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1. Introduction

It is well-known that underprivileged people with
compromised nutritional status suffer a higher risk
of infection [1–3]. However, knowledge of the role
that particular nutrients play and the mechanisms
involved in immunological defence over the lifes-
pan is relatively sparse and often contentious. Ever
since the early 1800’s, nutrients have been rec-
ognized for their regulatory effects on immune
function [4]. Most nutrients are needed for uphold-
ing healthy immune functions and deficiency in
almost any nutrient will lead to compromised immune
functions [5].

For normal immune function, mandatory levels
of nutrients range from trace to bulk quantities.
Nutrients are generally required to synthesize new
molecules during development of immune responses
and for cell differentiation that occurs during clonal
expansion of adaptive immune cells resulting in large
enough numbers of antigen-specific effectors which
attack and destroy the invading pathogens.

Impaired immune responses induced by mal-
nutrition can increase susceptibility to infection
and illness, which can in turn exacerbate states
of malnutrition, for example, by reducing nutrient
intake through diminished appetite, impairing nutri-
ent absorption, increasing nutrient losses, or altering
the body’s metabolism such that nutrient require-
ments are increased [6]. Thus, states of malnutrition
and infection can aggravate each other and lead to the
establishment of a vicious circle [1].

Our knowledge of the effects of nutrition on
immune function now extends beyond clinical
nutrient deficiency. A growing body of literature
demonstrates the immune benefits of increasing the
intake of specific nutrients. This article will review
our current understanding of the role of several
nutrients in maintaining host immune defence. An
inadequate status of some of these nutrients occurs in
many populations in the world, where infectious dis-
eases are a major health concern. We will also review
nutrients that may specifically modulate host defence
to pathogens.

We begin with a review of the immune system
and its components with the main focus on the adap-
tive immune arm and the role of T-lymphocytes. We
also review what particular changes are brought by
aging in nutrition and the immune system. Given the
limitation of space for the current issue and because
we are unable to review all nutrients that are needed
to maintain immune function, readers are directed

to some seminal and excellent reviews presented in
Table 1 and some other work published on this and
the relevant topics throughout the text.

2. The immune system

2.1. A brief overview

A detailed description of the immune system and
the disorders associated with it is beyond the scope of
this review. Therefore, readers are referred to some
seminal work on the topic elsewhere [7–9]. Briefly,
however, the immune system is a complex organ that
includes elements involved in numerous functions
in a cohesive mode with other body systems. For
protection against foreign agents (bacteria, viruses,
parasites, fungi, yeast, pollen, dietary proteins, tox-
ins, cancer cells, etc.), a first line of defence includes
physical barriers and certain chemicals such as skin
and mucosa (nasal, intestinal, etc.), their secretions
(pH of stomach acid, lysozyme, and other antibac-
terial components sweat and other secretions) and
protective native flora.

Once pathogens have traversed this first barrier,
the immune system is responsible for defence mech-
anisms that can be divided into two categories:
1) innate immune responses which are specific
for shared microbial factors not found in mam-
mals, respond rapidly via non-polymorphic cell
surface receptors and do not mediate immune mem-
ory; 2) adaptive immune response (also called
acquired immunity), able to recognize myriads of
short peptides derived from target cells detected by
highly specific polymorphic cell surface receptors
and mediating immune memory. Both innate and
adaptive immunity act via immune-competent cells
(leukocytes) and a number of soluble factors (e.g.,
complement, antibodies, cytokines etc) [10, 11].

The cells involved in the immune response orig-
inate in the bone marrow; they mostly reside in
lymphoid organs such as thymus, spleen, lymph
nodes and Peyer’s patches, and are also disseminated
throughout the body in the bloodstream, skin, gut
and lung epithelium and lymphatic circulation and
directed towards where they are required in each case
depending on the type of pathogen and its location
[12]. Within the immune system, innate phagocytic
cells comprising neutrophils, granulocytes, basophils
and eosinophils, monocytes and macrophages act
rapidly as first line of defence without prior exposure
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Table 1

Summary of nutrients affecting the immune system and metabolic health

Nutrients Functions Review or key Review or key
references on references on

immune effects metabolic health
effects

Energy/Protein • Energy required for producing proteins and generating new immune
cells in order to fight infection

[118–123] [124–132]

• Amino acids have been demonstrated to play important roles in immune
responses by regulating, a) the activation of T-Lymphocytes;
b) lymphocytes, NK cells, and macrophages; c). cellular redox state,
gene expression, and lymphocyte proliferation; and d). the production of
antibodies, cytokines, and other factors

Fats
• Monounsaturated fats • Source of energy [122, 133–136] [137–139]
• �-linoleic acid (n-6 PUFA) • Structures of cell membranes
• � linolenic acid (n-6 PUFA) • Signaling molecules
• n-3 PUFA • Inflammatory response

Folic Acid • Immune gene regulation [140–143] [144–151]
• DNA and protein synthesis

Vitamin A • NK Cell Activity [152–154] [156, 157]
• Activation of inflammatory response
• Differentiation of T cell subsets
• Migration of T cells into tissues, proper development of T cell-

dependent antibody responses

Vitamin B12 • As co-enzyme for methionine and L-methylmalonyl-CoA [158–160] [161, 162]

Vitamin B6 • Endogenous synthesis [73, 163–166] [167, 168]
• Metabolism of amino acids
• Lymphocyte proliferation
• Differentiation, and maturation as well as cytokine and antibody

production

Vitamin C • Antioxidant [6, 77, 169, 170] [171–173]
• Stimulation and production of leucocytes
• Cellular motility, chemotaxis and phagocytosis

Vitamin D • Monocyte proliferation, production of IL-1 [155] [124, 174,175]

Vitamin E • Improved natural killer (NK)
cytotoxic activity, neutrophil chemotaxis, phagocytic response

[71, 176–178] [179–180]

• Enhanced mitogen-induced lymphocyte proliferation and interleukin-2
(IL-2) production

Copper • Thymus growth and integrity [81, 90, 181] [182, 183]
• Functional component of a number of essential enzymes known as

cuproenzymes,
• Antimicrobial

Iron • Structural part of proteins and enzymes that are involved in oxygen
transport and storage, electron transport and energy generation,
antioxidant and beneficial pro-oxidant functions, and DNA synthesis,

[83, 84, 184–188] [189, 190]

• Differentiation and proliferation of T-Lymphocytes and generation of
reactive oxygen species (ROS),

• Phagocytic function,
• Cytokine production,
• Complement system activation

Zinc • Immune signaling pathways [191–195] [182, 196]
• Immune functions of zinc can be divided into three categories:

1. catalytic, 2. structural, and
3. regulatory

(Continued)
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Table 1

(Continued)

Nutrients Functions Review or key Review or key
references on references on

immune effects metabolic health
effects

Alcohol/Wine (Note: alcohol/wine
only in moderate amounts have
beneficial effects)

• Anti-inflammatory effect [196, 197] [198–201]
• Protects against DNA damage
• Attenuates monocyte inflammatory response
• Absolute values of leucocytes, monocytes, lymphocytes increase
• Concentrations of IgG, IgM, IgA increase
• IL-2, IL-4 and IL-10 concentrations increase

to the pathogen by recognising structures not present
in mammals (“pathogen-associated molecular pat-
terns”, PAMPs). By contrast, the adaptive response
requires more specific specialized cells, the lympho-
cytes, acting through specific recognition of a much
wider array of antigens from the microorganisms
that have attacked the body. These cells thus are
accomplished at generating cell clones specifically
against the challenge in question, and retaining spe-
cific immunological memory for any future challenge
by the same pathogen. Lymphocytes are classified
into T and B lymphocytes and immunocompetent nat-
ural killer cells (NK), the latter included within innate
immunity in general, although their participation in
the adaptive mechanisms is becoming increasingly
evident [13].

T-Lymphocytes are divided in turn into ‘collab-
orators’ (or helper; usually distinguished by the
presence of the molecule CD4 + on the surface) and
‘cytotoxic/suppressor’ (usually characterized by the
CD8 + molecule on the surface), both involved in
cell-mediated immunity or cellular immunity [14].
The B lymphocytes are responsible for generation of
soluble antibodies (immunoglobulins, ‘Igs’), the fun-
damental components of humoral immunity. These
molecules circulating in plasma and infiltrate the tis-
sues body-wide. Of course, the above is a very brief
picture of the overall protection provided by the inter-
action between different cells (mature B and various
types of T cells) and a large multiplicity of molecules
that are part of the immune response (complement
factors, enzymes, cytokines and antibodies, etc.) [13].

2.2. Aging and changes in the immune
signatures

There are large changes in human immune profiles
along the lifespan. A brief overview of these changes
is given in the following sections.

2.2.1. Fetal life
In utero, the fetal setting requires that the

immune system remains tolerant to maternal alloanti-
gens. After birth, abrupt exposure to environmental
antigens, many of them resulting from intestinal
commensal bacteria, demands a swift transforma-
tion to make discrete immune responses appropriate
for early life. The innate immune system offers
an early first line of defense against assaulting
pathogens. The cells involved are neutrophils, mono-
cytes, macrophages and dendritic cells, which all
interact with the adaptive immune system. These
cells develop and mature during fetal life, but at
diverse times, and the function of all components
of innate immunity is frail in newborns compared
with later life. Mature neutrophils are already present
at the end of the first trimester and precipitously
increase in number, stimulated by granulocyte-
colony-stimulating factor, just before birth. Their
number then returns to a steady level within days,
but they display feeble bactericidal functions, meager
responses to inflammatory stimuli, weak adhesion to
endothelial cells and reduced chemotaxis [15]. These
shortfalls are more conspicuous in preterm infants,
which also have lower serum IgG and complement.
Consequently, the newborn, and particularly prema-
ture infants, have compromised neutrophil functions
[16], putting the child at increased risk of bac-
terial infections. In preterm and newborn infants,
typical monocytes and macrophages are also unde-
veloped. They have reduced TLR4 expression with
impaired innate signalling pathways [17–19], result-
ing in reduced cytokine responses compared with
adults. Subsequently, there is poor tissue repair,
weakened phagocytosis of potential pathogens and
poor secretion of bioactive molecules. However,
while there is a reduced frequency of pulmonary
macrophages in premature and term infants, adult
levels of these cells are reached within days after
birth [20].
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Mature single CD4 and CD8 positive T cells are
first identified in the thymus at week 15 and are
numerous in the periphery well before birth [21, 22].
However, neonatal T cells differ significantly from
adult cells, perhaps because during fetal life, contact
to foreign antigens is largely limited to non-inherited
maternal alloantigens. The function of early-life T
cells is different from adult T cells. For example,
although fetal naive CD4 + T cells respond power-
fully to alloantigens, they tend to mature towards
Foxp3 + CD25 + regulatory T cells (Treg) through the
effect of TGF-b [23], and thus vigorously support
self-tolerance. Peripheral regulatory T cells (Tregs)
make up around 3% of total CD4 + T cells at birth
[6] and these cells are maintained for a long time
[24], giving the early-life immune response an anti-
inflammatory profile [25].

2.2.2. Newborns and infants
In the newborn, in addition to conventional T

cells that distinguish peptide antigens in the context
of classical MHC molecules, there are populations
of �δ T-cell receptor (TCR)-positive and innate-like
�� TCR-positive T cells. These comprise function-
ally competent iNKT cells that swiftly produce IFN,
mucosal-associated invariant T (MAIT) cells [26]
and the newly designated interleukin-8 (CXCL8)-
secreting naive T cells that bond innate and adaptive
immunity [27]. Children with low gestational weight
plus atrophy may exhibit reduced thymus size and
display attenuated cellular immunity. On the other
hand, it has been found that children who are born
underweight have fewer T-Lymphocytes and lower
responses to mitogens. The delayed hypersensitivity
skin test is also impaired in these cases. Children with
low gestational weight show a poor cellular immune
response for several months or even years. This result
is especially relevant in children whose weight-height
is below 80% of normal [28].

The immune system gradually develops during
infancy. Precarious early protection against many
infectious diseases hitherto experienced by the
mother is given by the passive IgG antibody trans-
ferred from the mother through the placenta and
in the milk. Besides promoting survival, such anti-
gen stimulation results in immunological memory
[29, 30].

At the time of birth, nearly all T cells express
the CD45RA glycoprotein, typical of naive T cells,
which have never encountered foreign antigen. There
are also comparatively plentiful Tregs within the
CD45RA-negative CD4 + T cell population. During

childhood, Treg numbers decline, and memory Th1,
Th17 and Th2 cells progressively increase [31].

2.2.3. Adulthood and old age
It is believed that with increasing age the immune

system has a decreased ability to mediate adequate
defence against micro-organisms, malignant cells
and other “foreign” agents. The course of aging is
associated with amplified free radical production,
contributing to the decreased immune response [32].
The changes in the immune system are associated
with decreased responses in the skin hypersensitiv-
ity test, lower production of IL-2, reduced response
to mitogens and antigens, and lower-titer antibodies
after vaccination. Also, the capacity of immuno-
competent cells is reduced for clonal proliferation
and generation of B and T cells and a marked
decrease in the activity of thymus and reduced pro-
duction of serum IgA, and even decreased primary
antibody responses. The number of T-Lymphocytes
is marginally decreased, although the number of
CD8 + cells has been reported as similar, decreased
or even increased (reviwed in 33). Furthermore, those
functions that are more associated with stress, such as
adhesion, production of free radicals and cytokines,
increase with age [32, 34]. As age progresses, the
immune system experiences intense remodeling and
weakening, with major effects on health and sur-
vival [35]. This immune senescence predisposes
older adults to a higher risk of acute viral and bac-
terial infections. Moreover, the mortality rates of
these infections are three times higher among elderly
patients compared with younger adult patients [36].

Infectious diseases are still the fourth most com-
mon cause of death among the elderly in the
developed world. The figures are even more wor-
risome for the developing world. Furthermore,
anomalous immune responses in the aged can aggra-
vate inflammation, conceivably contributing to other
diseases of old age: cancer, cardiovascular disease,
stroke, Alzheimer’s disease and dementia, for exam-
ple [37]. T cells proliferate and increase the ‘virtual
memory’ compartment, but at the same time, the abil-
ity to establish immunological memory in response
to de-novo antigens is reduced, compromising vac-
cinations. Functions such as cytokine production by
CD4 and CD8 T cells are diminished, the expression
of key surface markers is altered and the CD4 + to
CD8 + T-cell ratio may become inverted [35]. The
expanded T-cell responses that keep latent viruses
such as EBV and CMV under control, reduces space
for CD8 + T cells specific for other potentially lethal
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viruses [38], exacerbated by the reduced thymic
naive T-cell output. Interestingly, aging presents a
unique paradox i.e., it is associated with an increase
in the autoimmunity and inflammation that coex-
ist with immunodeficiency [39]. Immunosenescence
is a broad concept that reflects the immunological
changes associated with age [40–43] and inflamma-
tory potential of the diet [44].

3. Nutrition and the immune system

In the following section, our discussion will mainly
focus on the relationship between nutrition and the
immune system. We will elaborate on this relation-
ship using data collected mainly in human studies
(age 60 and above) throughout this paper. How-
ever, results of studies using animal models will
also be discussed wherever needed. In vivo experi-
ments are widely used to investigate the effects of
nutritional interventions on immune-related param-
eters in animal models which can be challenging in
humans. Many studies conducted on human popu-
lations in developing countries identify deficiencies
in macronutrients (fats, proteins, carbohydrates that
lead to protein-energy deficiency), micronutrients
(minerals, electrolytes and vitamins that lead to
micronutrients deficiency) or both (reviewed in Ref.
45). These studies are very relevant because they per-
mit the identification of the most severely affected
regions and consequently can guide intervention
by humanitarian organizations and local govern-
ments. Nonetheless, laboratory animals have been
very useful in studying the effects of different levels
of malnutrition, because non-nutritional factors that
affect humans can be controlled in this type of evalu-
ation [46]. The use of animal models in malnutrition
has yielded a great deal of information on molecular
mechanisms involved in the greater susceptibility to
infections and also to immunodeficiency secondary
to undernutrition.

The most commonly employed models are adult
mice and rats (outbred or isogenic) fed with reduced
amount of proteins, vitamins or micronutrients [47].
The long history of animal experimentation describes
the use of a series of methods that not only include
the use of whole animals but isolated organs, isolated
tissues, tissue cultures, isolated cells, subcellular
components, modeling and structure-activity rela-
tionships [48]. As immunodeficiency associated with
prepubescent malnutrition underlies a very high

burden of infection-related morbidity, acute wean-
ling mice have also been explored to investigate the
effects of malnutrition [49]. More recently, trans-
genic and knockout mice have also been employed
to better understand the mechanisms involved in the
greater susceptibility to infectious agents in malnour-
ished mice [49] and for studying wound healing [50].
These numerous animal models allowed a growing
understanding and characterization of the immuno-
logical disturbances triggered by under-nutrition.
Some examples of the most relevant findings in this
research area are presented in (Table 1).

The disciplines of nutrition and immunology and
their interdependency were formally recognized and
documented in the 1970s when immunological mea-
sures were introduced as a constituent of nutritional
status assessment [4, 5]. Understanding of the effect
of nutrients on immune function has been refined
with the progressive growth of the field of immunol-
ogy from relatively descriptive science to one in
which diverse immune mechanisms can be integrated
together coherently and explained in clear-cut struc-
tural and biochemical terms. For some time, protein
energy malnutrition (PEM) has been considered the
major cause of immunodeficiency worldwide [51].
This is not surprising because immune cells have
a high requirement for energy and amino acids for
cell division and protein synthesis. The influence of
PEM on immune function has been reviewed exten-
sively [52–58] and also studied widely, particularly
in the context of effects of PEM on viral susceptibil-
ity [59, 60], PEM and supressed immunity, PEM and
impaired immune organ growth [61] and PEM and
thymic atrophy [62].

All nutrients have specific roles in the over-
all functional capacity of the immune system. For
example, certain antioxidants play a key role in
protecting immunocompetent cells against oxidative
stress [32]. Protein and energy have been studied
extensively in relation to immune functions, par-
ticularly with an emphasis on their role in overall
metabolism (Table 1). Vitamins, minerals and trace
elements play an important role as cofactors in many
metabolic pathways and are considered essential for
the integrity and optimal functioning of the immune
system. Some micronutrients such as vitamin A
(beta-carotene), folic acid, vitamin B6, vitamin B12,
vitamin C, vitamin E, iron, zinc, copper and sele-
nium, exert immunomodulatory effects influencing
host vulnerability to infections [63–65].

Malnutrition in humans is generally perceived as a
syndrome with numerous nutrient deficiencies. The
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impact of micronutrients on immunocompetence has
been explored extensively, albeit mostly by exper-
iments on laboratory animals using diets deficient
in micronutrients resulting in the development of
clinical symptoms of diseases of the immune sys-
tem. These immunological changes were reversed
when animals were fed diets supplemented with those
missing elements, noting also that excessive sup-
plementation could result in adverse effects on the
immune system [64]. At the same time, obesity,
another highly prevent form of malnutrition, has been
extensively studied in relation to immunity. The over-
all impact of obesity on immunity has been recently
investigated with looking at obesity as a form of ‘low-
grade chronic inflammation’ (reviewed in 66).

It has been noted that insufficiency of certain vita-
mins causes a decrease of thymus and spleen size, a
drop in the activity of NK cells, lower levels of the
pro-inflammatory and anti-viral cytokine interferon-
� (IFN-�), a decrease in the delayed hypersensitivity
skin response, and a low response to mitogen stimula-
tion by lymphocytes [67, 68]. The results of a number
of studies concerning supplementation of diets with
beta-carotene have shown an escalation in the number
of helper T-Lymphocytes and capacity of NK cells.
When such supplementation was performed for rel-
atively long periods in elderly subjects, an increase
was also observed in the activity of NK cells. In both
experimental animals and humans, it has been shown
that supplementation with beta-carotene stimulates
cellular immunity and humoral immunity and hence
may exert a preventive effect against the incidence of
certain diseases [69].

An appropriate intake of vitamin E is essential for
proper functioning of the immune system. Out of
eight naturally occurring forms of vitamin E; namely,
the alpha, beta, gamma and delta classes of toco-
pherol and tocotrienol, alpha-tocopherol and gamma-
tocopherol are common forms in supplements and
diets and have been usually found to affect immu-
nity (reviwed in Ref. 70, 71). In a small intervention
study in older adults (mean age, 70 years), supple-
mentation with 200 mg/day of all-rac-�-tocopherol
(equivalent to 100 mg of RRR-�-tocopherol) for
three months significantly improved natural killer
(NK) cytotoxic activity, neutrophil chemotaxis,
phagocytic response, and enhanced mitogen-induced
lymphocyte proliferation and interleukin-2 (IL-2)
production compared to baseline [71]. �-Tocopherol
has been shown to enhance specifically the T
cell-mediated immune response that declines with
advancing age [70–73]. It has been shown that

deficiency of this nutrient is associated with an
impaired immune response, producing alterations in
humoral immunity, cellular immunity and phago-
cytic functions [72, 73]. Recommended intakes of
vitamin E might be sufficient to prevent the onset
of neuropathies and myopathies, but only reverse
effects of deficiencies rather than amplify normal
immune system, a consideration which applies to all
such supplementation studies. The immunostimula-
tory effect of vitamin E increases the resistance of
an individual to certain infectious diseases, possi-
bly mediated by increased generation of antibodies
as well as augmentation of phagocytic activity [72,
73]. Due to its antioxidant effects, the amount of vita-
min E needed depends on the severity of the process
which triggers oxidative stress (i.e. consumption of
diets high in polyunsaturated fatty acids, the presence
of certain diseases and aging). It is established that
administering high doses of vitamin E may result in
improvement of both humoral immunity and cellular
immunity [72]. However, it has also been proposed
that the beneficial effect of supplementation with vita-
min E may be limited to those individuals who have a
severe deficiency of vitamin E as a result of intestinal
malabsorption [74].

Vitamin C also affects some parameters of the
immune system with deficiency predisposing to
infections, especially of the upper respiratory tract.
The risk of this type of infection is increased espe-
cially in individuals who practice intense physical
exercise. In this context, immunological changes of
both innate immunity (activity NK cells, phago-
cytic function and oxidative neutrophils) and specific
immunity (function of T cells and B) have been
reported. Due to the antioxidant action of vitamin
C, supplementation with this micronutrient is often
recommended. For example, it was reported that vita-
min C supplementation results in an improvement in
the immune system and a lower incidence of infec-
tions [75]. Vitamin C has been shown to affect the
immune system by (A) exciting the production [76]
and function [77] of leukocytes; (B) enhancing cel-
lular motility and chemotaxis and phagocytosis [77];
(C) promoting neutrophil activity [78], (D) increase
in the serum levels of antibodies and C1q complement
proteins [79, 80].

Analogous results are seen when there are deficits
of minerals and trace elements. Iron, zinc, copper
and selenium are needed for proper operation of the
immune system and are essential for adequate protec-
tion against infections [81]. Iron is the most prevalent
deficient mineral in most parts of the world and its



80 I. Alam et al. / The immune-nutrition interplay in aging - facts and controversies

deficiency is associated with an increase in morbidity
and indisposition from infectious disease as shown
by earlier work, both in animals and humans, con-
ducted over the past two decades. Iron is an essential
element for the proper development of the immune
system [13]. It has been found that iron supplemen-
tation in populations showing deficits in this element
decreases the frequency of infectious episodes. Iron
deficiency causes a failure in the defence mecha-
nisms of individuals reflected in reduced phagocytic
capability, a lower response to stimulation of lympho-
cytes, a decrease in the number NK cell associated
with lower production of IFN-g, and low delayed
hypersensitivity cutaneous responses [82]. Iron is
an essential component of hundreds of proteins and
enzymes that are involved in oxygen transport and
storage, electron transport and energy generation,
antioxidant and beneficial pro-oxidant functions, and
DNA synthesis [83]. Iron is required for effective
immune responses against pathogens, and iron defi-
ciency impairs immune responses [84]. Sufficient
iron is critical to several immune functions, including
the differentiation and proliferation of T lymphocytes
and generation of reactive oxygen species (ROS) that
kill pathogens. However, iron is also required by
most infectious agents for replication and survival.
During an acute inflammatory response, serum iron
levels decrease while levels of ferritin (the iron stor-
age protein) increase, suggesting that impounding
iron from pathogens is an important host response
to infection [83]. Nonetheless, conditions of iron
overload (e.g., hereditary hemochromatosis) can also
have deleterious effects on immune function, such
as diminishing phagocytic function, cytokine pro-
duction, complement system activity, and T and B
lymphocyte function [84]. Further, data from the
first National Health and Nutrition Examination Sur-
vey (NHANES), a US national survey, indicate that
raised iron levels may be a risk factor for cancer
and death, especially in men [85]. For men and
women combined, there were significant tenden-
cies for increasing risk of cancer and mortality with
increasing transferrin saturation, with risks being
higher in those with transferrin saturation >40% com-
pared to ≤30% [85].

Zinc is also a good example to illustrate the con-
cept of how the lack of a single nutrient can affect
the immune system. In this sense, the literature on
the studies showing its deficiency is unequivocal [86,
87]. Zinc is required for the activity of more than 100
metallo-enzymes [88]. Zinc affects multiple aspects
of the immune system from the skin barrier to gene

regulation in lymphocytes, influences the function of
cells mediating non-specific immunity (neutrophils
and NK cells), but also has a role in the induction
of specific immunity by acting on the activation of
T-Lymphocytes, cytokine production and maturation
of B lymphocytes [86]. Thus, zinc deficiency is asso-
ciated with lymphoid attenuation and a decrease in
the proliferative response of lymphocytes to mitogens
and lower thymic hormone activity [87]. Moreover,
experimental evidence shows a decrease in the ratio
CD4/CD8. Zinc deficiencies cause an imbalance in
Th1 and Th2 function, a decreased production of IL-
2, IFN-g and TNF-a, while the production of IL-4,
IL-6 and IL-10 is not altered [87].

Copper is also an essential micronutrient for
development, growth and maintenance of the
immune system; being necessary for differentia-
tion, maturation and activation of various types of
immunocompetent cells and for cytokine secretion,
thus exercising an impact on host defence. It also
plays a role synthesis of haemoglobin and myoglobin,
and acts as an antioxidant, since it is an indispensable
cofactor for a large variety of enzymes, including
cytochrome C oxidase and Cu, Zn-superoxide dis-
mutase [89]. Recently, it has been observed in adult
rats and healthy individuals in vitro that the activ-
ity of T cells is reduced when the diet is deficient
in copper, suggesting that ample/increased intake of
this micronutrient would reduce the chances of suf-
fering from infectious disease [90]. It has also been
shown that insufficient copper intake has adverse
consequences for innate and acquired immunity. In
this respect, T cells appear to be more affected than
B cells, and the microbicidal activity of neutrophils
and macrophages as well as the cytolytic activity of
NK cells is reduced; hypersensitivity and antibody
production in vitro in response to mitogens is also
affected under these conditions [89].

4. Nutrition, metabolism and immunity

Nutrition and immunity are closely related. In the
past few decades, this relationship has been explored
and reported extensively. The overall picture emerges
from a large body of work that nutrition affects
immunity via changes in metabolism and metabolic
pathways. Therefore, any discussion on relation-
ships between nutrition and immunity can only
be understood by comprehending metabolism and
metabolic changes that are associated with nutritional



I. Alam et al. / The immune-nutrition interplay in aging - facts and controversies 81

status. Accumulating data support the notion that
understanding how metabolism regulates immune
cell function could provide new therapeutic opportu-
nities for the many diseases associated with immune
system dysregulation.

One of the important aims in the study of nutri-
tion and immunity is to determine the role of
nutrients affecting metabolism of the body (gen-
eral/organismal metabolism) and hence immunity.
Immune cells migrate throughout the body and some-
times take up residence in niche environments with
distinct and varied communities of cells, extracellu-
lar matrix, and nutrients that may differ from those in
which they matured. Imbedded in immune cell phys-
iology are metabolic pathways and metabolites that
not only provide energy and substrates for growth
and survival, but also instruct effector functions,
differentiation, and gene expression [91]. Studies
have shown that dietary intakes rich in whole-grain
foods have been related to a lower prevalence of
a metabolic syndrome (MetSyn) [92, 93], which
is a clustering of certain conditions i.e. increased
blood pressure, elevated blood sugar, excess body fat
around the waist, and abnormal cholesterol or triglyc-
eride levels, insulin resistance, that occur together,
increasing risk of diabetes (Type-II) and cardiovas-
cular abnormalities. The association is less reliable
for refined-grain intake, with some cross-sectional
studies recording a positive association and others
no relation [92]. Dairy intake has been shown to
be associated with MetSyn both in cross-sectional
and prospective studies [94–96]. Higher intakes of
fruit and vegetables have also been associated with
a lower prevalence of MetSyn [93]. No associa-
tion has been found between MetSyn and intakes
of meat and fish [95]. Intakes of regular and diet
soda, however, have been positively associated with
MetSyn both cross-sectionaly and prospectively [97].
In cross-sectional dietary pattern analyses, a higher
prevalence of MetSyn was found among consumers
of “Western” [98] and “empty-calorie” [99] dietary
patterns, whereas a lower prevalence was found
among those consuming a “healthy” dietary pattern
[98, 99].

The intake of diets that are lower in carbohydrate,
lower in saturated fat, but higher in protein than the
average American diet - which consists of almost
47% carbohydrate, 38% fat (20% SFA), and 15%
protein - have a tendency to be beneficial for improv-
ing features of the metabolic syndrome, including
effects on insulin sensitivity and blood lipids [99].
In particular, insulin resistance has been recognized

as a chronic inflammatory and metabolic disease,
playing a pivotal role in the development of dia-
betes [100]. Obesity and abnormal lipid metabolism
increases infiltration of inflammatory cells, affects
immune homeostasis, and reduces insulin sensitiv-
ity, consequently leading to the occurrence of insulin
resistance. [100]. In their study, Musselman et al.
found that obesity-associated insulin resistance led
to increased susceptibility of flies to infection, as in
humans [100].

There have been many proposed dietary pat-
terns claiming health benefits ranging from those
related to metabolic and immune health. For exam-
ple, the Mediterranean dietary pattern [45–48, 73,
99, 101, 102], Ornish Diet [50, 103, 104], Atkins
Diet [105, 106], Zone Diet [107], the South Beach
Diet [108] etc. Adherence to these diets in rela-
tion to metabolic health and expansion in the
immune parameters have been studied extensively.
The Mediterranean dietary pattern, in particular has
fascinated nutritionists focused in immunity. This
diet, high in fruits, vegetables and olive oil, and fish
consumption [109] has been shown to be related to
anti-inflammatory processes [110–112] and thus has
been recommended for the maintenance of health
[113].

In the discussion of nutrition and immune inter-
play, obesity in particular has attracted a great deal of
attention. Obesity is considered as a state of chronic
inflammation, which affects both the metabolic health
and the immune system in a number of ways. For
example, adipose tissue is considered to be respon-
sible for a possible link between obesity and the
immune system (reviewed by de Heredia et al., [114].
Histological studies in mice showed that macrophage
infiltration in adipose tissue was greater in obese
than in lean animals [115]. Macrophages appeared as
crown-shaped aggregates, similar to those observed
in other known inflammatory conditions, such as
rheumatoid arthritis, and grew larger with increas-
ing degrees of obesity. This finding led to the idea
that macrophage aggregates could partially explain
the obesity-related inflammatory state. There are
of higher rates of infections and impaired wound
healing in obese subjects [116]. Excess body fat
is accompanied by changes in leucocyte counts,
with elevated leucocyte, neutrophil, monocyte and
lymphocyte counts, but lower T- and B-cell mitogen-
induced proliferation [116]. In addition, other studies
have shown that the production of antibodies after
vaccination is diminished in obese patients [116,
117].
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5. What is the mechanism whereby nutrition
affects the immune system?

The mechanisms behind immunological alter-
ations with respect to nutrition are still not adequately
understood. Nevertheless, there have been many the-
ories put forward to explain this phenomenon. For
example, the lack of energy and the amino acid
building blocks to synthesize the required proteins
in marasmic children may be one possible cause
[202]. However, lack of building blocks does not
explain why some immune parameters seem unaf-
fected or paradoxically even raised in malnutrition,
such as plasma IgA, acute-phase proteins, leucocytes
in blood, and production of Th2 cytokines. If it was
solely a matter of lack of building blocks, all param-
eters of the immune system should be affected in the
same way. Other explanations include a confounding
role of infections in influencing immune parameters
in malnourished individuals [203], low levels of cer-
tain hormones in malnourished children, e.g. leptin
[204], prolactin [205] and growth hormone [206], all
of which impact growth and function of thymus – an
important specialized primary lymphoid organ where
T cells mature till puberty. In support of this, a recent
study found that a low leptin level was associated with
a higher risk of death in malnourished children [207].
Growth hormone therapy has been found to augment
thymic size and output in adult HIV + patients [208].
In contrast, cortisol and adrenalin prompt thymic
atrophy in mice [209, 210], and cortisol is high in
children with malnutrition and other forms of stress.
Zinc deficiency causes thymic atrophy [211, 212],
and acute phase responses lower plasma zinc, so zinc
status may contribute to the immune deficiency of
both malnutrition and acute phase responses.

The intracellular receptor, mammalian target of
Rapamycin (mTOR), is present in most cells. It
responds to the concentrations of nutrients in the
cell’s surroundings, enabling the cell to adapt its
metabolism to locally available nutrients. Immune
cells also use mTOR to regulate their state of
activation. Nutrient availability may thereby deter-
mine whether an immune cell is activated [213],
and whether T-cells differentiate towards a pro-
inflammatory or a tolerance-inducing phenotype
[214]. Some immune cells may even deplete the
microenvironment of certain nutrients, to manipulate
the activation of mTOR. Accordingly, the signifi-
cance of nutrients in the microenvironment expands
from simple building blocks to signal molecules.
Obviously, this mechanism could be involved in the

immunological profile in malnutrition. However, no
publications have yet described the activity of mTOR
in malnourished children. A research group working
with animal models of malnutrition has proposed a
theory called the “tolerance hypothesis” [215]. This
suggests that the depression of cellular immunity
in malnutrition is an adaptive response to prevent
autoimmune reactions, which would otherwise occur
as a result of catabolism and release of self-antigens.
Such phenomena have apparently not been studied
further.

6. Effects of aging on nutrition

The relation between aging and nutrition is com-
plex one as what affects what is difficult to decide.
Natural aging cannot be stopped but can be delayed
by nutritional interventions. This is the main theme
of discussions on relationships between aging and
nutrition in this section of the paper. The aging pro-
cess involves changes in pathological, physiological,
social, and psychological conditions of individuals.
Nutrition is an important element of health in the
elderly, and it affects the whole process of aging
[216]. The prevalence of malnutrition is cumulative
in this population and is related to weakening func-
tional status, diminished muscle function, reduced
bone mass, immune dysfunction, anemia, diminished
cognitive function, poor wound healing, delayed
recovery from surgery, higher hospital readmission
rates, and mortality. Due to altering socioeconomic
environments, elderly people are often left alone to
fend for themselves to maintain their health, which
may hinder the maintenance of a good nutritional
status.

Nutritional choices remain crucial throughout life,
having great influence on overall health and wellness
of the individual and potentially also generations to
come due to developmental programing. All healthy
people need the same basic nutrients, including car-
bohydrates, essential amino acids, essential fatty
acids, and as many as 28 vitamins and minerals,
in order to maintain life and health and reproduce
successfully. However, the amounts of needed nutri-
ents change as an individual passes from one stage
of life to the next. Clearly, young children require a
higher caloric intake relative to body size to facili-
tate physical and mental development as compared
to the elderly [216–218]. It is also important to note
that nutrition at one particular stage of life span may
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be profoundly reflected in another stage, particularly
during the latter years. This can be seen in the findings
of a number of studies based [219, 220] on the famous
historical famine known as “the Dutch Hunger Win-
ter”. The famine was a humanitarian disaster, but it
left an opportunity to study the effects of maternal
malnutrition on the offspring’s health and ageing in
later life. Using birth records of babies born around
the time of the Dutch famine in the Amsterdam
area, the long-term consequences of pre-natal under-
nutrition have been investigated [219]. It has been
shown that those who were conceived during the
famine — and had thus been undernourished dur-
ing the earliest stages of their development—have an
increased risk for coronary heart disease, diabetes,
an atherosclerotic lipid profile, altered clotting and
breast cancer.

The relationship between nutrition and aging, com-
plex as it is, has a bidirectional association, i.e.,
aging affects nutrition and vice versa (Table 2). How-
ever, in the forthcoming section, we will restrict
ourselves mainly to the discussion on how aging
may affect nutrition. In general, there is a decline
in the overall nutritional status with aging – a
fact confirmed by both cross-sectional as well as
longitudinal studies [219–221]. This age-associated
decline in nutritional status may be more obvious in
societies with low economy, literacy rate and lack
of nutrition-related awareness. Nevertheless, the so
called Westernized, Educated, Intelligent, Rich, and
Democratic (WEIRD) societies also suffer from age-
associated malnutrition in one way or the other.
Extraordinary changes in the regulation of energy
intake in the elderly as compared to the young have
been extensively reported [222–227]. The day-to-day
variability in energy intake (20%–25%) and energy
expenditure (10%) [228, 229] suggests substantial
fluctuation in day-to-day energy balance. Energy bal-
ance in old age is significantly impaired as compared
to that in young age suggesting markedly impaired
regulation of energy intake in late life [224, 225].
There are also several animal studies conducted in the
past that reported impaired regulation of food intake
in old age [225, 230–238].

Old age is often associated with reduced hunger
and early satiety due to a number of physical,
physiological and social reasons (reviewed in 225,
239–242). Several studies have recorded abnormally
low hunger following fasting or experimental induc-
tion of negative energy balance in elderly subjects
[222–224, 227, 238, 243–245]. Alterations in glu-
cose homeostasis in old age may contribute to altered

hunger and satiety. Blood glucose has long been a
postulated trigger for hunger signals in both rodents
and humans [240, 246–249]. In addition, delayed gas-
tric emptying in general has been linked to reduced
hunger and increased satiety [222, 246, 250–252].
Also, taste and smell of food play important roles in
regulating intake, and impairment in old age has been
reported to be partly responsible for reduced hunger
signals and thus lower intake [225, 253–258]. Hunger
and satiety are also related to food variety; a charac-
teristic of food that has been reported to play a pivotal
role in overall food intake [227, 259, 260]. A study
[260] recently reported on the long-term association
between dietary variety and body fatness in healthy
adult men and women.

Many studies examining gastric emptying in rela-
tion to age have reported a decreased rate of gastric
emptying in the elderly [222, 261–264]; a phe-
nomenon responsible for a number of other related
complications including disturbance in those hor-
mone systems related to energy regulation [243,
252, 264, 267]. Some well-known examples are
glucagon (responsible for the signals of satiation)
[243, 252, 264–267], which has been reported [249]
to be significantly elevated by up to 25% in response
to consumption of meals of 2,092 kJ (500 kcal) or
greater, identifying a potential role for glucagon in
the apparently enhanced satiation associated with old
age. Similarly, another satiety hormone CCK, has
been shown to be as much as 5-fold higher in the
elderly than in young adults, particularly following
consumption of diets with high fat content [268–271].

Basal Metabolic Rate (BMR) is a strong surrogate
indicator of the physiological functioning of vari-
ous organs. Age associated physiological changes
in the organ system brings about adverse changes
in energy expenditure, resulting in a fall in BMR
with aging. In addition, there is a decrease in thermic
energy, total energy expenditure and physical activ-
ity level. Also there is a decline in energy expenditure
responsiveness to energy imbalance [249, 316–318].
A seminal work by Keys et al. [318] documented
a decline in BMR with age, which was as much as
1–2% per decade. In this way, during the life span
stage of 20–70 years of age, a reduction in BMR of
about 400 kJ/day can be predicted based on the find-
ings [318] Age-associated reduction in BMR may
be mainly due to changes in the body composition
in old age [317]. Changes in body composition with
aging (more adipose tissue, lesser lean body mass),
also cause drastic decline in thermic effect of feed-
ing, which is equivalent to nearly 8–15% of ingested



84 I. Alam et al. / The immune-nutrition interplay in aging - facts and controversies

Table 2

Summary of nutrients affecting aging

Nutrients Effects related to old age Key
References

Carbohydrates • Increased glucose intake accelerates aging [190, 272–282]
• High concentrations of glucose in media accelerate the senescence of cultured human cells
• Other carbohydrates or carbohydrate metabolites, including trehalose, pyruvate, malate, fumarate, and N-

acetylglucosamine (GlcNAc), have been shown to promote longevity in C. elegans
• Low-carbohydrate diet is beneficial for human health
• Age-related diseases including diabetes and heart diseases

Protein • Low-protein/high-carbohydrate diet is associated with long lifespan. [283–285]
• High animal-protein intake positively correlates with the risk of developing urothelial cell carcinoma,

whereas high plant-protein intake negatively correlates with the risk

Fats • A high-fat diet (HFD) is generally associated with increased mortality and increased incidence of many
metabolic diseases, including type II diabetes and cardiovascular problems

[276, 286–296]

• Diets enriched in unsaturatedfattyacidsleadtoreducedbloodlevelsofharmfullow-density lipoproteins and
increased levels of protective high-density lipoproteins

• Diets enriched in natural unsaturated
fattyacidslowerbloodpressure,improveinsulinsensitivity,andreducethe risks of cardiovascular and
metabolic diseases

• Dietary trans-fats (unsaturated fatty acids with trans-isomers) trigger inflammatory responses, which
increase the risks of developing cardiovascular and metabolic diseases

• Arachidonic acids, which are omega (x)-6 PUFAs, induce apoptosis of cancer cells
• Dietary lipids may affect mammalian health and longevity by altering the compositions of body fat and

cellular membranes.

Vitamins and
Minerals

• Vitamin E/tocopherol intake significantly increases the lifespan of rotifers, nematodes, and fruit flies [297–315]
• Supplementation of vitamin C/ascorbic acid, a well-known antioxidant, increases the lifespan of the bean

beetle Callosobruchus maculatus
Many members of the vitamin B family also lengthen the lifespan of flies, Zucker fatty rats, and C.
elegans, a mega-dose of vitamins and minerals mildly increases human mortality
selenium (Se), an antioxidant mineral, significantly reduces DNA breakage and extends the replicative
lifespan of cultured adrenocortical cells

metabolizable energy. Some studies report a decrease
in the thermic effect of feeding in old age, while other
studies report no change [249, 318].

Old age is also responsible for a decrease in
energy expenditure responsiveness to energy imbal-
ance. In this way energy balance is drastically
disturbed in old age [319]. A decrease or increase
in energy intake is normally triggered by the energy
expenditure of the body. Any disruption in this
mechanism, as usually observed in old age, will
result in malnutrition (i.e. underweight as a result
of underfeeding or overweight/obesity as a result
of overfeeding. The consequences in case of over-
feeding are particularly crucial in case when fat is
ingested above the requirements – a condition nec-
essarily demanding for the extra fat to be stored by
the body as the ability of fat oxidation decreases with
aging [321].

Daily energy expenditure consists of basal or rest-
ing energy expenditure, diet-induced thermogenesis
and that associated with activity [322]. Changes in
all components may occur with age. Firstly, as lean
mass drops, BMR in relation to body weight falls off,

although per kg fat-free mass remains unchanged or
only somewhat diminished. Second, with diminished
food intake there is less diet-induced thermogene-
sis; third, activity lessens, particularly with disability.
These changes, despite the age-related decline in
energy intake, result in a positive energy balance
in middle life and the changes in body composition
described above. Finally with the onset of anorexia
in the very old, energy balance becomes negative and
BMI and fat mass decline. Similarly, anorexia and
weight loss associated with chronic disease may also
be associated with a fall in BMR. These changes have
an effect on the immune system.

7. Conclusion and future outlook

In short, in the previous sections, we have provided
a brief overview for understanding how diet and nutri-
tional factors influence immune functions, thereby
regulating health and disease outcomes. Beyond pro-
viding essential nutrients, diet can actively influence
the immune system. Naturally occurring compounds
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like vitamins and minerals modulate immune
responses. We also see changes in the immune sys-
tem with normal aging which may be partially a
function of changes in overall nutrition at various
life stages. The challenge remains to capture these
interactions and complexities to better understand
nutritional immunology in the context of aging. In
this review, several aspects of this complexity have
been explored. We first gave an overview of the
immune system, and its mode of action. To character-
ize interactions between nutrition and immunity, we
discussed the effects of multiple food components on
immune functions. In the next sections, we discussed
effects of aging and finally we discussed effects of
aging on the immune system.

We further emphasize the fact that both nutrition
and immunity are complex and multi-dimensional
traits. The same is true for normal aging. Aging, nutri-
tion and immunity (“aging nutrimmunity”) hence
form a complex network and nutritional interactions
via multiple direct and indirect pathways. Future
research will need to focus on how these pathways
interact with each other and explore nutrient alloca-
tion strategies of the body, and the effects of aging
thereon. Excellent initial work in this connection
includes the “selfish brain” theory [323] and “the
“selfish immune system” theory [324], which we will
analyse in separate reviews. We believe that there
is need for both further research as well as for the
development of theoretical frameworks in the par-
ticular discipline of nutritional immunology of old
age which we propose to term “aging nutrimmunity”.
In short, as argued by Stanga [322], five main con-
clusions concerning nutrition and immunity in the
elderly can be drawn: firstly, immunological decline
is not an inevitable part of ageing; thus, many elderly
subjects maintain vigorous immune responses at a
level that is comparable to that seen in younger
subjects. Second, nutritional deficiencies are quite
common in this old age; a large proportion of the
elderly show evidence of PEM or selected nutrient
deficiencies. Third, correction of nutritional deficien-
cies does improve immune responses even in old
age. Fourth, appropriate nutritional counselling and
dietary therapy, sometimes with medicinal supple-
ments, results in reduced respiratory illness. And
fifth, multivitamin, multi-mineral supplements in the
elderly can lead to improved lymphocyte function and
fewer infections.

As we have previously reported that the aged
are already having a malfunctioning in their
energy metabolism, energy allocation mechanisms

and inflammation [325], more exposed to pro-
inflammatory diets [44], have negative changes
in their body composition and have compromised
immunity [326–328]. There is a need of studies that
look into the combined effects of diet with various
life style factors, for example, sleeping, exercise, sun
exposure and social issues. The area of discussion
on nutrition, immune and aging relationship is much
extensive, wide and varied that this is beyond the
scope of a single review. However, a snapshot of such
a relation was presented here in the present review.
It is suggested that in future the following areas of
research may be addressed:

1. Randomized controlled trials that include older
adults with disease and n use to make nutri-
ent recommendations within these altered
metabolic states.

2. Randomized controlled trials in various life
stages for prevention of mild cognitive decline
and in different stages of Alzheimer disease
with patient-tailored lifestyle nutrition treat-
ments for evidence to support individual or
broad recommendations on diet, lifestyle, or
nutrient supplementation.

3. Studies examining other biomarkers beyond
nitrogen balance to fully understand the impact
of advancing age on protein requirements and
skeletal muscle protein turnover.

4. Clinical trials to establish optimal nutrient
requirements and to identify food components
for older adults to improve immune function
and reduce inflammatory diseases Design of
an effective, interoperable electronic medical
record, integrated across health care settings, to
promote improved documentation and commu-
nication across health care providers, enhance
care coordination, and facilitate continuity in
nutrition care as an older individual transitions
between health care settings.

5. Re-evaluation of how the current BMI guide-
lines are used in older adults and incorporation
of nutrition screening and assessment into gen-
eral practice and community settings.
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aging reaches CD4+ T-cells: phenotypic and functional
changes. Frontiers in Immunology. 2013;10;4:107.

[36] Yoshikawa TT. Epidemiology and unique aspects of
aging and infectious diseases. Clinical Infectious Diseases.
2000;30(6):931-3.

[37] Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S,
Seo AY, et al. Molecular inflammation: Underpinnings of
aging and age-related diseases. Ageing Research Reviews.
2009;8(1):18-30.

[38] De Martinis M, Franceschi C, Monti D, Ginaldi L.
Inflamm-ageing and lifelong antigenic load as major deter-
minants of ageing rate and longevity. FEBS Letters.
2005;579(10):2035-9.

[39] Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F,
Rolfo E, Ricevuti G. Alzheimer’s disease, autoimmunity
and inflammation. The good, the bad and the ugly. Autoim-
munity Reviews. 2011;11(2):149-53.

[40] Boraschi D, Italiani P. Immunosenescence and vaccine
failure in the elderly: Strategies for improving response.
Immunology Letters. 2014;162(1):346-53.

[41] Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G,
Larbi A. Cellular signaling in the aging immune system.
Current Opinion in Immunology. 2014;29:105-11.

[42] Poland GA, Ovsyannikova IG, Kennedy RB, Lambert ND,
Kirkland JL. A systems biology approach to the effect of
aging, immunosenescence and vaccine response. Current
Opinion in Immunology. 2014;29:62-8.

[43] Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-
Loebenstein B, Wikby A. Human immunosenescence: Is it
infectious? Immunological Reviews. 2005;205(1):257-68.

[44] Alam I, Shivappa N, Hebert JR, Pawelec G, Larbi
A. Relationships between the inflammatory potential of
the diet, aging and anthropometric measurements in a
cross-sectional study in Pakistan. Nutrition and Healthy
Aging.(Preprint):1-9.

[45] King FS, Burgess A, Quinn VJ, Osei AK, editors. Nutrition
for developing countries. Oxford University Press; 2015.

[46] Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simp-
son SJ. Nutritional immunology: A multi-dimensional
approach. PLoS Pathogens. 2011;7(12):e1002223.

[47] McMullen S, Mostyn A. Animal models for the study of the
developmental origins of health and disease: Workshop on
‘Nutritional models of the developmental origins of adult
health and disease’. Proceedings of the Nutrition Society.
2009;68(3):306-20.

[48] Vasconcelos CA. Animal models of human nutritional dis-
eases: A short overview. Revista brasileira de hematologia
e hemoterapia. 2012;34(4):264.

[49] França TG, Ishikawa LL, Zorzella-Pezavento SF, Chiuso-
Minicucci F, da Cunha ML, Sartori A. Impact of

malnutrition on immunity and infection. Journal of Ven-
omous Animals and Toxins including Tropical Diseases.
2009;15(3):374-90.

[50] Grose R, Werner S. Wound healing studies in transgenic
and knockout mice. InWound Healing 2003 (pp. 191-216).
Humana Press, Totowa, NJ.

[51] Delafuente JC. Nutrients and immune responses.
Rheumatic Diseases Clinics of North America.
1991;17(2):203.

[52] Shlisky J, Bloom DE, Beaudreault AR, Tucker KL, Keller
HH, Freund-Levi Y, et al. Nutritional Considerations for
Healthy Aging and Reduction in Age-Related Chronic Dis-
ease. Advances in Nutrition. 2017;8(1):17.

[53] Prieto I, Montemuiño S, Luna J, Torres MVD, Amaya E.
The role of immunonutritional support in cancer treatment:
Currentevidence. Clinical Nutrition. 2016.

[54] Bharadwaj S, Trivax B, Tandon P, Alkam B, Hanouneh
I, Steiger E. Should perioperative immunonutrition for
elective surgery be the current standard of care? Gastroen-
terology Report. 2016;4(2):87-95.

[55] Chow O, Barbul A. Immunonutrition: Role in Wound Heal-
ing and Tissue Regeneration. Advances in Wound Care.
2014;3(1):46.

[56] Calder PC. Feeding the immune system. Proceedings of the
Nutrition Society. 2013;72(3):299-309.

[57] Woodward B. Protein, Calories, and Immune Defenses.
Nutrition Reviews. 1998;56(2):84-92.

[58] Cooper EL, Ma MJ. Understanding nutrition and immunity
in disease management. Journal of Traditional & Comple-
mentary Medicine. 2017.

[59] Sultan MT. Protein–Energy Malnutrition: A Risk Factor
for Various Ailments. Critical Reviews in Food Science &
Nutrition. 2015;55(2):242-53.

[60] Osman A. Protein Energy Malnutrition and Susceptibility
to Viral Infections as Zika and Influenza Viruses. J Nutr
Food Sci. 2016;6(489):2.

[61] Moore SE, Fulford AJ, Wagatsuma Y, Persson LÅ, Arifeen
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[138] Similä M, Kontto J, Valsta L, Männistö S, Albanes D, Vir-
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[182] Açik DY, Mescigil PF, Sayiner ZA. Do copper and zinc lev-
els predict metabolic syndrome and metabolic syndrome’s
parameters as hs-CRP does? Gaziantep Medical Journal.
2015;21(3):196-9.

[183] Aguilar M, Saavedra P, Arrieta F, Mateos C, Gonzalez M,
Meseguer I, et al. Plasma mineral content in type-2 diabetic
patients and their association with the metabolic syn-
drome. Annals of Nutrition and Metabolism. 2007;51(5):
402-6.

[184] Brody T. Nutritional Biochemistry. 2nd Edition, Academic
Press, San Diego, 1999.

[185] Beard J, Bowman B, Russell R. Present knowledge in nutri-
tion. 9th ed. Washington DC: International Life Sciences
Institute Press; 2006.

[186] Wood R, Ronnenberg A, King J, Cousins R, Dunns J, Burk
R, et al. Modern nutrition in health and disease. Shils, ME,
Shike, M, Ross, AC, Caballero, B, and Cousins, RJ, Eds.
2006:248-70.

[187] Cassat JE, Skaar EP. Iron in infection and immunity. Cell
Host & Microbe. 2013;13(5):509-19.

[188] Prentice AM. Iron metabolism, malaria, and other infec-
tions: What is all the fuss about? The Journal of Nutrition.
2008;138(12):2537-41.
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