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Abstract.

BACKGROUND: Delayed immunologic aging is purported to be a major mechanism through which calorie restriction (CR)
exerts its anti-aging effects in non-human species. However, in non-obese humans, the effect of CR on the immune system
has been understudied relative to its effects on the cardiometabolic system.

OBJECTIVE: To examine whether CR is associated with delayed immunologic aging in non-obese humans.
METHODS: We tested whether long-term CR practitioners (average 10.03 years of CR) evidenced decreased expression
of T cell immunosenescence markers and longer immune cell telomeres compared to gender-, race/ethnicity-, age-, and
education-matched “healthy” Body Mass Index (BMI) and “overweight”/“obese”” BMI groups.

RESULTS: Long-term human CR practitioners had lower BMI (p <0.001) and fasting glucose (p <0.001), as expected.
They showed similar frequencies of pre-senescent cells (CD8TCD28™ T cells and CD57 and PD-1 expressing T cells) to the
comparison groups. Even after adjusting for covariates, including cytomegalovirus status, we observed shorter peripheral
blood mononuclear cell telomeres in the CR group (p=0.012) and no difference in granulocyte telomeres between groups
(p=0.42).

CONCLUSIONS: We observed no clear evidence that CR as it is currently practiced in humans delays immune aging related
to telomere length or T cell immunosenescent markers
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1. Introduction Indeed, CR appears to beneficially affect physiol-

ogy and biomarkers related to cardiometabolic health,

Many lifestyle interventions use calorie restriction
(CR), defined as a reduction in caloric intake with-
out malnutrition, as a key tool to improve health.
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even in non-obese populations. A prime example of
the cardiometabolic benefits of CR is the Comprehen-
sive Assessment of Long-term Effects of Reducing
Intake of Energy (CALERIE) study trials, involving
25% calorie reduction over 6 months to 2 years [1-5].

CR is also well-known to extend lifespan in mul-
tiple non-human species [6, 7]. Despite the fact that
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delayed immune system aging is thought to be a major
pathway through which this happens [8], the effects of
CR on the immune system are less studied than the
cardiometabolic system in non-obese humans. Our
goal was to assess the immunosenescence profile of a
sample of long-term calorie restrictors to test whether
CR is associated with decreased immunosenescence
and longer telomeres in participants without excess
adiposity. Existing evidence for delayed immune sys-
tem aging are predominantly in model organisms
with conflicting results [9]. In the mouse model, one
study observed that CR enhances adaptive immu-
nity during a viral challenge [10], whereas other
studies have found impaired immunity [11, 12]. In
non-human primates, studies have found no enhance-
ment of peripheral blood mononuclear cell (PBMC)
response to stimulation in CR versus normally-fed
controls [13, 14], whereas another study observed an
overall markedly delayed T cell senescence [15].

As adherence to long-term CR is one of its main
challenges [16], we recruited participants through
two international CR organizations (CR Society
International and the CR Way) who all demonstrated
successful long-term CR. This sample afforded a
unique opportunity to test for changes in the immune
system. Much like the larger human CR literature,
others using a similar approach to ours have predom-
inantly focused on cardiometabolic health rather than
immune aging [17-19]. One study [20] did examine
whether long-term CR had lower levels of insulin-
like growth factor 1 (IGF-1), a factor implicated in
cell-mediated anti-tumor immunity [21] and many
types of cancer risk [22], but found no differences
compared to Western-diet controls.

In the context of a 2-year randomized controlled
trial of 25% CR, the CALERIE-2 study examined
multiple immune-related outcomes [3, 23, 24]. They
observed lower levels of CRP and TNFa and slightly
fewer white blood cells, lymphocytes, and monocytes
in the CR group relative to ad-libitum eating controls,
but no differences in vaccine response. As some have
called into question whether a 25% CR for 2 years
is sufficient to elicit processes activated in the rodent
models [25], our first goal was to examine a sample
averaging a longer period of restriction — 10 years.

Our second goal was to augment the few prior
studies of immune phenotype in non-obese human
CR by expanding the scope of the immune measures
[24, 26, 27]. We conducted immunophenotyping
to examine percentages of naive and senescent T
cells, hypothesizing that CR would have signifi-
cantly greater percentages of CD28TCD57~ and

CD28TCD57 PD 1™ T cells compared to normal
weight and overweight/obese groups. We also exam-
ined telomere length, considered to serve as a marker
of cumulative biological aging [28-32], in PBMCs
as well as granulocytes, and the reverse transcriptase
enzyme telomerase [33] in PBMCs. To our knowl-
edge, the study presented here is the first to examine
telomere length in humans with CR, and further, to
examine telomere length specifically within these two
main immunologic compartments. We hypothesized
that the CR group would have longer PBMC (pri-
mary outcome) and granulocyte telomere length and
greater expression of telomerase.

2. Materials and methods

Subject selection. The Committee on Human
Research of the University of California, San Fran-
cisco (UCSF) approved all procedures and all
participants provided written informed consent. CR
participants were recruited from the CR Society Inter-
national, followers of the CR Way, and by referral
from participants. Inclusion criteria and indicators for
CR were reporting calorie restriction without malnu-
trition for a minimum of two years, BMI < 24.99,
and fasting glucose <80 mg/dL. When possible, the
President of the CR Way Longevity Center and Vice
President for Research of the CR Society Interna-
tional or the Chairman of the Board of The CR Society
International and Treasurer and Vice President of the
CR Way Longevity Center confirmed each partic-
ipant’s self-reported duration of and adherence to
calorie restriction. They did so by reviewing their
history of correspondence with the participants in
question. Nursing staff verified BMI on-site. Calo-
rie restriction was verified via four weekly random
fasting glucose tests (<80mg/dL) with Bayer glu-
cometers.

Because individuals who have the ability to restrict
their eating behavior for long periods may be
phenotypically different from the average popula-
tion, we matched the groups on self-reported age,
race/ethnicity, gender, and educational attainment.
Matched participants were recruited from the local
area once the CR group was completed and their
information on these matching variables obtained.
Additionally, we recruited siblings of CR participants
to attempt to control for genetic and environmental
factors. Sample size was dictated by the maximum
number of participants we were able to recruit in a
predetermined data collection period of one year.
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Procedures. To avoid potential confounding effects
of physical activity and nutritional supplements,
all participants went through a four-week washout
period leading up to the on-site visit. During the
washout period, we asked participants to refrain from
vigorous exercise and from taking any supplements
not prescribed by a physician. All participants were
non-smokers, and all were not pregnant.

Participants traveled to the UCSF Clinical and
Translational Science Institute Clinical Research
Center (CCRC). To minimize confounds due to sleep-
ing in an unfamiliar setting, participants spent two
acclimation nights in the CCRC before the blood
draw. To minimize confounds due to jetlag and
diurnal activity patterns, participants woke up, ate
meals, and slept according to their usual schedules
in their home time zone. A subset (n=26) of local
participants (n=38) completed the study on an out-
patient basis. The CCRC metabolic kitchen served
tailored calorie-restricted meals to the calorie restric-
tion group. The comparison groups received standard
meals.

Venous blood was collected immediately upon
waking, after participants had fasted for a minimum
of 8 hours. PBMCs were isolated by gradient density
centrifugation by use of Ficoll-Paque (GE Health-
care, Piscataway, NJ, USA). Granulocytes were
isolated from the red blood cell pellets after Ficoll
separation by Ammonium-Chloride-Potassium solu-
tion. Genomic DNA was isolated from whole blood,
PBMC and granulocytes using QIAamp DNA mini
kit (QIAGEN).

Immunophenotyping was performed on cryop-
reserved PBMCs. The cells were plated in a
96-well v-bottom plate and stained with the follow-
ing fluorescently-conjugated monoclonal antibodies
from BD Biosciences unless otherwise noted: Bril-
liant Violet 605-conjugated anti-CD8 (SK1) and
Brilliant Violet 711-conjugated anti-CD3 (UCHT1),
Allophycocyanin (APC)-eFluor780-conjugated anti-
CD28 (CD28.2) (eBioscience), Alexa Fluor®
647-conjugated anti-CD57 (HCDS57), PE-conjugated
anti-CD38 (HB7), Brilliant Violet 421-conjugated
anti-PD-1 (EH12.1) and FITC-conjugated anti-HLA-
DR (L.243). LIVE/DEAD® Fixable Aqua Dead Cell
Stain Kit (Invitrogen) was added into all stains to
exclude non-viable cells. Staining was performed
at 4°C for 30 minutes, then washed once with
FACS buffer (Phosphate-buffered saline containing
0.5% bovine serum albumin and 1 mM Ethylenedi-
aminetetraacetic Acid). Cells were then fixed in 0.5%
formaldehyde and data was acquired on a BD LSR

IT Flow cytometer (BD Biosciences), with >200,000
lymphocytes collected for each sample. CPT beads
(BD Bioscience) were used for instrument set up
for each run and Rainbow beads (Spherotec) stan-
dardized instrument settings between runs. Aliquots
of a control specimen were thawed with every run
and assessed in triplicate to confirm run-to-run repro-
ducibility. Fluorescence Minus One (FMO) controls
were also prepared on control samples for each run, to
check that gates were set consistently between runs.
Data was compensated and analyzed in FlowJo V9
(TreeStar). CD3TCD8™ T cells were defined after
standard lymphocyte, singlet and dead cell exclusion
gates were applied to the data. FMO controls were
used to define positive gates for expression of CD28,
CD38, CD57, HLA-DR and PD-1 on CD37CD8* T
cell populations.

The telomere length measurement assay was
adapted from the published original method by
Cawthon and colleagues [27, 34]. Tubes containing
26, 8.75, 2.9, 0.97, 0.324 and 0.108 ng of a reference
DNA (from Hela cancer cells) were included in each
PCR run so that the quantity of targeted templates
in each research sample could be determined relative
to the reference DNA sample by the standard curve
method. The same reference DNA was used for all
PCR runs.

Telomerase activity was measured in PBMCs
by the Telomerase Repeat Amplification Proto-
col (TRAP) with a commercial assay (TRAPeze,
Telomerase Detection Kit, Upstate/CHEMICON,
Temecula, CA) using procedures described previ-
ously [35]. Two concentrations corresponding to
5,000 and 10,000 cells were assayed for each
sample in order to ensure that the assay was in
linear range. The assay reaction was performed in
accordance with the TRAPeze kit manufacturer’s
instructions, and radioactive products fractionated
by 8% polyacrylamide-8 M urea sequencing gel
electrophoresis. Telomerase activity is expressed
as the equivalent of number of 293T cells per
10,000 PBMCs, and activity was quantified using
the ImageQuant 5.2 software (GE Healthcare) as
described previously [35]. Telomerase values were
non-normally distributed and corrected via a natural
log transformation.

Fasting serum samples were assayed by ELISA for
qualitative detection of cytomegalovirus (CMV) IgG
antibodies by the University of California, Los Ange-
les, Clinical Immunology Research Laboratories.

Analyses. The key outcome measure was PBMC
telomere length. Statistical analyses consisted of
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ANCOVA models comparing the three groups (CR
vs. normal weight vs. overweight/obese) all control-
ling for chronological age, and additionally covarying
potential confounding variables when they were
statistically significantly related to each respective
outcome measure. These potential covariates con-
sisted of self-reported gender and race/ethnicity, as
well as CMV serological status due to its known
effects on immunosenescence [36].

3. Results

Descriptive statistics of key study variables are
summarized in Table 1. For the overall sam-
ple of 71 participants, the mean age was 55.01
years (SD=14.53, range =21-84), 54 were male,
race/ethnicity was 88.6% white and 11.4% East
Asian/Asian-American, and highest level of educa-
tional attainment was as follows: 6.7% high school,
6.7% some college, 20% bachelor’s degree, 20%
master’s degree, and 46.7% doctoral degree. The CR
group (n=30) had been restricting their caloric intake
without malnutrition for an average of 10.03 years
(SD =6.84, range =3-33). By design, the CR group

had lower BMI than both the normal weight (n=16;
5 siblings of CR participants) and overweight/obese
(n=25; 8 obese; 1 sibling of CR participant) groups,
F(2, 68)=106.62, p<0.001. As expected, the CR
group had lower average fasting glucose levels
F(2, 61)=11.58, p<0.001. Forty-seven percent of
the sample was CMV seropositive with no signif-
icant differences between groups, F(2, 66)=0.08,
p=0.92.

For all measures of immune activation and
immunosenescence in CD4™ T cells, no statistically
significant differences were observed between the
three groups (data not shown). Table 2 displays results
for CD8" T cells, where a statistically significant
group difference emerged in activated CD8™ T cells
defined as CD38THLA-DR™ cells, F(2, 64)=3.28,
p=0.045, wherein the overweight/obese group had
a lower percentage of activated CD8™ T cells than
both the CR and normal weight groups. Additionally,
the normal weight group had a higher percentage of
CD8TCD28 (i.e. memory) T cells than the over-
weight/obese group, F(2, 64)=3.16, p=0.045.

The CR group had shorter PBMC telomere length
(F(2,62)=4.75, p=0.012) than the overweight/obese
group (mean difference: —0.14, p=0.009, or 233.32

Descriptive statistics of study variables

Calorie Restriction

Normal Weight

Overweight/Obese

(N=30) (N=16; 5 CR siblings) (N =25; 1 CR sibling)

Age 54.64 (15.38) [25-84] 49.33 (12.49) [21-67] 58.84 (13.98) [23-80]
Sex

Male 22 (75.9%) 10 (66.7%) 22 (88.0%)

Female 7 (24.1%) 5(33.3%) 3(12.0%)
Ethnicity/Race

White 26 (89.7%) 13 (86.7%) 24 (96.0%)

Asian 3(10.3%) 2 (13.3%) 1 (4.0%)
Highest degree

High school 2 (6.9%) 0 (0%) 1(5.3%)

Some college 2 (6.9%) 1(7.1%) 3 (15.8%)

Bachelor’s 5(17.2%) 6 (40.0%) 2 (10.5%)

Master’s 6 (20.7%) 5(33.3%) 2 (10.5%)

Doctoral 14 (48.3%) 2 (13.3%) 11 (44%)
Body Mass Index 19.07 (1.84) [15.37-22.55]* 23.27 (1.78) [18.87-24.961° 29.03 (3.38) [25.10-35.92]¢
Fasting glucose (mg/dL) 79.69 (9.32) [64-110]* 90.21 (10.18) [74-1101° 94.97 (13.36) [73-130]°
Years of CR 10.03 (6.84) [3-33]
CMV seropositive 13 (46.4%) 7 (50%) 13 (52%)
Telomere T/S ratio

PBMC 0.96 (0.18) [0.65-1.39]* 1.06 (0.15) [0.78-1.31] 1.06 (0.23) [0.66—1.50]°

Granulocyte 1.22 (0.21) [.087-1.83] 1.20 (0.23) [0.89-1.66] 1.14 (0.22) [0.85-1.75]
Telomerase! 5.15 (7.60) [2.00-30.27] 4.00 (2.66) [0.70-10.58] 5.49 (5.44) [1.21-33.69]

Note: Mean (Standard Deviation) [Minimum-Maximum] except for Sex, Ethnicity/Race, Education, and CMV status, where N (%). Differing
superscripts refer to statistically significant differences between groups with p <0.05, two-tailed. ! Telomerase was non-normally distributed
and therefore values reflect Median (Interquartile Range)[Minimum-Maximum]. Telomere and telomerase analyses control for chronological

age.



Table 2
Group differences in frequencies of CD8™" T cell activation and maturation phenotypes

Covariates

Overweight/Obese BMI
40.60 (16.91) [17.90-76.30]°

42.91 (13.62) [20.80-73.20]

24.59 (15.66) [5.55-69.60]
18.92 (8.51) [3.18-41.80]

Normal BMI

45.87 (10.23) [30.80-62.80]*
46.99 (16.41) [24.70-73.30]

Calorie Restriction
44.66 (19.45) [14.50-77.10]

Phenotype
8128~
8+t38+
g+57+

age CMV
age

0.049

3.16

0.587

0.54
2.45
2.16
0.85
3.28
2.48

2.36

47.75 (12.48) [22.40-72.10]

age CMV

0.095

25.25 (12.83) [1.54-45.00]

29.32 (17.98) [3.75-61.00]

age ethnicity CMV

age CMV

0.124
0.431

24.48 (14.59) [2.79-52.80]

22.01 (17.61) [4.94-77.60]
33.06 (13.01) [12.60-62.20]

8tDR™

32.35(11.40) [17.20-51.10]

27.08 (11.62) [8.66-49.50]
11.34 (6.24) [1.73-25.00]*

8tPDIT

age ethnicity CMV

age CMV
age CMV
age CMV

0.045

7.86 (4.11) [1.07-16.30]°
23.57 (15.19) [5.15-66.40]

11.09 (8.75) [2.38-42.10]*
28.21 (17.76) [2.98-59.50]

8+t38+TDR™
8+tag+s577*

0.092

24.60 (12.62) [1.27-43.10]
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0.103
0.157
0.29

38.92 (13.26) [13.10-61.20]
15.14 (10.17) [2.37-49.50]

37.76 (13.04) [20.50-62.40]
29.77 (17.64) [6.20-75.50]

22.77 (13.93) [6.72-49.10]

34.93 (15.42) [11.80-62.80]

8+t28+57 PD1™*

1.91
1.26
1.54
1.98

20.70 (15.16) [2.97-60.20]

81t28757"PD1"38"DR*
8+t28757"PD1TDR*
8128757 PD1"DR*
8+t28757TPD1 " DR*

age ethnicity CMV
age ethnicity CMV

age ethnicity

40.29 (19.64) [10.20-67.30]

35.03 (22.86) [5.45-93.90]

42.62 (20.84) [9.00-76.60] 32.77 (15.14) [7.42-68.40] 0.223

34.69 (21.75) [7.51-89.40]

28.99 (15.54) [4.70-71.10] 0.148

42.30 (20.65) [8.16-75.50]

35.86 (22.17) [3.30-94.10]

Note: Mean (Standard Deviation) [Minimum-Maximum]. Differing superscripts refer to statistically significant differences between groups with p <0.05, two-tailed. The F value represents the

omnibus test of group differences. All covariates other than age are significantly related to the dependent variable at p <0.05. *We hypothesized greater percentages of these phenotypes in the CR

group.

base pairs; Fig. 1). Furthermore, no significant differ-
ence in granulocyte telomere length (F(2,54)=0.89,
p=042) was observed between the CR and
the normal weight or overweight/obese groups
(Fig. 1). No statistically significant differences in
telomerase activity, F(2,65)=1.48, p=0.236 were
observed within PBMC or granulocytes between CR
and normal weight and overweight/obese persons
(Fig. 2).

4. Discussion

In the largest study to date of long-term human
calorie restrictors averaging over a decade of calo-
rie restriction, we set out to examine whether CR
is associated with enhanced immunosenescent and
cellular aging profiles of T cells. Although research
has observed beneficial effects of CR on the car-
diometabolic system in non-obese populations [4, 5],
or beneficial effects of CR on cancer risk in popula-
tions with excessive weight [37] , we did not observe
these benefits in this context. As delayed immuno-
logic aging is purported to be a main mechanism of
CR’s lifespan-extending effects, we expected to see
a strong and consistent pattern of lower senescent
and higher naive cell percentages as well as longer
telomere length in the CR group compared to the nor-
mal weight and overweight/obese groups. In contrast,
we observed very few differences between the three
groups in markers of immunosenescence, and the CR
group had shorter PBMC telomere length than the
comparison groups. In fact, the telomere length in the
CR group was significantly shorter when compared
to the obese group.

It is unclear why we observed differences in
PBMCs and not granulocytes, but it is important
to examine them separately as PBMC and granu-
locyte populations have different roles in immune
function, and reflect different immune responses.
PBMC telomere length is affected by both history
of infections (which cause more replicative turnover)
as well as the biochemical environment of the blood
[38]. Due to their rapid turnover, granulocyte telom-
ere length is thought to more directly represent the
common myeloid progenitor stem cell compartment,
[38, 39]. Thus, it is possible that the short lived gran-
ulocytes may have less variance in turnover, between
people, and may be less influenced by environmental
exposures, like dietary factors, in the blood. PBMC
telomere length may be more influenced by biochem-
ical and lifestyle factors.
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Fig. 1. Telomere length by group. Top: Peripheral blood mononuclear cell telomere length. ANCOVA analyses indicate the calorie restriction
group has significantly shorter telomere length compared to the other groups; p=0.012. Bottom: Granulocyte telomere length by group.

Groups are not significantly different; p=0.43.

We do not know why CR was associated with
shorter PBMC telomere length, but we can offer
speculation. Given the pattern of findings here, one
possibility is that the CR diet as practiced left those

individuals more vulnerable to infection, despite that
CMYV seropositive status was no different between the
groups. CMV exposure typically occurs during early
childhood, such as during daycare [40], and therefore



A.J. Tomiyama et al. / Calorie restriction and immunologic aging 153

124

10

Telomerase Activity Mean +- 2 SE

T
Calorie Restriction

T
Normal Weight
Group

T
Overweight/Obese

Fig. 2. Telomerase activity by group. Groups are not significantly different, p =0.23.

was likely acquired before CR started. However, there
could be differences in how well people are suppress-
ing reactivation of the CMV virus, which we did not
measure and would require CMV viral load analy-
ses as well as specific immune responses such as IgG
concentrations or CM V-specific T cell responses.

There may be differences in the immune cell pop-
ulations that require greater subset measurement to
observe than we undertook here. T cells make up
60% of the PBMCs [41], and so differences in T
cell telomere length could have a large influence on
PBMC telomere length. The difference in PBMC
telomere length could potentially be due to a skewing
in major memory T cell subsets (i.e. effector vs central
memory) in the CR group due either to increased sub-
clinical infections in this group or how their immune
system maintains latent viral infections such as her-
pes viruses (e.g. CMV, Epstein Barr Virus). This
however would have required more complex pheno-
typing to detect.

These overall null findings add to a sparse, but
already mixed, literature in animal and non-human
primate species. In mice, CR led to fewer senes-
cent intestinal crypt enterocytes and liver hepatocytes
and better telomere maintenance in these cells [42].
However, in primates, CR did not lead to changes in
telomere length in leukocytes or other tissues [43].

In the context of mixed evidence of the relationship
between CR and immune aging in model organ-
isms such as mice and macaques, it perhaps is not
surprising that such a relationship would be diffi-
cult to observe in human CR. Compared to model
organisms, humans eat an extremely variable diet.
This means human CR can be practiced in infinitely
variable ways with similarly low caloric intake but
different macro and micronutrient content, eating pat-
terns, and consistency. Most humans find it difficult to
adhere to intense long-term CR [6, 7, 16], and indeed,
our research has demonstrated that this group of long-
term CR practitioners have a distinct psychosocial
profile that suggests a predisposition to the ability
to sustain long-term CR [44]. Moreover, CR can put
individuals at risk for malnutrition [6, 16], calling
into question whether CR should be pursued as an
intervention for immune system aging for non-obese
humans. However, our results should be interpreted
with caution in light of conflicting findings from Mey-
dani and colleagues, who found beneficial effects on
circulating inflammatory markers in the context of a
randomized trial of CR [24].

This study had the following limitations: Although
this is the largest study of long-term CR practitioners,
and they had been calorically restricting on average
over a decade, it is possible that the effect of CR
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on immune system aging is too small to be detected
by this sample size. Our primary analysis had an
observed power value of 0.77, but nonetheless our
study is not ideally powered. Furthermore, only T cell
maturation and activation profiles were assessed, so
it remains unknown whether CR practitioners exhibit
differences in other immune cell subsets (e.g. B cells,
monocytes or NK cells) or in the ability of innate
and adaptive immune cells to respond to appropriate
stimuli by cytokine production or proliferation. How-
ever, one strength of this study is that we examined
PBMC and granulocyte telomere length separately,
which allays concerns that our telomere length vari-
able was an artifact of cell distribution. We also
examined CMYV status, to rule out the confounding
effect of CMV infection on immunosenescence and
telomere length. To our knowledge, this is the first
study to examine human CR in relation to PBMC
and granulocyte telomere length.

Instead of a strong pattern indicating beneficial
effects of human CR on T cell immune activation
and immunosenescence, we observed no clear evi-
dence that CR may delay immune aging compared
to normal BMI and overweight/obese matched indi-
viduals. In fact, the few results emerging from our
study suggested potentially negative effects of CR,
particularly in the context of PBMC telomere length.
Delayed immune aging, therefore, must be further
studied before it is put forth as a major mechanism of
CR’s lifespan-extending effects, at least as it is most
faithfully practiced in non-obese humans.
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