of eicosanoids, and inducing
glucose autoxidation, hyperglycemia may contribute
to oxidative stress and increase the production of
reactive oxygen species (ROS). Diabetes can be
brought on or made worse by ROS, which has many
harmful effects, including reduced insulin secretion,
decreased insulin synthesis, protein oxidation and
fragmentation, DNA damage, production of free fatty
acids, and augmented vascular permeability. Addi-
tionally, oxidative stress triggers the production of

advanced glycation end products that promote the
development of T2DM microvascular and macrovas-
cular problems as well as endothelial dysfunction
[6-8] (Fig. 1).

Anti-diabetic drugs, lifestyle modifications, fre-
quent exercise, monitoring lipid profiles and arterial
blood pressure are currently the most widely used
treatments for T2DM. Effectual deterrence and med-
ication are for diabetic patients. T2DM is a malady
that can be avoided [9]. High risk T2DM subjects,
pre-diabetes, and low glucose tolerance subjects must
get a tight preventative strategy. Part of such preven-
tion is changing the lifestyle, having balanced diet
and consistent exercise.

Currently, pharmaceutical therapy, and lifestyle
change are the most recent suggestions for diabetes
control [10, 11]. The biological benefits of extracts
or isolated polyphenolic monomers from diets, may
improve metabolism, decrease oxidative stress and
inflammation, and increase insulin resistance, have
received alot of attention recently [12, 13]. According
to a growing number of randomized controlled stud-
ies [14-16], dietary polyphenols can improve a range
of clinical indicators in NAFLD patients through gut,
brain, liver, and their interconnected pathways.
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Evidence supporting the effectiveness of using
medical plant supplements for T2DM prevention
and control is currently expanding [17-19]. The
scientific world is becoming increasingly interested
in curcumin (a medicinal herb). The rhizome of
the turmeric plant, Curcuma longa, contains the
active chemical curcumin. Turmeric contains a nat-
urally occurring polyphenol molecule, which both
in vitro and in vivo displays two crucial bioactiv-
ities [20]. First curcumin works as an antioxidant
by scavenging ROS [21]. Curcumin also possesses
hepato-protective ingredients which treat liver dam-
age. According to numerous studies, curcumin may
delay the onset of NASH by lowering inflammation
and restoring the balance of the liver’s antioxidant
systems. The second is curcumin, has an anti-
inflammatory, antibacterial, and anti-carcinogenic
compounds. As oxidative stress and inflammation
are two major causes of insulin resistance and
NAFLD, curcumin enhances natural peroxisome
proliferator-activated receptor (PPAR) expression,
which is essential for lowering them [22, 23]. The
purpose of the present article is to provide evidence
that curcumin reduces the severity of NAFLD by
diminishing lipid accumulation, oxidative stress and
inflammation.

Furthermore, our review explores the relationship
between NAFLD and diabetes development in peo-
ple with specific genetic variants and showed the
pathophysiological relationships between T2DM and
NAFLD.

2. Pervasiveness of NAFLD and its threat
factors

NASH is a set of progressive liver disorders that
vary from basic hepatic steatosis that is characterized
by hepatocyte inflammation follow stop, Liver fibro-
sis conceivably leads to hepatocellular carcinoma
(HCC) or end-stage liver disease progress in roughly
represent 35% of NASH cases [24, 25]. NAFLD
epidemic is widespread through western countries
disarrays approximately 20-30% of the general pop-
ulace and 45-75% of persons identified with T2DM
[26, 27].

NAFLD is characterized by hepatic steatosis that
is determined by histology/imaging with macrovesic-
ular steatosis in more than 5% of hepatocytes in
accordance with histological analysis. Hepatic steato-
sis also determined by proton density fat fraction, by

proton magnetic resonance spectroscopy (MRS) or
quantitative fat/water selective magnetic resonance
imaging (MRI) with no secondary reason for steatosis
[28].

Numerous medications may result in steatosis or
steatohepatitis, which share clinical characteristics
with NAFLD or alcoholic fatty liver disease. Primary
steatotic trait can be utilized to categorize the steatosis
by medicines (Table 1).

The presence of tiny to large lipid droplets in
the hepatocyte cytoplasm together with peripheral
nucleus displacement is referred to as macrovesicular
steatosis [29-31]. Although this type of liver damage
is frequently curable, it may eventually progress to
cirrhosis and possibly steatohepatitis. Excessive alco-
hol consumption and the use of glucocorticoids, total
parenteral nutrition, methotrexate, and amiodarone as
treatments are also linked to macrovesicular steatosis.
The use of 5-fluorouracil, tamoxifen, irinotecan (IRI),
cisplatin, and asparaginase during chemotherapy may
also result in macrovesicular steatosis [32].

Hepatocytes undergo microvesicular steatosis
when their nuclei are surrounded by a large num-
ber of tiny lipid vesicles. Microvesicular steatosis is
associated with substantial impairment of fatty acid
beta-oxidation in the mitochondria. Since mitochon-
dria are unable to efficiently oxidize non-esterified
fatty acids, they undergo enhanced esterification into
triglycerides, which is the major lipid type that
builds up under these circumstances. Since acute
microvesicular steatosis develops quickly to either
death or resolution, significant necrosis, cholestasis,
and fibrosis are typically absent in this condition [33].
Drugs such as valproic acid, tetracycline, aspirin,
ibuprofen, zidovudine, and vitamin A have been
related to microvesicular steatosis.

The most common cause of chronic liver disease
is thought to be NAFLD, which is also a growing
public health problem with pandemic proportions
[46]. Histology and proton magnetic resonance spec-
troscopy (MRS) [47] both detected 31% and 12.2% of
NAFL patients, respectively, of which 5% had NASH.
Although 20% of asymptomatic T2DM patients have
biopsy-proven NASH and normal liver function tests,
NAFLD is widespread in T2DM (59.67%) [48].
Serum liver enzymes are less illuminating due fat
deposition and the normal reference values for blood
liver enzymes need to be altered. Armstrong et al.
[49] found that 5%—7% of T2DM individuals without
symptoms had advanced fibrosis (Table 2).

NAFLD’s public health significance arises from
its numerous effects on mortality, morbidity, and
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Table 1

Drugs that cause obesity/insulin resistance, phospholipidosis, steatohepatitis, macrovesicular steatosis, and microvesicular steatosis and
further drug-induced fatty liver disease and their theorized toxicity mechanisms

Microvesicular steatosis

Macrovesicular steatosis

Drugs like tetracycline, zidovudine, valproic acid, aspirin,
vitamin A, ibuprofen, have been linked to microvesicular
steatosis [34].

Acetaminophen, NSAIDs such as ibuprofen,
indomethacin, and sulindac, metoprolol, chlorinated
hydrocarbons as chloroform, carbon tetrachloride and
chemotherapeutic medications such as tamoxifen,
5-fluorouracil and cisplatin, can all result in
macrovesicular steatosis [38—40].

2 Microvesicular steatosis is often defined histologically by a Both alcoholic and non-alcoholic liver illness frequently
number of tiny lipid vesicles that exit the nucleus of the exhibit macrovesicular steatosis (macrosteatosis), also
hepatocyte at the center of the cell in an acute liver damage. referred to as fatty liver [41].
Clinically, it is linked to lactic acidosis, acute liver failure,
and a rise in blood aminotransferase levels [35].

3 Cytolytic hepatitis is associated with drug-induced Diabetes and obesity are two cardiometabolic risk
mitochondrial DNA (mtDNA) depletion and impairment of factors that are associated with non-alcoholic fatty liver
oxidative phosphorylation. [42].
Drug-induced cytolytic hepatitis, mitochondrial
dysfunction, and microsteatosis [36].

4 Drugs may obstruct one or more mitochondrial fatty acid The microsomal triglyceride transfer protein (MTP),

oxidation (FAO) enzymes directly. Drugs can also
negatively affect the production of coenzyme A and
L-carnitine esters, two of mitochondrial FAO’s main
cofactors, as is the case with valproic acid (VPA). Drugs
can also inhibit the mitochondrial respiratory chain (MRC),
which affects how well FAD and NAD+are renewed. Deep
mtDNA depletion causes MRC dysfunction, which then
causes FAO inhibition and results in microsteatosis [37].

causes macrovesicular steatosis, may be inhibited by
medications like amiodarone and perhexiline. Efavirenz
that enriches the actions of AMP-activated protein
kinase (AMPK), which leads to mitochondrial
dysfunction. The activation of lipogenic transcription
factors, like PPAR, PXR, and glucocorticoid
receptor...Direct drug intervention can increase liver
lipid synthesis [43—45].

the use of medical services internationally [50, 51].
In general population, NAFLD and NASH fibrosis
are linked to to liver-related mortality. Hepatocel-
lular carcinoma, chronic liver disease, and cirrhosis
of the liver are all frequently brought on by NASH
and frequently develop in non-cirrhotic livers as well
[52-54]. In the United States, the United Kingdom,
and even in developing nations, NASH is the fastest-
growing reason for liver transplantation.

3. Pathophysiological connections between
T2DM and NAFLD

NAFLD and T2DM are significantly predisposed
as a result of obesity along with insulin resistance
[59-61]. Clarifying whether the presence of liver dis-
ease in NAFLD upsurges the threat of developing
T2DM is crucial from a clinical standpoint because
it’s possible that treating NAFLD (particularly rem-
edy intended to treat insulin resistance and obesity)
could also reduce the threat of augmenting T2DM in
addition to treating the metabolic risk factors linked to
NAFLD. Contrarily, lifestyle modifications (such as
a low-calorie diet and modest exercise) are acknowl-

edged to significantly improve liver damage, fibrosis,
and hepatic steatosis in people with NAFLD [62].
They are particularly successful at postponing T2DM
in those who are at high threat for the illness [63, 64].

Genetics has been extensively studied and is the
chief threat factor for the succession of NAFLD
[65]. Romeo et al. [66] in a genome-wide association
study (GWAS) highlight the critical part of (PNPLA3
1148M) patatin-like phospholipase domain contain-
ing 3 in NAFLD patients. They showed how PNPLA3
1148M contributed to the increased hepatic fat con-
tent and severe hepatic inflammation [67]. By using
GWAS, Kozlitina et al. [68] identified the transmem-
brane 6 superfamily member 2 (TM6SF2 E167K)
as a significant polymorphism site for the risk of
NAFLD.

The liver converts cholesterol into the 2 pri-
mary bile acids (Cholic acid and Chenodeoxycholic
acid) that delivered into the intestine as conjugates
of glycine and taurine. Subsequently, the intestinal
microbiome transmutes primary bile acids into sec-
ondary bile acids like deoxycholic acid, litho-cholic
acid, and urso-deoxycholic acid. These secondary
bile acids then interrelate with a number of nuclear
receptors in the intestine, involving Takeda G protein-



Table 2
Prevalence of NAFLD and NASH Globally

NAFLD Prevalence NASH Population studied Population Method of Remark Reference
Prevalence size diagnosis
Mild, moderate, and severe The Applicants from Korea for LIVE 589 589 liver [55]
NAFL: 49.3% NAFL was population of liver donation biopsies with
found in 38.9%, 9.0%, and Asians-2.2% US guidance
1.4% of the donor candidates
(mild steatosis was defined as
fatty alterations in 5% to 30%
of hepatocytes, moderate
steatosis in 30% to 60% of
hepatocytes, and severe
steatosis in>60% of
hepatocytes), respectively.
Liver histology shows
steatosis in > 60% of
hepatocytes but no
discernible inflammation
NAFLD was characterized as Not Reported Children in the United States From 1993 to During an prevalence varies (Asians: [56]
having > or=5% of (2—-19 years old) 2003, 742 kids autopsy, 10.2%; Blacks: 1.5%; Hispanics:
hepatocytes harboring (2-19 years histopathology 11.8%; Whites: 8.6%). Children
macrovesicular fat in the old) who were obese had the highest
pediatric US population underwent risk of NAFLD (38%)
(9.6%) autopsies
Adult Urban US NAFLD Not Reported A sizable, ethnic diverse, 2349 The liver’s Serum alanine aminotransferase [57]
31% population probability-based adult H-MRS to levels were within normal range
demographic an example of calculate in 79% of patients with hepatic
Texas’s Dallas, the United HTGC steatosis. varying rates of hepatic
States-contributors to the steatosis in various
Houston Heart Study subpopulations: whites 33%,
blacks 24%, and Hispanics 45%
46 (40%) of the US cohort 12.2% of the US citizens between the ages of 328 Liver biopsy Hispanics and people with [58]
overall had NAFLD US cohort as a 18 and 70 cohort (in 134 diabetes are at the highest risk for
whole patients who both NAFLD and NASH.

NAFLD
patients’
prevalence
was 29.9%

had undergone
ultrasonogra-
phy
screening)
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Fig. 2. Illustrates the association between the liver, bile, and gut that may lead to receptor alteration and change insulin metabolism and
bile acid production. In non-alcoholic fatty liver disease (NAFLD), hepatic insulin extraction decreases, which accounts for 50-80% of
insulin clearance. Fatty acid and triglyceride production is decreased by activating hepatic FXR receptors, possibly due to less hepatic lipid

accumulation.

coupled membrane receptor 5 (TGRS) and farnesoid
Xreceptor (FXR). Bile acids interconnect with TGRS
and FXR receptors and regulate hepatic lipid and
glucose metabolism.

TGRS activation in enterocytes causes an increase
in the amount of glucagon-like peptide 1 (GLP1)
released from L cells. GLP1 release has an effect on
plasma glucose level, which then invigorates the pan-
creatic islet to generate more insulin. The body expels
insulin through the liver. Hepatic insulin extraction,
which makes up 50-80% of insulin clearance, is
decreased in NAFLD. By turning on hepatic FXR
receptors, fatty acid and triglyceride production is
reduced, potentially as a result of less hepatic lipid
buildup [69, 70]. The formation of hepatic glycogen
rises in addition to the production of hepatic gluco-
neogenesis falling as a result of FXR activation, that
is shown in Fig. 2 are potential risk factors for T2DM.

The precise NAFLD risk factors that increase
T2DM risk are not known. However, it is well rec-
ognized that lipid accumulation is associated with
hepatic insulin resistance and hepatic inflamma-
tion, both of which are significant NAFLD features.

Therefore, by reducing hepatic fat accumulation in
NAFLD, therapies can improve insulin sensitivity
and chronic inflammation may help reduce the inci-
dence of T2DM.

4. Curcumin acts as a potential therapeutic
agent

Turmeric is common name for the herbaceous plant
Curcuma longa, which is consumed as a spice in
many dishes. This plant species, was identified by
its orange tuberculate rhizomes, and is extensively
grown in South East Asia, where it has long been
utilized as a natural medication for a broad range of
pathological maladies. Curcumin has gained interest
as a nutraceutical from scientists due to its anti-
inflammatory and antioxidant activities as well as the
safety of its pharmacological profile [71]. Curcumin
aid in the deterrence and therapy of a wide range
of maladies because of its broad spectrum of benefi-
cial effects, including its antibacterial, anti-diabetic,
antiviral, and anti-cancer qualities [72, 73].
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Fig. 3. Depicts numerous pharmacological and pleiotropic benefits of curcumin including anti-inflammatory, anti-bacterial, antineoplastic,

and antioxidant properties.

Curcuma longa, is a member of the Zingiberaceae
family that is grown in tropical and subtropical cli-
mates where it has been used as a curative agent
in Indian and Chinese traditional medicine [74].
The main curcuminoids in commercial curcumin are
77% curcumin (curcumin I), 17% demethoxycur-
cumin (curcumin II), 3% bis-demethoxycurcumin
(curcumin III), and 3% cyclocurcumin (curcumin
1V) [75, 76]. Turmeric also contains 69.4% carbo-
hydrates, 6.3% protein, 5.1% fat, 5.8% essential oils,
and 3-6% curcuminoids.

The biological and pleiotropic effects of curcumin
are numerous (Fig. 3) [77-79] including: antibacte-
rial [80, 81], antineoplastic [82, 83], ant proliferative
[84], and anti-inflammatory agent [85-88]. Curcumin
also offers therapeutic promise for treating diabetes
mellitus [89-91], hepatic damage [92, 93], renal
illnesses [94, 95], many disorders [96, 97], cardio-
vascular diseases [98, 99], and hepatic damage [100].

5. Curcumin ameliorates insulin’s function in
glucose homeostasis

The primary roles of the protein hormone insulin
are balancing between nutrients and glucose [101]. In
accordance with high blood sugar levels, the islets of
Langerhans liberates insulin, which is then traveled

into its target tissues, like liver, adipose tissue, and
skeletal muscle [102]. Blood sugar levels return to
normal as a result of insulin’s stimulation of adipose
tissue and skeletal muscle resulting in the absorp-
tion of glucose as well as suppression of the liver’s
endogenous production of glucose [103].

The process of triggering insulin’s mode of action
is by the attachment of insulin to its receptor, which
is present on the target cell membrane [104]. The
receptor tyrosine kinase gets activated and instigates
the insulin receptor substrate (IRS) to be phospho-
rylated [105]. Further downstream processing, the
lipid kinase-like phosphatidylinositol-3 kinase (PI3-
K) along with the serine/threonine kinase as well as
Akt/PKB are stimulated [106]. In adipose as well as
muscle cells, the GLUTA4 is glucose transporter which
is translocated from cells internal side to the exterior
cell membrane, resulting in enhanced glucose uptake.
By inhibiting glycogenolysis and gluconeogenesis,
insulin signaling and action reduce endogenous glu-
cose production (Fig. 4) in liver cells [107].

Defects in the insulin signaling system are respon-
sible for both insulin resistance, which is outlined by
lower responsiveness of circulating levels of insulin
in target tissues [108], and (T2DM) [109]. T2DM
along with insulin resistance have been linked to age-
ing, obesity, inflammation, and a deskbound lifestyle
[110]. Hyperglycemia brought on by insulin resis-
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Fig. 4. The pharmacological actions of curcumin on insulin receptor activation and glucose absorption. Protein kinase-B,
Phosphatidylinositol-3,4,5-triphosphate and 4,5-bisphosphate (PIP3 & PIP2), respectively; Insulin receptor substrate 1 (IRS1), tumor
necrosis factor (TNF), AMP-activated protein kinase (AMPK), Nuclear factor kappa-light-chain- activates B-cells (NF-kB), Peroxisome
proliferator-activated receptor gamma co-activator 1 (PGC-1), Acetyl-CoA carboxylase (ACC) and for free fatty acids (FFAs).

tance over time damages macro- and microvascular
tissue and results in conditions such, retinopathy,
cardiovascular disease, nephropathy and neuropa-
thy [111]. Increased plasma-free fatty acids (FFAs)
diminish insulin’s capacity to lower hepatic glucose
synthesis along with promotion of glucose absorp-
tion by fat and muscle cells, which is associated with
insulin resistance and obesity [112, 113].

Asia has a long history of using Curcuma
long medicinally, especially in South East Asia
and China [114]. The chief naturally occurring
polyphenol found in Curcuma longa and other
species of curcuma were curcumin. It is identified
as diferuloylmethane [115]. 1, 7-bis(4-hydroxy-3-
methoxyphenyl)-1,6 heptadiene-3,5-dione makes up
this substance. Two methoxylated phenols, an enol
form of diketone, and two methoxylated phenols
make up the structure of curcumin, with the latter
serving as the active site for the former’s antioxidant
activities [116]. The amount of methoxy groups on
their aromatic rings is the only structural distinction
between curcumin and other curcuminoids, like de-
methoxy-curcumin and bis-demethoxy-curcumin.
The potential anti-atherosclerotic, anti-cancer, anti-
inflammatory, hepatoprotective, immunomodulatory,
nephroprotective, and anti-diabetic properties of
turmeric and curcumin have been proven by scien-
tists.

According to literature reports, curcumin (20 uM)
was subjected to 3T3-L1 cell line and primary
adipocytes for 6 days. It resulted in the brown-
ing of white adipocytes and mitochondrial growth
[117]. After curcumin administration, PGC-1, PPAR,
(PRDM16)-PR domain containing 16, Ucpl protein
and levels of mRNA upsurge. Mitochondrial proteins
CPT1 and cytochrome-c were also augmented by
curcumin therapy [118]. Curcumin therapy increased
both the total and phosphorylated levels of AMPK.
PGC-1, PRDM16, and Ucpl protein levels reduced
when curcumin and the AMPK inhibitor dorso-
morphin were supplied concurrently, demonstrating
that curcumin’s actions are brought on by AMPK
activation [119]. This study unequivocally shows
that curcumin therapy has controlled obesity, insulin
resistance, and T2DM.

6. Clinical trials provided evidences that
curcumin is an effective anti
hyperglycemic drug

The likelihood of developing T2DM, IR, NAFLD,
obesity, and other metabolic disorders is amplified
by genetics, and gender [120]. Lifestyle, nutritional,
and circadian rhythm adjustments have a long-term



M_.F. Atoum et al. / Curcumin is a potential therapeutic agent for diabetes among non-alcoholic fatty liver disease 85

positive impact on the clinical and Para clinical out-
comes of NAFLD and T2DM [67]. Curcumin was
given to overweight/obese T2DM [121] at a dose of
300 mg/day, and Na et al. demonstrated that curcumin
decreased body mass index (BMI), fasting blood
glucose, glycosylated hemoglobin, insulin resistance
index (HOMA-IR), and free fatty acids. Glucose drop
was only 18% and the glycosylated hemoglobin drop
was only 11% from baseline. Later, the same group
found that curcumin reduces adipocyte-fatty acid
binding protein (A-FABP), an adipokine released
from adipocytes [121, 122] that coordinate lipid-
mediated processes [123] that decrease free fatty acid
levels.

The possibility of reaching its target has been
one of the key issues with curcumin/curcuminoids’
potential as medicinal agents. Because of their
poor stability and pharmacokinetic characteristics,
curcuminoids’ therapeutic benefits have recently
come under scrutiny [124]. Curcumin has limited
bioavailability since it is poorly absorbed and read-
ily destroyed [125]. Docking studies are needed to
understand its pharmacokinetic and pharmacody-
namics activity of curcumin.

7. Conclusion

Globally, T2DM affects thousands of people and
has a complex pathophysiology. Changes in lifestyle,
food quality, and increasing physical activity and
curcumin supplements can improve diabetes control.
Although research is needed to understand the opti-
mal amount of curcumin that can be used. Curcumin
is a natural anti-inflammatory and anti-diabetic drug
that offers a secure and affordable alternative for treat-
ing diabetes. To establish the role of curcumin in
the treatment of T2DM, we advise conducting ran-
domized controlled clinical trials. In conclusion, it is
challenging to discern between the cause and effect
of NAFLD and T2DM, since the interaction between
them is so complicated. While NAFLD may increase
the risk of T2DM, T2DM offers the best metabolic
environment for NAFLD advancement. Numerous
elements are similar in both clinical conditions—such
as an accumulation of fatty acids, pro-inflammatory
cytokines, oxidative stress, that are implicated in the
disease’s progression. Treatment options for NAFLD
and T2DM may become stronger with a complete
understanding of their underlying mechanisms. The
restricted solubility and low bioavailability of cur-

cumin require numerous strategies to overcome.
These include creating innovative curcumin formu-
lations, such as sustained-release tablets, liposomal
encapsulation, nanoparticles, emulsions, and synthe-
sizing curcuminoids. The development of a “super
curcumin” in the near future is awaited for result
from curcumin’s improved bioavailability and clin-
ical trial findings, boosting this promising natural
product to the vanguard as a therapeutic remedy for
diabetes. This article provides insights for researchers
to further carry out docking studies to have clear-
cut comprehension of curcumin’s potential to cure
diabetes.
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