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Abstract.
BACKGROUND: Dietary restriction (DR) is a widely used experimental intervention in aging research due to its consistent
ability to extend lifespan in most species tested. DR is an all-encompassing term describing interventions that restrict some
aspect of nutrition - from calorie amount to calorie type to timing of food intake - and yet share common functional endpoints
including extended longevity, but also improvements in healthspan, or the time spent in good health, as well as metabolic
fitness and stress resistance. Recent studies highlight the preponderance of sexual dimorphisms in the response to DR and
argue for the importance of inclusion of both sexes in preclinical research.
OBJECTIVE: We set out to perform a comprehensive assessment of documented health and lifespan outcomes of interven-
tional DR studies in mice that display sexual dimorphism.
METHODS: A systematic literature search was conducted according to the PRISMA statement to identify mouse DR studies
in which both sexes were included using PubMed. The specific DR interventions examined included calorie restriction (CR),
intermittent fasting (IF), protein restriction (PR) and methionine restriction (MetR), with experimental endpoints focused on
lifespan and healthspan.
RESULTS: Sexual dimorphism in the lifespan and healthspan effects of various DR regimens is a common finding in mice,
with the magnitude and direction of dimorphic responses influenced by the specific dietary intervention as well as the strain
of mouse used in the study.
CONCLUSIONS: Despite the fact that preclinical lifespan and healthspan analyses in mice reveal sexual dimorphism in the
response to DR, there is still a large gap in our understanding of how sex affects dietary outcomes. More preclinical research
comparing both sexes in the same study with better attention to reporting metrics during peer review and in easily searchable
text including title and abstract is required to further our understanding of the impact of sex on health and lifespan in response
to DR in rodent studies.

Keywords: Dietary restriction, calorie restriction, protein restriction, methionine restriction, male, female, sexual dimorphism,
aging, lifespan, healthspan

1. Introduction

The morbidity-mortality paradox, in which
females tend to have worse health than males and
yet live longer [1, 2], is an example of sexual dimor-
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phism, the condition in which two sexes of the
same species exhibit different characteristics unre-
lated to their sexual organs. Differences in size,
fat metabolism and expression of drug metabolising
enzymes are further examples of sexual dimor-
phism with potentially profound implications for
biology and medicine. Nonetheless, the preponder-
ance of both preclinical and clinical studies using
only one sex has prevented a detailed accounting of
which characteristics display sexual dimorphism, as
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well as an understanding of molecular mechanisms
underlying these potentially important differences.
Historically, a number of factors have precluded the
use females in particular from research, including
perceived increased variability amongst females due
to effects of cycling sex hormones, as well as added
cost of studies involving both sexes. It is important
to note, that when we talk about sexual dimorphism
in the context of animal studies, we consider sex a
biological variable, defined genetically by XX or XY
chromosomes [3].

Almost 30 years ago, the NIH recognized that
excluding women from clinical research was “bad
for women and bad for science” [4], and established
the Office of Research on Women’s Health to address
the issue in 1990. In 2016, the NIH mandated poli-
cies requiring applicants to include sex as a biological
variable (SABV) in all preclinical studies, including
those with primary-derived cells, or else to provide
strong scientific justification for the use of only one
sex based on rigorously defined exceptions that do
not include cost considerations [4]. To further illus-
trate the importance of SABV, a cross-sectional study
of C57BL/6Nia mice recently demonstrated that a
number of parameters that showed an age-dependent
decline in males were preserved in older female mice
[5]. After controlling for multiple comparisons, lower
percent body fat was associated with premature death
but only among females; no health measures were sig-
nificantly associated with premature death in males.
This was true even for measures that differed among
age groups [5].

In the context of aging research, several large-
scale rodent studies [6–9] provide strong evidence
of sexual dimorphism in lifespan and healthspan
responses to one of the most heavily investigated anti-
aging interventions, dietary restriction (DR). Defined
as reduced food intake without malnutrition, DR
describes a range of interventions that broadly impact
the hallmarks of aging through pleiotropic mecha-
nisms (for recent reviews, see [10–16]), resulting in
extended longevity and improvement in markers of
healthspan in most species tested to date.

Here we systematically review what is known
about sexual dimorphisms in the lifespan and
healthspan outcomes of dietary restriction interven-
tions specifically in mice. To this end, we queried
original research articles in the PubMed database
describing experimental research measuring lifespan
and/or healthspan outcomes in both male and female
mice subject to various dietary restriction interven-
tions, including calorie restriction (CR), intermittent

fasting (IF), protein restriction (PR) and methionine
restriction (MetR).

2. Methodology

A systematic review of the literature was con-
ducted according to the PRISMA statement [17]
to identify publications reporting on mouse dietary
restriction studies. PubMed was utilized as the search
tool and database to screen the title, abstract and
keywords of all articles (excluding reviews) using
the search terms with Boolean operators as outlined
in Table 1. All identified records were exported to
Endnote (Endnote X9, Thomson Reuters, New York,
USA), where authors removed duplicate records and
irrelevant titles/abstracts and non-original research
(re-analysis of previously published data, com-
mentaries) (Supplementary Table 1). To ensure all
relevant research was included, a manual review of
the literature was also performed to ensure all pos-
sible research was included. The remaining potential
records were then screened against the eligibility cri-
teria as specified in Table 2, and eligible articles used
as the basis for this systematic review.

The definitions of terms describing the dif-
ferent dietary/feeding paradigms covered in this
systematic review are summarized in Table 3.
Lifespan/healthspan data are presented in Table 4.
Assessing healthspan in mice is limited by the
lack of a gold standard definition of what mea-
sure(s) constitutes an improvement in healthspan. As
recently reviewed [18, 19] there are a large number
of assays available in mice which measure a wide
range of physiological functions in mice, many of
which are altered in aging [18]. For the purpose of
this review, we limited our healthspan measures to
changes in body composition/body weight, measures
of insulin sensitivity and glucose tolerance, incidence
of tumors/neoplasia and immunology parameters as
these are well established to be altered with DR.

3. Discussion of the findings

3.1. Patterns of inclusion of sex information in
dietary restriction/aging publications over
the past 29 years

To gain insight into the trends in use and report-
ing sex of experimental animals in the preclinical
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Table 1

Search terms used in the systematic review. Search terms including Boolean operators and permutations
used in the PubMed search with standard filter for English language. 284 articles were identified for

further screening

Search category Search term Boolean operator

Dietary intervention Dietary restriction, diet restriction, calorie restriction,
caloric restriction, intermittent fasting, alternate day
fasting, every-other-day fasting, every other day fasting,
EOD, methionine restriction, protein restriction, protein
dilution, geometric framework

OR

AND
Experimental endpoint Healthspan, lifespan, longevity, survival OR

AND
Preclinical model Mice, mouse OR

AND
Sex Male, female AND

NOT
Review[Publication type]

Table 2

Inclusion and exclusion criteria for the systematic review

Inclusion criteria Exclusion criteria

Studies involving mice Non-English articles
Articles including both male and female sexes within the same

study only
Non-original articles (i.e. review articles with or without

systematic review or meta-analysis)
Studies including a form of dietary restriction limited to CR,

MetR, or PR vs. an appropriate control diet
Studies involving a dietary intervention that was not

CR/DR/PR/MetR
Must include a wildtype group Studies including only one sex
Must include a healthspan and/or lifespan outcome, with

lifespan outcome defined operationally as death due to
natural causes or sacrifice due to aging-related morbidity

Studies involving rodents but not mice; studies with both rats
and mice were included but only the mouse data was used

Publication date 1993 to December 2021 Repeated publications on the same cohort to avoid publication
bias

Must include a form of dietary restriction as the main
intervention

Studies in which a drug or genetic intervention is the primary
intervention, but with a dietary intervention as a control

CR, calorie restriction; DR, dietary restriction; PR, protein restriction; MetR, methionine restriction.

literature regarding lifespan/healthspan benefits of
DR, we modified the search criteria specifying sex
(Table 1) to highlight studies reporting the use of
only males (male NOT female), only females (female
NOT male), or not reporting sex in the title, abstract or
keywords (NOT (female OR male)) out of the total
number of studies (sex term removed). Of the total
number of 2809 articles (Fig. 1A, B) returned by
searching without any sex criteria, we found 1016
articles reported males only (36.2%), 402 reported
females only (14.3%), 514 articles reported both
males and females(18.3%), while 877 reported nei-
ther male nor female sex (31.2%).

Thus, while a PubMed search of title, abstract and
keywords but lacking the full text overestimates the
number of papers that fail to report the sex of exper-
imental animals by about one half (most of which
actually used one sex), this is still a surprising num-

ber of papers and indicates a failure in the reporting of
data as well as in the peer review process the preceded
publication and citation in PubMed.

Finally, an analysis of these trends over the past
almost 30 or so years (1993–2022), including 6 full
years after the 2016 NIH preclinical mandate requir-
ing applicants to include SABV, reveals an increase
in the total number of papers in the field, but little
change in the percentages over time with regard to sex
reporting. Taken together, this brief survey indicates
that in 2022 in this subfield, there remains a majority
of papers that don’t consider both sexes, and a minor-
ity that either don’t report sex at all or don’t consider
it important enough to include in the text searchable
by PubMed. Allowing for the inherent limitations and
bias of this type of basic search as a metric, it serves
to suggests an ongoing lack of inclusion of females in
DR research. These findings are supported by recent
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Table 3

Definition of terms describing the different feeding paradigms

Feeding paradigm Other names Description

Ad libitum Free access to food 24/7
Dietary restriction (DR) An all-encompassing term describing interventions that

restrict some aspect of nutrition
Calorie restriction (CR) Caloric restriction; intermittent fasting Restriction of food availability by 10–60% calories

relative to an AL fed control group; time spent in
fasted state varies according to timing of food
allotments, typically daily to thrice weekly

Intermittent fasting (IF) Every-other-day fasting (EOD); alternate-day
fasting (ADF); alternate-day feeding (ADF)

Food is withheld one or more days per week alternating
with ad libitum feeding; can also be used to describe
periods spent in the fasted state between food
allotments in the context of calorie restriction

Protein restriction Protein dilution Diet with a reduced protein content, where protein is
typically replaced by carbohydrates; commonly fed
AL

Methionine restriction Sulfur amino acid restriction Reduced essential amino acid methionine, usually
without the non-essential amino acid cysteine;
commonly fed AL

Red text describes regimens involving enforced restriction of either total calories or timing of food availability; green text describes regimens
consisting of diets with altered macronutrient content but fed on an ad libitum basis.

work investigating the inclusion of SABV in preclin-
ical work since the implementation of this mandate
[3, 20].

3.2. Sexual dimorphism in the extension of
lifespan and healthspan by DR in rodents:
Proof of principle in classic studies

Aging is a multifactorial process resulting in a pro-
gressive breakdown in tissue homeostasis leading to
a decline in physiological reserve. The consequence
of this inevitably is eventual death, but often includes
an increased burden of chronic disease. The underly-
ing cellular and molecular mechanisms are complex
and poorly understood, but thought to be attributable
to a number so-called “hallmarks of aging” includ-
ing cellular senescence, mitochondrial dysfunction,
stem cell exhaustion, deregulated nutrient sensing,
loss of proteostasis, epigenetic alterations, telomere
attrition, genomic instability and altered intercellular
communications [21]. While the underlying mecha-
nisms of the aging process are beyond the scope of
this review, we direct the reader to several excellent
reviews on the topic ([21–23]).

Dietary restriction (DR) is an all-encompassing
term describing interventions that restrict some
aspect of nutrition, but without deficiency of essen-
tial nutrient, that broadly impacts the hallmarks of
aging, resulting in extension of lifespan and improve-
ment in markers of healthspan in most species tested
to date. Such interventions include calorie restric-

tion (CR), involving reduced food intake (usually by
20–40% relative to ad libitum fed control animals
on the same diet); intermittent fasting (IF), involv-
ing repeated enforced periods of fasting of different
lengths, including every other day (EOD)/alternate
day (AD) fasting, periodic fasting (PF) and time
restricted feeding (TRF); and dietary dilution of
specific macronutrients such as protein or essential
amino acids such as methionine, but without enforced
food restriction. These interventions, summarized in
Table 3, will be discussed in further depth below.

The first report of the benefits of calorie restriction
(CR) on lifespan in rodents can be traced back to 1935
when McCay, Crowell, and Maynard described how
a severe reduction in calories after weaning retards
growth and body size of albino male rats, while at
the same time extending their lifespan relative to a
control group given free access to food [24]. This
work established the use of a dietary intervention to
extend longevity and laid the groundwork to future
use of this technique as a tool to interrogate the basis
of the aging process itself.

The first study to consider intermittent fasting as
a more translatable approach also used rats of both
sexes, and was the first to uncouple reduced animal
size from longevity [25]. In this study, fasting for 1
day in 3 increased the life span of males and females
20% and 15%, respectively, and proved more effec-
tive than 1 in 4 or every other day fasting. Classic
studies in subsequent decades on the nutritional basis
[26] and physiological effects [2, 27] of DR in rats
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Table 4

Assessment of sexual dimorphism in lifespan and healthspan effects of dietary restriction

Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan sexual
dimorphism?

Reference

Age-matched
male and female
C57BL/6J mice,
8 to 12 weeks of
age (n = 9 to 15
per group)

Isocaloric,
purified
controlled diets
(D11051801
and
D11092301),
were
manufactured
by Research
Diets (New
Brunswick, NJ).
Semi-purified
diets

18% and 4%
protein
diets, 2–4
weeks

Not measured Not measured Not measured Improved insulin
sensitivity in M on PR
diet, not in females; ↓
Plasma TG and CHOL
in males on PR diet not
females

Yes; effects are
shown in males
on PR diet but
not in females;
effects can be
restored
following OVX
in females

[78]

C57BL/6J 18% protein
rodent diet
(Harlan);
naturally
sourced diet

30CR was
started at 3
months of
age

Not measured Not measured Not measured No sexual dimorphism in
the expression or
response to CR for
circadian clock genes
Bmal1, Per1, Per2 and
Per3. The expression of
several clock genes:
Cry1, Cry2, Rev-Erb �

and Ror �� was
significantly different
between males and
females on both diets
used. In addition, the
effect of CR on the
expression of Cry1,
Rev-Erb � and Ror �

was sex-dependent

Yes [79]

(Continued)
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(Continued)

Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan sexual
dimorphism?

Reference

UM-HET3 mice Purina 5058;
naturally
sourced diet

40CR Not measured Not measured Not measured The number of
GFAP-positive
astrocytes in the
hippocampus depended
on sex (P = 0.002), but
there were no
significant effects of
CR on microglia
(P = 0.35) or number of
astrocytes (P = 0.07)

Yes, depending on
the outcome

[80]

Male and female
C57Bl/6 and
DBA/2 mice
were purchased
from Charles
River

Not specified 40CR started at 16
weeks age

Not measured Not measured Not measured Significant increase in
satellite cells in injured
B6 CR M muscle (but
females was NS)

Calorie restriction
reduces muscle
fibre size 7 days
after muscle
injury, but this
is strain, sex and
age-dependent

[75]

Ercc1−/− in a
genetically
uniform F1
C57BL6J/FVB
hybrid
background

AIN-93 G;
semi-purified
diet

30CR (stepdown
from 7–9 weeks
age), fed just
before the dark
period

↑in males
from 10 to
35 weeks
(250%
extension;
p < 0.0001)
and females
from 13 to
39 weeks
(200%
extension;
p < 0.0001

↑in males
from 14 to
46 weeks
↑in females
from 19 to
49 weeks

No, both have
increased
LS with DR

Onset of tremors,
imbalance, and paresis
are dramatically
postponed or even
absent in Ercc1�/– and
Xpg−/–mice under
continuous and
temporary DR regimes
↓FBG, insulin with DR

Healthspan
parameters
either only
include males,
or do not
specify which
sex

[81]

Xpg−/− mutant
mice in a pure
C57BL6J
background

AIN-93 G;
semi-purified
diet

30CR (stepdown
from 7–9 weeks
age), fed just
before the dark
period; lifelong
or transient for
only 6 weeks

↑from 10 to
18 weeks
with age
(continuous
DR); also
increased
with
transient DR

↑from 12 to
21 weeks
with age
(continuous
DR); also
increased
with
transient DR

Does not
stratify
between M
& F

Not measured Not measured [81]
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Ten-month old
male and female
C57BL/6J
wildtype mice

Control diet (0.86%
methionine) or MR diet
containing 0.172%
methionine

MetR or control
diet for 8 weeks

Not measured Not measured Not measured ↓FBG, no sex
dimorphism

No [82]

C57BL/6J mice Harlan 18% protein diet;
naturally sourced diet

AL, 20CR or
40CR

↓ in Females
on 40CR;
↑ in males
on 20CR,
40CR, and
females on
20CR

↑ in both
20CR and
40CR for
M&F

Yes ↓ BW with CR
dose-dependently
↓ tumor burden
↓ HOMA-IR

Yes, metric
specific (i.e.
insulin, change
in fat mass,
rectal
temperature)

[8]

DBA/2J Harlan 18% protein diet;
naturally sourced diet

AL, 20CR or
40CR

↑ in both M
and F on
20CR and
40CR

↑ in both M
and F on
20CR and
40CR

No ↓ BW with CR
dose-dependently
↓ tumor burden
↓ HOMA-IR

No [8]

C57BL/6 Labofeed H (containing
60% carbohydrates,
30% proteins and 10%
fat)

Every other day
(EOD) feeding
regiment
alternating ad
libitum feeding
and fasting
every other day
food from 4
weeks age

Not measured Not measured Not measured Significant ↓ in BW in
EOD males; not in
females. Significant
↓ in hepatocyte nuclear
area with EOD
independent of sex

BW = yes.
Hepatocyte
nuclear
area = No

[83]

DBA/2J and
C57BL/6J mice

Harlan 18% protein diet;
naturally sourced diet

AL or 40CR,
lifelong CR
assessment at
18mo age

Not measured Not measured Not measured Significant ↓ in FI in B6
males on CR; no
significant effect in D2
males or in females

Yes [35]

Male and female
C57BL/6J

CF (0.84% methionine
w/w) or MetR (0.12%
methionine w/w) diets
consisting of 14% kcal
protein, 76% kcal
carbohydrate, and 10%
kcal fat

CF or MetR from
8–20 wks age

Not measured Not measured Not measured In young mice, no sexual
dimorphism on BW or
body length; in old
mice, sexual
dimorphism;
for femur length, no
sexual dimorphism in
either age group

Depends on age of
mice

[84]

(Continued)
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(Continued)

Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan sexual
dimorphism?

Reference

C57BL/6 mice 7012 Teklad
LM-450

Ad libitium (AL),
40CR for 6mo

Not measured Not measured Not measured Generally no sexual
dimorphism in gene
expression in liver of
DR mice

Depends on gene [85]

4-week-old female
and male C57Bl6
mice (6 animals/
sex/group)

Not specified EOD feeding for
9mo

Not measured Not measured Not measured Sexual dimorphism in
BW (M EOD have
decreased BW, F do
not).
No sex differences in
peripheral blood
CBC-diff values

Depends on
healthspan
outcome

[86]

UM-HET3 mice Not specified but
based on other
publications
likely NIH-31;
naturally
sourced diet

40DR Not measured
in this study

Not measured
in this study

Not measured
in this study

Significant ↓ in fasting
insulin, IGF-1, FGF-21
with DR; no sex effects

No [87]

Male and female
Npy–/– and WT
mice on a mixed
129S-Npytm1Rpa/J
and 129S6/SvEvTac
background

Charles River-LPF
diet (Oriental
Yeast Co. Ltd.,
Tsukuba, Japan)

30CR from 12
weeks age fed
30 min before
lights were
turned off

↑ 20.3% with
DR in
males,
↑36% with
DR in F

↑ with DR
independent
of sex,
stronger
effect in F

No, same
direction
(↑LS) of
effect

↓ BW in DR M, not in F.
Respiratory quotient
(RQ) and Energy
expenditure (EE) were
only analyzed in male
mice

BW: Yes, sexual
dimorphism

[88]

GHR-KO mice and
their littermate
controls

Lab Diet Formula
5001 (23 %
protein, 4.5 %
fat, 6 % fiber)
(Nestlé Purina,
St. Louis, MO,
USA)

AL or 30CR from
28 weeks age
fed in the AM

Not measured
in this study

Not measured
in this study

Not measured
in this study

No sexual dimorphism in
BW, wirehang test,
inclining rod or inverted
screen in DR mice

No [89]
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Ames dwarf
(Prop1df/df)
(Df) mice or
their normal
littermate
controls
[Prop1df/+(N)]

Not specified AL or 30CR from
28 weeks age
fed in the AM in
middle-aged (∼
70 – 95
weeks-of-age)
mice

Not measured
in this study

Not measured
in this study

Not measured
in this study

↓BW in CR independent
of sex or GT
↓ strength for CR M
compared to AL (WT
only); no effect in
females; significant ↓
in balance with CR in
female WT, no effect in
males

No effect on BW
measures, but
sexual
dimorphism in
strength
measures with
CR only in
middle aged
mice

[90]

Nestin-GFP
reporter mouse
line and
C57BL/6
animals

Standard Purina
Mills test diet;
naturally
sourced diet

AL or 40CR from
6mo age

Not measured
in this study

Not measured
in this study

Not measured
in this study

CR increases both the
total number of dividing
cells and the number of
dividing neural stem
and progenitor cells in
the DG of adult female
mice

Yes [91]

C57BL/6 (Harlan,
Blackthorn UK)

Rodent pelleted
chow (CRM
(P); Special
Diets Services,
Witham, UK)

40DR from 6mo
age at 9:30am
everyday

DR improved
survival in
both sexes,
but the
extension
was
significantly
greater in
females
(P = 0.0163)

Survival is not
completed at
the time of
publication

Yes, in
females for
mean
lifespan

Tumor prevalence
increased sharply in
both AL sexes after
17 months of age; % of
tumor-bearing mice
was lower in males than
in females over their
whole remaining
lifespan
DR strongly reduced
tumor prevalence in
females. DR postponed
tumor incidence but did
not reduce the % of
mice bearing neoplasms
after 20 mo of age

No for BW [41]

129/SvJ mice AIN-93M;
semi-purified
diet

AL (10CR) or
40CR from 8
weeks age

Not measured
in this study

Not measured
in this study

Not measured
in this study

Long-term caloric
restriction significantly
depleted TAG stores in
mice after 3 month CR.
Sexual dimorphism in
TAG turnover but only
in 13mo male mice

Depends on
measure

[92]

(Continued)
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Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan
sexual
dimor-
phism?

Reference

G93A mice
(animal model
of ALS)

NIH-31/NIA
fortified diet;
naturally
sourced diet

AL or 40CR from
40 (?) days of
age

Not directly
assessed

Not directly assessed but
the rate of rate of
reaching endpoint in
the CR mice (i.e., the
hazard ratio) being
3.1-fold higher (95%
CI: 2.6, 9.8) than the
AL mice. The rate of
reaching endpoint was
2.9-fold (95% CI: 2.1,
10.2) higher in the CR
vs. AL females
(P = 0.0001) and 4-fold
(95% CI: 2.8, 34.2)
higher in the CR vs. AL
males (P = 0.0004)

No, CR
shortened
lifespan in
both sexes

No sexual
dimorphism in food
intake, BW, body
condition, ability to
move, paw grip
endurance. In both
sexes CR worsened
these parameters

No [93]

41 ILSXISS
recombinant
inbred (RI)
mouse strains

Not specified 2–5 months of age
fed AL or 40DR

Not reported Strain variation of mean
lifespan in mice under
DR was even greater,
ranging six- to ten-fold:
217 to 1215 days in
males and 113 to 1225
days in females. Effect
of strain on lifespan
was significant for both
sexes under both
feeding conditions
(p < 1×10–6, ANOVA)

Yes Not assessed in this
study

Not assessed
in this study

[7]

GHRKO and
GHR WT mice

Lab Diet Formula
5001 (23%
protein, 4.5%
fat, 6% fiber)

Mice were either
fed AL every
day (AL group)
or every other
day (IF group)
from 8–10 wks
age

↑in WT M on
IF, not in
WT F; no
effect of IF
in GHRKO

↑in WT M on IF, not in
WT F; no effect of IF in
GHRKO

Sexual
dimorphism
in survival
for WT-F-IF
compared to
WT-M-IF

IF reduces ITT-AUC
for WT-M, but not
females; no effect in
GHRKOs; IF
reduces BW in
males (KO and
WT), but only in
KO females

Yes (and strain
differences)

[45]
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C57BL/6J TD.92051 for AL
mice, TD.92173
for CR mice

AL or 40CR from
9 weeks age

Not measured
in this study

Not measured
in this study

Not measured
in this study

No sexual dimorphism in
response of CR to
parasite infection or
reproduction

No sexual
dimprophism in
the response to
Heligmoso-
moides
bakeri

[94]

G93A mice (ALS
model)

Standard rodent
diet (Harlan
Teklad,
Madison,
Wisconsin; 22/5
rodent diet (W),
product 8640)
for AL mice.
For CR mice,
NIH-31/NIA
fortified diet;
naturally
sourced diet

AL or 40% CR
from 40 days
until they lost
30% of their
BW then they
went to AL
feeding (TCR,
transient CR for
13-15 days)

↓ in males, no
effect in
females

↓ in males, no
effect in
females

Yes Sexual dimorphism in
body condition, ability
to move (↓ in males),
and pawgrip endurance
(↑ in males)

Yes [95]

GHRKO and WT
mice

Lab Diet Formula
5001; naturally
sourced diet

30CR from 8
weeks age

↑ in WT-F-CR
vs.
WT-F-AL;
no effect in
GHRKO or
WT males

↑ in WT-F-CR
vs.
WT-F-AL; ↑
in KO-F-CR
vs.
KO-F-AL; ↑
in
WT-M-CR
vs. AL; no
effect in
GHRKO
males

Yes,
depending
on mean or
maximum
lifespan

↓ BW
improvements in
insulin sensitivity

No [96]

Ames Dwarf and
normal
littermates

Purina Lab Chow
(Purina Mills,
St. Louis, MO);
naturally
sourced diet

AL or 30CR Not reported Not reported No, CR
extends
lifespan
independent
of sex (full
curves not
published)

↓ BW with CR
independent of sex or
GT; ↑ total activity
with CR

Yes, on fasting
glucose – in
normal males
FBG ↓ with CR,
in females NC;
in KO mice,
FBG ↓ with CR
in males but ↑
in female KO on
CR

[97]

(Continued)
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Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan
sexual
dimor-
phism?

Reference

C57BI/6NNia NIH-31 or
NIH-31 fortified
if CR; naturally
sourced diet

AL or 40CR
starting at 14
weeks of age

↑ with CR ↑ with CR No, but F have
greater
lifespan
increase

↓ BW with CR No [98]

DBA/2JNia NIH-31 or
NIH-31 fortified
if CR; naturally
sourced diet

AL or 40CR
starting at 14
weeks of age

↑ with CR ↑ with CR No, but F have
greater
lifespan
increase

↓ BW with CR (AL-F
have different
weight gain
trajectory)

No [98]

B6D2F1 NIH-31 or
NIH-31 fortified
if CR; naturally
sourced diet

AL or 40CR
starting at 14
weeks of age

↑ with CR ↑ with CR No,
comparable
increase in
LS

↓ BW with CR (AL-F
have different
weight gain
trajectory)

No [98]

B6C3F1 NIH-31 or
NIH-31 fortified
if CR; naturally
sourced diet

AL or 40CR
starting at 14
weeks of age

↑ with CR ↑ with CR No,
comparable
increase in
LS

↓ BW with CR No [98]

C57BL/6NNia Emory morse diet AL or 40CR
starting at 14
weeks of age

↑ with CR ↑ with CR No, but F have
greater
lifespan
increase

↓ BW with CR No [98]

UM-HET3 mice Doesn’t specify
but NIH-31;
naturally
sourced diet

AL or 40CR from
4mo age

Not measured
in this study

Not measured in this
study

Not measured
in this study

CR retards age-related
shifts in T-cell
subsets
CR ameloriates age
related decrease in
CD3 cell numbers,
nut only in males

Yes, marker
specific

[99]

C57BL/6 mice
(NCTR)

NIH-31; naturally
sourced diet

AL or 40CR
starting at 4 wks
of age

↑ with CR ↑ with CR No,
comparable
LS
extension
between
M&F

↓ neoplasia with CR Neoplasia: no
sex
difference
but effect is
stronger in F
mice

[40]
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B6C3F1 mice
(NCTR)

NIH-31; naturally
sourced diet

AL or 40CR
starting at 4 wks
of age

↑ with CR ↑ with CR No, but M
have greater
lifespan
increase

↓ cancer incidence: 25%
and 17% lower for
males and females
respectively

No, but sex may
influence type
and incidence of
can-
cer/neoplasm

[42]

C57BL/6 mice
from NCTR

NIH-31 (super
supplemented
with vitamins
for CR);
naturally
sourced diet

AL or 40CR from
14 weeks age

Not specified ↑ with CR No, but M
have greater
lifespan
increase

Not reported Not reported [100]

3-week old
(NZB × NZW)F1
(B/W) hybrid
mice

22% protein 5%
fat; 6% protein
5% fat; 22%
protein 20% fat;
6% protein 20%
fat

AL or 50DR ↑ with DR for
all diets
when
compared to
the
appropriate
AL group;
↓ with low
protein AL
and high fat
AL (F only)

↑ with DR for
all diets
when
compared to
the
appropriate
AL group; ↑
in low
protein, high
fat, and low
protein high
fat AL
groups

Only in
median LS
for females
on LP-AL
and HF-AL
diets

↓ BW with all DR diets No [101]

3-week old
DBA2/f mice

22% protein 5%
fat; 6% protein
5% fat

AL or 50DR ↓ with DR
normal
protein diet;
↓DR on low
protein diet;
↑ Low
protein diet
fed AL

↓ with DR
normal
protein diet;
↓DR on low
protein diet;
↑ Low
protein diet
fed AL

No Not measured in this
study

Not measured in
this study

[101]

NZB mice 22% case in as a
source of
protein (normal)
and that
designated II
contained 6%
protein (low)

Normal or low
(6%) protein
diet

Not measured
in this study

Not measured
in this study

Not measured
in this study

↓BW and BW gain over
time with low protein
diet; prevented thymic
involution,
splenomegaly and cell
mediated immunity
which develop with age

No [76]

(Continued)
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Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan
sexual
dimor-
phism?

Reference

IRS1-/+ mice and
controls

(Lab Diet 5053
Irradiated Pico
Lab containing
3.41 kcal/g,
20.0% protein,
52.9%
carbohydrates,
10.6% fat, 4.7%
crude fiber, and
6.1% ash);
naturally
sourced diet

AL or 50CR from
3–12mo age

Not measured
in this study

Not measured in this
study

Not measured
in this study

↓Body temperature
with CR, magnitude
of change with CR
is more at some
times in females
(but still in the same
direction); female
(F), but not male
(M), Igf1r+/– mice
display stronger
hypothermic
response to CR than
their wildtype
littermates

Only in female
Igf1r+/-
mice on CR,
not in males
or in
wildtypes

[102]

C57Bl/6J NIH-31-based diet
(Lab Diet
5LG6);
naturally
sourced diet

AL or 40CR from
9 weeks age for
10 months

Not measured
in this study

Not measured in this
study

Not measured
in this study

↓BW, lean and fat
mass with CR

No [103]

ILSXISS strains Not specified AL or 40CR from
2–5mo age to
15–17mo age

Not measured
in this study

Not measured in this
study

Not measured
in this study

Sexual dimorphism in
the effect of DR on
fat mass

Yes,
maintenance
of fat mass
predicts
survival
response
under CR;
sex and
strain
specific

[32]

Bmal1-/- and WT
C57BL/6J mice

18% rodent diet
(Harlan);
naturally
sourced diet

AL or 30CR from
3mo age to 5mo
age

↓ in Bmal1-/-
mice
↑ in CR WT
mice (not
stratified by
sex)

No change in Bmal1-/-
mice ↑ in CR WT mice
(not stratified by sex)

No Insulin, IGF-1 and
glucose measured

Not stratified
by sex; no
conclusion
reached

[104]
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C57BL/6NNia
mice

NIH-31, CR
supplemented to
same level of
vitamins and
minerals as AL
group; naturally
sourced diet

AL or 40CR ↑ with CR ↑ with CR No ↓BW with CR; ↓
incidence of dermatitis
with CR; ↓
onset/incidence of
many pathologies

No for BW or
dermatitis; sex
specific
reductions in
degenerations
across organ
systems such as
eye (female),
gallbladder
(males)

[105]

Five-month-old
male and female
C57BL/6 mice

No specific
details; assume
semi-purified
diet

0.15% MetR or
CD for one
month

Not measured Not measured Not measured ↓BW with MetR diet;
↓SAM/SAH
methylation ratio in the
liver in both sexes

Sex specific
differences in
gut microbiota

[106]

Male and female
C57BL/6 mice

GFN diet based on
AIN-93 G;
semi-purified
diet

A GFN diet from
weaning

Not reported Not reported Not reported ↓BW and fat mass with
decreasing dietary
protein, and in CR

Sex specific
effects in the
magnitude of
different
markers i.e.
higher mTOR
activation in
females
compared to
males

[74]

Male and female
RI line:
ILS/ISS115/TejJ
(115-IR) 6mo
age

NIH-31; naturally
sourced diet

AL, 10CR, 20CR,
40CR

↑ with all
levels of CR
in females,
NS effect in
males on
any CR dose

Trend to ↑ in
CR females
with 10CR
and 40CR;
↑ 40CR in
males only

Yes, depends
on dose of
CR

↓BW and fat in CR
independent of sex

No [107]

Male and female
RI line:
ILS/ISS97/TejJ
(97-RI) 6mo age

NIH-31; naturally
sourced diet

AL, 40CR ↑ with CR in
females, NS
in males
with CR

↑ with CR in
females,
trend
(p = 0.061)
in males
with CR

Yes ↓BW and fat in CR in
males; ↓ or ↑ in BW
and fat in CR females
depending on time
since CR was initiated

Yes, BW and fat
changes in
different
directions
depending on
time in 40CR
females

[107]

(Continued)
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Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan
sexual
dimor-
phism?

Reference

Male and female
RI line:
ILS/ISS98/TejJ
(98-RI) 6mo age

NIH-31; naturally
sourced diet

AL, 40CR No significant
difference

NS effect with CR in
females, ↑ in males
with CR

Yes ↓ BW with CR
independent of sex;
↑ Fat% with CR at
all (female) or most
(male) timepoints

Yes [107]

Male and female
RI line:
ILS/ISS107/TejJ
(107-RI) 6mo
age

NIH-31; naturally
sourced diet

AL, 40CR ↑ with 40CR
in females;
↓ with
40CR in
males

NS effect in females on
40CR; significant ↓ in
males on 40CR

Yes ↓ BW with CR
independent of sex;
↑ Fat% with CR at
some timepoints
(female) or ↓ Fat%
at all (male)
timepoints

Yes [107]

Male and female
C57BL/6J mice

NIH-31 irradiated;
naturally
sourced diet

Preweaning food
restriction (by
litter
expansion), then
AL for
remaining 15mo
of study

Not measured Not measured Not measured ↓ BW, total fat (g) in
those with
preweaning food
restriction

Sexually
dimorphic
response in
fat depot
response to
preweaning
food
restriction

[108]

16mo male and
female mice
C57BL/6Nia

Control (21%
protein), low
AA (7%
protein, 67%
restriction of all
AAs compared
to control), low
BCAA (21%
protein, 67%
restriction of
BCAAs
compared to
control)
(Envigo,
Madison WI);
semi-purified
diet

Ad libitum one of
control, low AA
or low BCAA
diet

No effect No effect No ↓ Frailty index score
in males and
females on low
BCAA diet; ↓
cancer at necropsy
in males on low
BCAA diets, no
effect in females; ↑
insulin sensitivity
with males on low
BCAA diet

Sexual
dimorphism
in frailty
trajectories,
cancer
incidence at
necropsy
and insulin
sensitivity in
mice on low
BCAA diets

[9]
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Male and female
mice
C57BL/6Nia,
from weaning

Control (21%
protein), low
AA (7%
protein, 67%
restriction of all
AAs compared
to control), low
BCAA (21%
protein, 67%
restriction of
BCAAs
compared to
control)
(Envigo,
Madison WI);
semi-purified
diet

Ad libitum one of control,
low AA or low BCAA
diet

Not reported No effect in
females on
low BCAA
diet; ↓
survival in
females on
low AA
diet; ↑
survival on
low AA and
low BCAA
diet in males

Yes ↓ Frailty index score in
females on low BCAA
diet; no effect on males;
low AA frailty not
reported; no effect of
low BCAA diets on
insulin sensitivity at
2.5mo age

Sexual dimorphism in
frailty trajectories in
mice on low BCAA
diets

[9]

Male and female
C57BL/6 mice
were obtained
between 60 and
65 weeks of age
(Jackson
Laboratory, Bar
Harbor ME)

Rodent chow
(18.6% protein,
44.2%
carbohydrate,
and 6.2% fat;
Teklad Global
Rodent Diet
#2918, Envigo,
Madison, WI).
Naturally
sourced diet

EOD fasting from 20 mo
age

Not measured Not measured Not measured Improved glucose
tolerance and ↓ FBG in
EOD fed mice

No [46]

Male and female
AKR/J mice
(Jackson
Laboratory
#000648, Bar
Harbor, ME)

Standard diet,
high sucrose
diet, western
diet or 15CR;
semi-purified
diet

Ad libitum (SD, high
sucrose and western
diet) or 15CR

↑ Survival for
all female
groups
compared to
SD, but only
in sucrose
males

↑ Survival in
high sucrose
groups only

Yes, on
median
survival; no
effect on
maximal
survival

↑ Lean to fat ratio and ↓
Fat% in high sucrose
and 15CR compared to
AL in males

Yes, body composition
measures

[109]

Male and female
C57BL/6 mice
from 10 weeks
of age

2018 Teklad
Global 18%
protein rodent
diet (Envigo)
base diet

Ad libitum, 30% CR,
meal feeding (30% CR
fed in 3 aliquots over
the day), or diluted AL
(AL food access with
approx. 30% CR)

Only
performed
in males

Only
performed
in males

N/A CR regimens improves
glucose tolerance and
insulin sensitivity in
males independent of
regimen, worse in
females

Yes for glucose tolerance,
insulin sensitivity and
fat storage; no for
insulin sensitivity; yes
for body composition

[49]

(Continued)
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Mouse strain Diet Regimen Median LS Max LS Lifespan
sexual dim-
porphism?

Healthspan outcome Healthspan
sexual
dimor-
phism?

Reference

Male and female
DBA/2J mice
from 10 weeks
of age

2018 Teklad
Global 18%
protein rodent
diet (Envigo)
base diet

Ad libitum, 30%
CR, meal
feeding (30%
CR fed in 3
aliquots over the
day), or diluted
AL (AL food
access with
approx. 30%
CR)

Not assessed Not assessed Not assessed Improved glucose
tolerance in both;
insulin sensitivity
only improved in
females

Yes [49]

Male and female
UM-HET3 mice
from 4-5 weeks
age

Autoclaved
LabDiet 5K54
(PMI Nutrition
International,
Brentwood,
MO)

66%–70% of the
average amount
eaten by
ad-lib-fed mice
of the same sex
and age, fed
once daily at
11:00 PM (light
cycle
6AM–6PM)

Median LS not
assessed; ↑
mean LS in
DR groups

↑ in DR groups Effect of DR
was sex
dependent
(p = 0.04,
likelihood
ratio
chi-square
test)

Not assessed Not assessed [110]

Male and female
CByB6F1 mice
from 4-5 weeks
age

Autoclaved
LabDiet 5K54
(PMI Nutrition
International,
Brentwood,
MO)

66–70% of the
average amount
eaten by
ad-lib-fed mice
of the same sex
and age, fed
once daily at
11:00 PM (light
cycle
6AM–6PM)

Median LS not
assessed; ↑
mean LS in
DR groups

↑ in DR groups Effect of DR
on
maximum
LS was sex
dependent
(p = 0.04,
likelihood
ratio
chi-square
test)

Not assessed Not assessed [110]

AL, ad libitum; 10CR, 10% calorie restriction; 15CR, 15% calorie restriction; 20CR, 20% calorie restriction; 40CR, 40% calorie restriction; M, male; F, female; B6, C57BL/6; EM, emory morse;
FI, frailty index; N/A, not applicable; LS, lifespan; BW, bodyweight; EOD, every other day; PR, protein restriction; SD, standard diet; FBG, fasting blood glucose; dietary restriction; LPD, low
protein diet; DR-LPD, dietary restriction with the low protein diet (6% protein); DR-22P, dietary restriction using the 22% protein normal chow diet; LDLc, low density lipoprotein calculated;
HDLc, high density lipoprotein calculated; ↓, decreased; ↑, increased; AL-HFD, ad libitum high fat diet; AL-CR-HFD, weight cycling with periods of AL HFD then HFD-calorie restriction;
20CR-HFD, high fat diet with 20% calorie restriction; 30CR-HFD, high fat diet with 30% calorie restriction; GFN, geometric framework; MF, meal feeding; SAM, S-adenosylmethionine; SAH,
S-adenosylhomocysteine.
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were notable in their exclusive focus on the male sex.
Nonetheless, studies in which both male and female
rats were included highlight important sexual dimor-
phisms in multiple physiological responses to DR
including, but not limited to, plasma glucose and fruc-
tosamine levels, plasma triglyceride and cholesterol
levels [28], and number and onset of tumors [29].

Beginning in the 1940s, researchers were studying
the effects of food restriction on tumor development
using mouse models. This led to the description of
a number of different phenotypes modulated by DR
such as body composition, insulin sensitivity and
immune functions; all of which are now recognized as
hallmarks of the DR response [8]. From these inves-
tigations, the mouse emerged as an important tool
to study aging and age-related diseases due to many
factors not limited to their physiological similarity to
humans, the ease of maintaining and breeding them
in the laboratory, and the availability of many inbred
strains [30]. In recent years, the mouse has become
the model for testing interventions for improving
health and lifespan. Below we describe those stud-
ies which have an experimental design that includes
both male and female mice to address modulation of
lifespan and/or healthspan by DR; these studies are
summarized in Table 4. It is important to note that in
addition to sexual dimorphism, strain differences in
the response to DR were also observed [5, 8, 31, 32],
urging a cautionary approach to general translation
of these findings.

3.3. Sex differences in CR-mediated lifespan and
healthspan improvements

Traditionally, the success of DR interventions
against aging have been based on their ability to
increase mean and/or maximal lifespan. Over the
past decade, an additional emphasis has been placed
upon the ability of such interventions to improve
healthspan independent of their ability to increase
lifespan. In humans, healthspan can be defined as the
length of adult life during which a person maintains
the capacity to perform all routine activities of daily
living (dressing, bathing, eating, toileting, transfer-
ring) as well as instrumental activities of daily living
(finances, shopping, transportation, food preparation,
managing medications, using the telephone) [18]. In
mice, although a comparable accepted definition is
still lacking, healthspan could be defined as the period
of life under conditions of ideal husbandry in which
the mouse is able to move around, feed itself, and

care for itself, for example with grooming [18]. To
standardize quantification of these measures in mice
a number of indices have been developed to measure
mouse frailty [33, 34]. These tools are analogous to
human frailty such as the Fried frailty index and the
Rockwood deficit accumulation index. These include
both observational and functional deficit assessments
and have been validated against a number of pre-
clinical outcomes. In one study, lifelong 40% CR
significantly reduced frailty in male, but not female
C57BL/6 mice when compared to their AL counter-
parts [35]. There was no effect of 40% CR on reducing
frailty in DBA/2J mice, another inbred strain [35].
When started late in life, 6 months of MetR is suf-
ficient to reduce frailty [36] in male C57BL/6Nia
mice. Female data has not been reported. In another
study, frailty index predicted mortality in female, but
not male, 3x Tg Alzheimer’s mice [37]. Considering
the relevance of these findings to lifespan/healthspan
uncoupling, the underlying mechanisms of sexual
dimorphism require further investigation.

One of the hallmark features of CR is the ability
to delay the onset and incidence of cancer in ani-
mal models. Indeed, before McCay connected growth
restriction via CR to longevity, the influence of food
restriction on the growth of transplanted and sponta-
neous tumors was known [38]. Interestingly, there is
contrasting evidence with some suggesting that the
number of tumors in mice does not appear to be
sex-specific [39, 40], while others do report a sex-
ually dimorphic effect in the number and type of
tumors [41, 42]. Whether this also holds true to other
healthspan and ‘hallmark features of CR’ requires
further investigations (Table 4).

Certainly, daily reduction in caloric intake is not
the only means to achieve such beneficial outcomes.
EOD feeding, ADF, IF and other fasting paradigms
also demonstrate improvements in many physiologi-
cal domains that overlap with CR, including lifespan
extension [43, 44]. In recent years, intermittent fast-
ing type diets have gained increased traction as they
intersperse fasting with non-fasting days and poten-
tially seem more applicable than a daily 40% CR.
In this paradigm, short periods of intense energy
restriction (75–100% reduced caloric intake on fast-
ing days) followed by ‘normal’ eating on non-fasting
days. A study in Growth Hormone Receptor Knock-
Out (GHRKO) mice showed that IF (EOD feeding)
increased lifespan in WT mice compared to control
fed mice in males but not females. They also demon-
strated that GHRKO mice do not respond to IF [45]. A
study of late-lie IF (EOD feeding) in C57BL/6 mice
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Fig. 1. Total numbers of publications (A) expressed as a percent of total (B) over the period from 1993 through 2021 : 2809 results.

(21 mo age) reported attenuation of some hallmarks
of CR including improved glucose tolerance, restora-
tion of metabolic flexibility and decreased frailty
[46] in both sexes. Lifespan however was not mea-
sured. As the majority of the studies published do not
include females or do not include a lifespan outcome,
we exclude them from the scope of this systematic
review on sexual dimorphism and refer the reader to
several excellent reviews [44, 47] on this topic.

While the underlying molecular mechanisms
regarding the beneficial effects of CR on improved
lifespan and healthspan have been under investiga-
tion for many years, there has been less work done
to disentangle the question of whether fasting time or
calories is more important for the physiological ben-
efits. Recently, fasting time has been reported to be
positively associated with the effects on survival and
reduced disease incidence in mice [48]. The findings
in this study were recently built upon by others using
a diluted AL paradigm where food is diluted with
indigestible cellulose, but provided AL, leading to an
approximate 30% restriction [49]. When compared
with classical 30% CR and meal feeding (30% CR
fed across the day in three allotments), the authors
found that fasting is necessary for the CR-induced
improvements in frailty and lifespan in male mice
[49].

3.4. Sex differences in the methionine restriction
-mediated life- and health-span
improvements

One of the major challenges in translating CR to
humans is quite simply that most humans would find
it incredibly difficult to reduce daily caloric intake
by 20–40%, especially for the significant portion of
their life required to increase longevity (if this is even
possible in humans). To this end, interventions allow-

ing for DR benefits without actual food restriction
represent an attractive alternative. In the early 90’s
Orentriech and colleagues reported that a reduction
in a single amino acid, methionine, resulted in a 30%
increase in lifespan of male Fischer 344 rats [50].
Notably, rats were able to eat as much as they wanted
of a diet with 0.17% w/w (compared to a control
diet of 0.86% methionine). On a technical note, it
is important to clarify that when we use a methionine
restricted diet, it is a diet restricted in sulfur amino
acids (SAA) since the non-essential sulfur amino acid
cysteine is absent in MetR diets. This lack of cys-
teine is required for the MetR phenotypes as it has
been shown that cysteine blocks the effects of MetR
[51]. Interestingly, the metabolic phenotype of MetR
can be obtained with diets that are deprived of other
amino acids such as leucine [52], although none have
yet shown the same lifespan extension. Recent work
has demonstrated that diets low in isoleucine or valine
recapitulate the metabolic phenotype seen with MetR
[53], however their effects on lifespan were not tested
in this study.

The initial study describing how a MetR diet
(0.1–0.15%) can increase lifespan in mice was pub-
lished in 2005. When female mice were fed the MetR
diet from 6 weeks of age, this resulted in an increase
in maximal lifespan of 9.2% (estimated from the
survival curves at the time of publication) [54]. Sub-
sequent studies have shown that this can be replicated
in males (but not shown in females) when started at 12
months of age [55]. Interestingly the metabolic phe-
notype of MetR is dose-dependent with there being a
threshold level of methionine that abrogates the ben-
eficial effects; however this has only been reported
in males and not females [56]. Given the differen-
tial response in C57BL/6 females to CR [8] it would
be incredibly interesting to see if this was also true
for females on MetR. Benefits of MetR that are not
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sexually dimorphic (at least as currently described
in wildtype mice in the literature) include reduc-
tions in bodyweight, fat mass and oxidative stress
coupled with improvements in insulin sensitivity as
well as changes in circulating insulin, glucose, lep-
tin, adiponectin, IGF-1 and FGF-21. It is important to
note that a number of these benefits of MetR overlap
with CR despite ad libitum access to food.

Studies have also demonstrated the applicabil-
ity of MetR as a treatment for different progeria
syndromes including Hutchinson-Gilford progeria
syndrome (HGPS) [57] and Cockayne syndrome
[58]. Importantly, MetR was able to extend median
lifespan in both male and female HGPS mice and
had a lower mortality rate [57]. In Cockayne syn-
drome mice, MetR extends lifespan and improves
healthspan parameters; although the study includes
both male and female mice (personal communica-
tion), this study is limited in that the authors do not
differentiate between male and female mice [58].
More importantly, the healthspan of these mice was
improved significantly with MetR as evidenced by
an amelioration of the loss of bone structure and lack
of grooming behaviors, as well as improvements in
aortic and skeletal muscle fibrosis [57]. This is inter-
esting given that generally MetR is thought to reduce
bone mass [59]. A recent study of young and old
male and female mice noted that bone morphology is
altered in an age and sex specific manner, with MetR
mice having reduced bone mass. However after cor-
recting for body size, MetR mice had no impairment
in biomechanical properties [60]. This points to the
role of sex steroids in the hormonal regulation of bone
morphology in response to MetR [60]. Indeed, short
term studies (up to 5 weeks) have demonstrated a
sexual dimorphism in hormonal responses to MetR
in young mice [61].

In 6-week-old male and female mice precondi-
tioned with a western diet (WD) for 12 weeks before
being switched to a WD deficient in methionine (or
staying on WD) there is no sexual dimorphism in the
physiological response to the MR diet in terms of
bodyweight, food intake, insulin resistance/glucose
homeostasis or energy expenditure [61]. However,
sexual dimorphism was present in terms of plasma
FGF21 levels with only males having increased lev-
els despite increased levels of liver transcript in both
sexes. Interestingly UCP1 expression was increased
in gonadal WAT of MR fed male mice but not
females. This suggests that in females, increased
energy expenditure occurs via a FGF21/UCP1 inde-
pendent mechanism [61]. Growth hormone has been

implicated in the mechanistic response of MetR but
studies have not investigated the sexual dimorphism
(or lack thereof) [62] in these mice. Furthermore,
there are sexual dimorphic tissue specific metabolic
responses in Snell dwarf vs control mice fed a MetR
diet have been observed. Hepatic hypotaurine being
3-fold higher in normal males versus females, a dif-
ference that was not seen in the Snell dwarf mice
where the hypotaurine concentration in both sexes
was comparable to the lower value found in normal
females [63]. While the molecular mechanism under-
lying these sex differences is not known, it is plausible
to attribute these differences at least in part to sex
hormones. Indeed, estrogen removal in animals or
menopause in women is associated with metabolic
disturbances including hepatic triglyceride accumu-
lation and decreased insulin sensitivity [64].

3.5. Alterations in macronutrient contents/ratios
and impact on health and lifespan

Another method to achieve some of the benefi-
cial effects of CR without reducing caloric intake
is to alter either the ratio of protein:carbohydrate:fat
(P:F:C) content in the diet (termed the geometric
framework GF set of diets), or by modifying a specific
component such as protein (i.e. low protein diets).
Short or long-term reduced protein intake is associ-
ated with many beneficial effects including metabolic
outcomes [65, 66], reduced surgical complications
[67, 68] and improved lifespan [69]. The commonal-
ity in these dietary interventions is that they induce
a phenotype which overlaps with CR to some extent
and affect CR-related pathways.

The Geometric Framework for Nutrition (GFN) is
a model that was developed to investigate how nutri-
ents, other dietary constituents and their interactions
influence physiology and health. The GFN model has
been used to demonstrate how organisms across many
taxa possess nutrient-specific appetites, select foods,
control food intake and utilize ingested nutrients to
attain their intake, growth and maintenance require-
ments [70]. The initial study in mice examined over
25 different diets in C57BL/6 mice found that the
main determinant of lifespan is carbohydrate:protein
ratio and is independent of calorie intake [69]. The
authors used AL diets of normal, medium and low
energy density (termed caloric dilution) to ask the
question if amount and/or type of nutrient is impor-
tant for health outcomes in mice [69]. It is important
to note that the authors do not use CR in the tradi-
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tional sense, rather energy dilution in that while the
mice ingested less calories at the lower energy den-
sity foods, they eat almost twice as much food mass
(available ad libitum to them). Although both males
and females are included in the study, the authors col-
lapse the sexes and do not present sex specific health
outcomes which is a limitation of this elaborate study.
They do however present one analyses for survival
using Cox regression analyses to show that the haz-
ard ratio is generally lower for females, but there is
not a sex-diet interaction apparent [69]. We would
encourage the authors to present data stratified by
sex even if it is included as supplemental material.

Follow up studies to this lifespan paper have inves-
tigated the effect of P:C ratio on various outcomes
and found sex dependent effects of diet on fertility
[71], and skin structure [72]. Interestingly prolonged
fertility correlating with increased lifespan is also
a feature seen in CR mice [73]. A paper published
from the same group investigated a protein titration
across metabolic and cognitive outcomes compared
to traditional CR (20% reduction in daily calories
compared to control diet, 19% protein amounts),
where they present sex as an outcome variable.
This study noted sex specific differences (some vari-
ables higher in males compared to females and vice
versa) in insulin, cholesterol, adiponectin and body-
weight/composition however the general diet trends
(i.e. elevated circulating FGF-21 with low protein)
were consistent across males and females [74] sug-
gesting that at least in the metabolic/longevity sense
reducing protein content does not appear to have
any sexual dimorphic effects. Interestingly, when the
authors examined cognitive function, females gen-
erally performed better on Morris water maze and
novel object recognition tests than males did, how-
ever the effect of diet is hard to tease out in this study.
Sexual dimorphism was observed in the hippocam-
pal gene expression of nutrient sensing pathways
SIRT1, mTOR and PGC-1a with overlap in so-called
pro-longevity genes/pathways between dietary inter-
ventions of CR and LPHC. These are consistent with
other studies which have reported sexual dimorphism
in nutrient sensing pathways [8, 61, 75] with different
dietary interventions.

Although the GFN is a relatively new tool, the
idea of altering macronutrient content in the diet to
improve health outcomes has been around for a num-
ber of decades. Low protein diets (LPD) have been
in use since the early 1970s (in mice) as a therapeu-
tic intervention for autoimmunity and longevity. In
NZB mice fed a normal (22%) or low protein (6%

from casein) diet, the LPD abrogated thymic invo-
lution, and prevented development of splenomegaly.
Furthermore it was able to maintained the cell-
mediated immunities, antibody-producing capacity
and immune functions which are known to decline
with age in these mice in a sex independent manner
[76]. At 24 months of age, 9.1% of females on the
LPD diet were still alive compared to 0% of mice in
the other three groups [76] which is consistent with
the studies by Solon-Biet et al. [69] showing low
protein:carbohydrate ratio is associated with better
longevity. In a subsequent study, authors compared
both normal and low protein diets with and without
50% DR [77]. Mice on the LPD showed decreased
bodyweight, however there was no sexual dimor-
phism observed [77]. Interestingly, the additive effect
of 50% DR on the LPD was detrimental to lifes-
pan in both male and female DBA2/f mice, with the
effect being more pronounced in the median lifespan
of male DBA2/f mice [77]. Notably, this effect was
strain specific as when the same regimen was repeated
in F1 offspring of the NZB × NZW F1 strain, DR
had a profound sex independent effect of increas-
ing median lifespan in both a normal and LPD of
30–42%. LPD+DR also increased maximum lifes-
pan, although the effect was not as pronounced (7%
increase in LPD-DR vs 42% increase) as the effect
of a normal 22% protein diet [77]. Again, the dif-
ferences were not sex dependent. The authors note
that in this study no advantage was found to result
from lowering the calories in addition to lowering
the protein intake, and calorie restriction per se did
not favor prolonged survival, but only in the DBA2/f
mice. Clearly, there are strain specific effects which
require further investigation.

4. Conclusions

Recent studies have illustrated the ability of sex to
impact health and lifespan outcomes in mouse stud-
ies. However, with only 21.4% of studies including
both sexes, it is apparent that there is still far to go.
Here we present a systematic review of the litera-
ture on how sexual dimorphism may be modulated
in response to different dietary restriction and feed-
ing paradigms. These data illustrate the importance of
including both sexes when considering translational
approaches of these interventions to humans and
highlights the potential of leveraging such differences
to provide novel insights into the pathophysiology of
the aging process itself.
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feed restriction during pregnancy in Wistar rats: Evalu-
ation of offspring using classical and immunoteratology
protocols. Hum Exp Toxicol. 2017;36(6):603-15.

[292] Hehar H, Mychasiuk R. The use of telomere length as a
predictive biomarker for injury prognosis in juvenile rats
following a concussion/mild traumatic brain injury. Neuro-
biol Dis. 2016;87:11-8.

[293] Hehar H, Ma I, Mychasiuk R. Effects of Metabolic
Programming on Juvenile Play Behavior and Gene Expres-
sion in the Prefrontal Cortex of Rats. Dev Neurosci.
2016;38(2):96-104.

[294] Salvatierra CS, Reis SR, Pessoa AF, De Souza LM, Stop-
piglia LF, Veloso RV, et al. Short-term low-protein diet
during pregnancy alters islet area and protein content of
phosphatidylinositol 3-kinase pathway in rats. An Acad
Bras Cienc. 2015;87(2):1007-18.

[295] Araminaite V, Zalgeviciene V, Simkunaite-Rizgeliene R,
Stukas R, Kaminskas A, Tutkuviene J. Maternal caloric
restriction prior to pregnancy increases the body weight
of the second-generation male offspring and shortens
their longevity in rats. Tohoku J Exp Med. 2014;234(1):
41-50.

[296] Grymula K, Piotrowska K, Słuczanowska-Głąbowska S,
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[318] Valle A, Català-Niell A, Colom B, García-Palmer FJ, Oliver
J, Roca P. Sex-related differences in energy balance in
response to caloric restriction. Am J Physiol Endocrinol
Metab. 2005;289(1):E15-22.

[319] Langley-Evans SC, Sculley DV. Programming of hepatic
antioxidant capacity and oxidative injury in the ageing rat.
Mech Ageing Dev. 2005;126(6-7):804-12.

[320] Vasselli JR, Weindruch R, Heymsfield SB, Pi-Sunyer FX,
Boozer CN, Yi N, et al. Intentional weight loss reduces
mortality rate in a rodent model of dietary obesity. Obes
Res. 2005;13(4):693-702.

[321] Keenan KP, Hoe CM, Mixson L, McCoy CL, Coleman JB,
Mattson BA, et al. Diabesity: a polygenic model of dietary-
induced obesity from ad libitum overfeeding of Sprague-
Dawley rats and its modulation by moderate and marked
dietary restriction. Toxicol Pathol. 2005;33(6):650-74.

[322] Wang C, Weindruch R, Fernández JR, Coffey CS, Patel P,
Allison DB. Caloric restriction and body weight indepen-
dently affect longevity in Wistar rats. Int J Obes Relat Metab
Disord. 2004;28(3):357-62.

[323] Cooney GT, Holcroft J, de Boer JG. The effect of dietary
restriction on PhIP-induced mutation in the distal colon and
B[a]P- and ENU-induced mutation in the liver of the rat.
Nutr Cancer. 2004;50(1):63-70.

[324] Teillet L, Gouraud S, Corman B. Does food restriction
increase life span in lean rats? J Nutr Health Aging.
2004;8(4):213-8.

[325] Petruska JM, Haushalter TM, Scott A, Davis TE. Diet
restriction in rat toxicity studies: automated gravimetric dis-
pensing equipment for allocating daily rations of powdered
rodent diet into pouches and 7-day feeders. Contemp Top
Lab Anim Sci. 2001;40(5):37-43.

[326] Aihie Sayer A, Dunn R, Langley-Evans S, Cooper C. Pre-
natal exposure to a maternal low protein diet shortens life
span in rats. Gerontology. 2001;47(1):9-14.

[327] Keenan KP, Coleman JB, McCoy CL, Hoe CM, Soper
KA, Laroque P. Chronic nephropathy in ad libitum overfed
Sprague-Dawley rats and its early attenuation by increas-
ing degrees of dietary (caloric) restriction to control growth.
Toxicol Pathol. 2000;28(6):788-98.

[328] Hubert MF, Laroque P, Gillet JP, Keenan KP. The effects of
diet, ad Libitum feeding, and moderate and severe dietary
restriction on body weight, survival, clinical pathology
parameters, and cause of death in control Sprague-Dawley
rats. Toxicol Sci. 2000;58(1):195-207.

[329] Honda S, Nemoto K, Mae T, Kinjoh K, Kyogoku M,
Kawamura H, et al. Mice with early onset of death
(EOD) due to lupus glomerulonephritis. Clin Exp Immunol.
1999;116(1):153-63.

[330] Laroque P, Keenan KP, Soper KA, Dorian C, Gerin G, Hoe
CM, et al. Effect of early body weight and moderate dietary
restriction on the survival of the Sprague-Dawley rat. Exp
Toxicol Pathol. 1997;49(6):459-65.

[331] Solomon HM, Wier PJ, Fish CJ, Hart TK, Johnson CM,
Posobiec LM, et al. Spontaneous and induced alterations in
the cardiac membranous ventricular septum of fetal, wean-
ling, and adult rats. Teratology. 1997;55(3):185-94.

[332] Keenan KP, Soper KA, Smith PF, Ballam GC, Clark
RL. Diet, overfeeding, and moderate dietary restriction in
control Sprague-Dawley rats: I. Effects on spontaneous
neoplasms. Toxicol Pathol. 1995;23(3):269-86.



120 S.J. Mitchell and J.R. Mitchell / Sex differences in dietary restriction

[333] Keenan KP, Soper KA, Hertzog PR, Gumprecht LA, Smith
PF, Mattson BA, et al. Diet, overfeeding, and moder-
ate dietary restriction in control Sprague-Dawley rats:
II. Effects on age-related proliferative and degenerative
lesions. Toxicol Pathol. 1995;23(3):287-302.

[334] Roe FJ, Lee PN, Conybeare G, Kelly D, Matter B, Prentice
D, et al. The Biosure Study: influence of composition of diet
and food consumption on longevity, degenerative diseases
and neoplasia in Wistar rats studied for up to 30 months post
weaning. Food Chem Toxicol. 1995;33(Suppl 1):1s-100s.
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