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1. Introduction

In 2013, the global burden of diabetes was esti-
mated to be 382 million individuals, increasing to
almost 592 million by 2035 [1]. The economic bur-
den of diabetes is also high, in part due to chronic
comorbidities such as cardiovascular and renal dis-
ease. US healthcare spending because of diabetes
and its complications reached almost $306 billion
in 2012 [2]. Of note, the aging population, specifi-
cally those over 65, are expected to experience the
greatest increase in diabetes incidence, with a 134%
increase by year 2030 [3]. Although the increased
diabetes prevalence in the aged population may be
explained partly by reduced all-cause mortality due to
the advances of modern medicine, sedentary lifestyle
and poor dietary habits are major risk factors for dia-
betes and are highly associated with the onset and
rapid progression of diabetes.
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The modern food supply has evolved from that of
our distant ancestors because of advances in agricul-
ture, technology, and economic interest. Not only has
an increased food supply made it easier for individ-
uals in industrialized countries to consume a greater
number of calories, but also the nutritional compo-
sition of that food supply continues to change. One
class of nutrients that is drastically diverging from
that of our ancestors is dietary fat, a fact that may play
a key role in the rising prevalence and progression of
certain diseases, particularly those of aging (Fig. 2)
[4]. For instance, the ratio of diet-derived omega-
6 to omega-3 polyunsaturated fatty acids (PUFAs)
has been linked to the progression of a number of
chronic diseases, including diabetes [5]. Long-chain
PUFAs (LCPUFAs), such as arachidonic acid (AA)
and eicosapentaenoic acid (EPA), have long been
known to contribute to the structural integrity of cell
membranes and provide a fuel source for the cell,
but more recently their functional capacity as sig-
nal transduction mediators has come to light. Intact
LCPUFAs can act as potent ligands for cellular and
nuclear receptors, or can be modified into bioac-
tive compounds to further cellular signaling cascades
[6–8]. As we and others are actively studying sig-
naling mediated by LCPUFAs and their metabolites,
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a research area ripe with conflicting results and
recommendations, we sought to complete a compre-
hensive review of the published literature regarding
what is currently known about the pro- and anti-
diabetic actions of LCPUFAs and their metabolites
in cells, model organisms, and humans. Ultimately,
we also provide conclusions and future perspectives
based on this comprehensive literature review, which
describes the cellular signaling roles of LCPUFAs
and their respective metabolites in the development,
progression, and treatment of diabetes.

2. Free fatty acids as signaling molecules

It is well documented that fatty acids contribute
to blood glucose regulation and the pathogenesis of
diabetes. Acute changes in circulating free fatty acids
(FFAs), such as during the transition from a fasted to
fed state, stimulate insulin secretion by directly act-
ing on the �-cells of the pancreatic islet. FFAs can
also maintain a basal level of insulin secretion during
a prolonged fast to limit tissue lipolysis and, ulti-
mately, ketoacidosis [9]. However, chronic exposure
to FFAs blunts insulin secretion by potentially cre-
ating a lipotoxic environment, leading to increased
�-cell cytotoxicity and apoptosis [10]. Chronically
elevated FFAs also contribute to insulin resistance,
as GLUT4 transport in muscle is blunted, interfering
with peripheral glucose sensing [11, 12].

Although chronic exposure to FFAs collectively
contributes to blood glucose deregulation, certain
FFA species, including LCPUFAs, can explicitly
affect insulin secretion and sensitivity by binding
to extracellular membrane receptors (Fig. 1). G-
protein-coupled receptors (GPCRs) are ubiquitously
expressed seven transmembrane receptors that, when
bound by a ligand, change conformation to transmit
an intracellular signal via guanine nucleotide-binding
proteins (G-proteins) [13]. Collectively, there are
four major groups of G-proteins–Gs, Gi, Gq, and
G12–each of which modulate different secondary
messenger molecules and elicit different cellular
responses [14]. Gs and Gi increase or reduce cAMP
production by activating or deactivating adenylate
cyclase activity, respectively. Moreover, Gq increases
liberation of inositol triphosphate and diacylglycerol
from the plasma membrane by activating phospholi-
pase C while G12 activates the small G-protein Rho,
which has been shown to play a role in cellular remod-
eling [14, 15].
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Fig. 1. Dietary fat composition changes over human existence.
Human food composition has changed considerably over the
course of time. Dietary fat accounted for at most 25% of total
calories in the early Hunter/Gatherer time period but has increased
to as much as 40% in the present day. The fat composition in the
diet has also changed over time, with a higher ratio of saturated
fat to polyunsaturated fat and a greater omega-6 to omega-3 ratio
in the modern era when compared to earlier time periods. (Figure
adapted from [4]).

Extensive work in isolated islets and �-cell mod-
els demonstrates the importance of the activation or
repression of signaling through various GPCRs based
on the G-proteins they couple to. For instance, the
incretin glucagon-like peptide-1 (GLP-1) is released
from L-cells of the intestine and enhances insulin
secretion and �-cell replication and proliferation
via the Gs-coupled GLP-1 receptor protein [16–19].
Also, extracellular nucleotides appear to play an
important role in enhancing insulin secretion through
the Gq-coupled P2Y6 receptor in islets [20]. More-
over, E-series prostaglandins reduce insulin secretion
through the Gi-coupled E-prostanoid receptor 3
(EP3) in islets and multiple �-cell lines, which is
upregulated in type-2 diabetes [21–23]. Much less
known about the G12 group and �-cell function, but
activation of receptors coupled to G12 proteins are
linked to exocytosis and secretion [15, 24]. Thus,
G-proteins serve important roles in mediating extra-
cellular signals from GPCRs to modulate �-cell
physiology.

A number of GPCRs specific for FFAs or their
derivatives have been identified. Furthermore, a num-
ber of these receptors have been characterized as
regulating glucose homeostasis. GPR41 and GPR43
bind short-chain fatty acids such as and have been
implicated in insulin and leptin secretion and sig-
naling [25]. GPR119 is a receptor for derivatives of
phospholipids and sphingolipids, and has been shown
to directly promote insulin and GLP-1 secretion
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Fig. 2. Long chain polyunsaturated fatty (LCPUFA) signaling and metabolism: LCPUFAs, namely omega-6 and omega-3, must be derived
from the diet to elicit intracellular signaling cascades through G-protein coupled receptors (GPCRs) or be incorporated into the cellular
membrane for future use. Shorter omega-6 or -3 LCPUFAs like linoleic or �-linoleic acid, respectively, can be further metabolized by the
same enzymes to yield the longer LCPUFAs arachidonic acid (AA) or eicosapentaenoic acid (EPA). Newly formed AA and EPA can then
be incorporated into the phospholipid membrane for future use. Upon an external stimulus like a cytokine or growth factor, AA and EPA
can be liberated from the membrane by phospholipase A2 (PLA2) and metabolized into bioactive compounds by the rate limiting enzymes
cyclooxygenase (COX), lipoxygenase (LOX), or cytochrome P450 (CYP). These bioactive compounds can then activate extracellular GPCRs
in an autocrine or paracrine fashion to elicit downstream signaling cascades.

[26–29]. Extensive reviews of these and other
GPCRs, G-proteins and their downstream targets are
beyond the scope of this review but can be found
elsewhere [30, 31].

Like the FFA species described above, LCPU-
FAs are endogenous ligands for a subset of GPCRs
that are found in unique expression patterns across
tissues and play important roles in regulating glu-
cose metabolism. GPR40 is a known lipid-binding
GPCR and is highly expressed in the pancreas, with
highest concentrations in the insulin-secreting �-
cells [32–34]. When GPR40 is bound to one of a
number of LCPUFAs, such as linoleic acid or AA,
insulin secretion is potentiated from the MIN6 mouse
insulinoma �-cell line [33]. Additionally, GPR40
knockout mice experience fasting hyperglycemia,

insulin resistance, and obesity as compared to their
wild-type littermate controls, indicating an important
role for GPR40 in whole body glucose metabolism
[35]. The notion that activators of GPR40 are essen-
tial fatty acids and must be derived from the diet
makes it a potential target for a dietary therapeu-
tic intervention as a treatment for diabetes. A recent
human study revealed short-term improvements in
insulin secretion with GPR40 agonist treatment,
although other results were mixed [36–39]. Fur-
thermore, thiazolidinediones, an established class of
insulin-sensitizing diabetes therapeutics known pri-
marily as peroxisome proliferator-activated receptor
ligands, also appear to activate GPR40, providing
an additional explanation to the drugs’ action and
efficacy [34].
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GPR120 is another receptor for LCPUFAs linked
to the development of obesity and diabetes in both
mice and humans [40, 41]. Of the LCPUFA family,
GPR120 has the highest affinity for omega-3 PUFAs
[41, 42]. GPR120 expression is limited to lung, adi-
pose tissue, macrophages, and enteroendocrine cells,
and its signaling capability at these tissues is quite
high [41, 43–45]. With high expression levels in
enteroendocrine cells, LCPUFA signaling through
GPR120 increases secretion of a number of incretin
hormones, including cholecystokinin (CCK), gas-
tric inhibitory peptide (GIP), and GLP-1 [43–45].
Moreover, GPR120 expression in macrophages helps
promote a key anti-inflammatory signaling cascade
that enhances insulin-sensitizing effects, preventing
glucose intolerance [41].

Collectively, GPCRs activated by FFAs or their
derivatives, including LCPUFAs, serve as excellent
targets to help regulate blood glucose. Whether sig-
naling through these GPCRs directly affects �-cells,
enhances insulin sensitivity, or regulates weight gain,
targeting these receptors may be beneficial as diabetes
therapeutics.

3. Eicosanoids as mediators of blood glucose

In conjunction with LCPUFAs acting as signal-
ing molecules in their unaltered form, the essential
omega-3 and -6 LCPUFAs can be metabolized into
bioactive compounds termed eicosanoids (Fig. 1).
Although eicosanoids derived from the omega-6
LCPUFA arachidonic acid (AA) are traditional focal
points in the literature, having been linked with
inflammation and exacerbation of many chronic
diseases, emerging evidence regarding EPA (i.e.,
omega-3)-derived eicosanoids has shown these may
have a protective effect, even competing with omega-
6-derived eicosanoids.

AA and EPA may be consumed in the diet and
can be metabolized to form bioactive eicosanoids.
However, the 18-carbon omega-3 and -6 LCPUFAs,
�-linolenic and linoleic acid, respectively, represent
a larger portion of the diet and can be elongated
and desaturated in mammalian systems to produce
the required substrates for eicosanoid production.
Interestingly, omega-3 and -6 LCPUFAs compete for
the same elongase and desaturase enzymes, linking
dietary LCPUFA composition to substrate availabil-
ity and eicosanoid production [46, 47]. But, this
process is severely limited in mammalian systems
and only accounts for a small amount of AA and EPA.

�-Linoleic acid (GLA), AA, and EPA are 20-carbon
LCPUFAs that can be metabolized into bioactive
eicosanoids such as prostaglandins, leukotrienes, and
hydroxyeicosatetraenoic acids [47]. Eicosanoid pro-
duction initiates with an external stimulus, such as
a cytokine or hormone, and leads to the hydrol-
ysis of GLA, AA, or EPA from the phospholipid
membrane by phospholipase A2 [7]. After libera-
tion from the membrane, LCPUFAs may still act
as signaling molecules and effect cellular func-
tion or be metabolized by cyclooxygenase (COX),
lipoxygenase (LOX), or cytochrome P450 (CYP450)
into substrates for a number of eicosanoid specific
enzymes [7, 48]. However, this process is tightly con-
trolled to prevent aberrant eicosanoid production.

The initiation of eicosanoid production comes
from an extracellular stimulus, such as a cytokine,
which promotes the activation of multiple down-
stream enzymes [49]. Phospholipase A2 (PLA2) is
the class of enzymes responsible for liberating LCP-
UFAs from the phospholipid membrane to initiate
eicosanoid biosynthesis, and activation of PLA2 is
modulated by phosphorylation [50, 51]. Moreover,
eicosanoid production is limited to discrete locations
in the cell, as most eicosanoid production occurs
in close proximity to the PLA2 enzymes at spe-
cific organelles [49]. In conjunction with the distinct
location of substrate and enzymes within the cell,
eicosanoids have a relatively short half-life, which
limits continuous agonism of receptors and propa-
gation of intracellular signals [52]. Therefore, strict
regulation of eicosanoid production prevents per-
turbed signaling.

Eicosanoids can be transported from the cell and
agonize receptors in a paracrine or autocrine man-
ner to alter cellular function. A number of these
compounds are linked to diabetes and have pro-
found effects on insulin sensitivity and secretion in
obesity-linked type 2 diabetes and �-cell health in
autoimmune-linked type 1 diabetes. First, we will
discuss the much more widely-studied AA-derived
eicosanoids, finishing with what is currently known
about the effect of EPA-derived eicosanoids on fac-
tors contributing to diabetes pathophysiology.

4. Cyclooxygenase (COX) metabolites

Prostaglandins are eicosanoids derived from the
cyclooxygenase (COX) biosynthetic pathway. COX
enzymes exist in two isoforms: the constitutive form,
COX-1 and the inducible form COX-2. In most
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cell types the induction of COX-2 occurs follow-
ing activation by certain pro-inflammatory cytokines
and growth factors [53]. Interestingly, COX-2 is
the dominant and constitutively expressed isoform
expressed in �-cells, having a profound influence on
prostaglandin formation and insulin secretion [54,
55]. Collectively, there are 5 major AA-derived, or
2-series, prostaglandins that bind to distinct GPCRs
that are linked to inflammation and disease [56]. It is
well documented that prostaglandin production and
signaling occurs in both healthy and diabetic islets
and can lead to a profound influence on function,
proliferation, and survival [21, 57–60]. Prostaglandin
production and signaling influences both insulin
secretion and sensitivity, making them a popular tar-
get for therapeutic intervention in diabetes.

It was initially demonstrated that one particular
class of bioactive LCPUFA metabolites, called E-
series prostaglandins, reduce insulin secretion both
in vitro and in vivo [61, 62]. Moreover, it is well
characterized that the AA-derived prostaglandin E2
(PGE2) is the predominant E-series prostaglandin
formed by COX-2 in islets [7, 54]. PGE2 binds to a
class of ubiquitously expressed GPCR E-prostanoid
receptors (EP) that vary in their signaling cascades
[56]. Previous work indicates that the EP3 isoform,
which couples to an inhibitory G-protein, is the most
highly expressed E-prostanoid receptor in islets and
we, along with others, have shown that agonism of
EP3 in �-cells with PGE2 leads to a reduction in
insulin secretion [21, 63]. Moreover, we confirmed
that PGE2 production and EP3 expression are both
increased in type 2 diabetic human and mouse islets,
and that this production was a significant contributor
to diabetic �-cell dysfunction [21].

In addition to directly limiting insulin secretion,
PGE2 may also have a profound influence on insulin
sensitivity, although its exact effect remains contro-
versial. It has been shown that PGE2 disrupts insulin
signaling and glycogen synthesis via the EP3 recep-
tor in cultured hepatocytes [64]. Moreover, PGE2
production in liver Kupffer cells disrupts hepatocyte
insulin signaling and promotes insulin resistance.
It is postulated that altered cytokine production in
non-parenchymal cells may contribute to insulin
resistance [65]. In another study, rats fed a high fat
diet with selective COX-2 inhibitors were less insulin
resistant and had reduced hepatic glucose production
compared to their control counterparts [66]. Simi-
lar results were demonstrated in high fructose- and
high fat-fed rats given a selective COX-2 inhibitor
[67, 68]. In contrast, others have demonstrated PGE2

may have protective effects on insulin sensitivity. In
one study, FFA-induced COX-2 activity and PGE2
production in muscle cells led to improved insulin
sensitivity, whereas treatment with a COX-2 inhibitor
reversed this protection [69]. Another group demon-
strated that increased hepatic COX-2 expression and
PGE2 production protected against insulin resistance
in diet-induced obese in mice [70]. Therefore, the
influence of PGE2 on insulin resistance is controver-
sial and warrants future investigation.

Since PGE2 is the most abundant endogenous
AA-derived prostaglandin, the others have received
considerably less attention in the literature. How-
ever, emerging evidence indicates other AA-derived
prostaglandins may prove beneficial for insulin secre-
tion and sensitivity. These additional AA-derived
prostaglandins include PGD2, PGF2�, PGI2, and
thromboxane A2 (TXA2).

Like PGE2, PGD2 appears to be fairly abundant
in isolated rat islets and is produced in human islets
incubated with AA [71, 72]. Evidence for a direct
effect of PGD2 on insulin secretion from �-cells
is weak, although there is stronger evidence of a
role for PGD2 in regulating islet �-cell glucagon
secretion, the counter-regulatory hormone to insulin
[73]. Moreover, a mouse model that over-produces
PGD2 gained more weight on a high-fat diet when
compared to their wild-type counterparts but had
enhanced insulin sensitivity [74]. When a form of
PGD2 synthase is knocked out in mice fed a high-fat
diet they become insulin insensitive, further indi-
cating the importance of PGD2 in insulin signaling
[75].

PGF2� is also expressed in rodent and human pan-
creatic islets [71, 72]. PGF2� appears to directly
stimulate insulin and glucagon secretion in rat pan-
creases perfused with PGF2� [76]. However, an
isomer of PGF2�, 8-epi- PGF2�, is elevated in plasma
from type 2 diabetics and may contribute to the pro-
gression of the disease [77, 78].

Classic studies demonstrating the influence of
PGI2 on insulin secretion are fairly ambiguous. PGI2
infusion increases blood glucose in rabbit and human
test subjects, but this was not linked to changes in
insulin secretion [79, 80]. Moreover, the influence of
PGI2 on insulin secretion was dependent not only on
its own concentration, but also that of glucose, in an
isolated rat islet model [81, 82]. More recently, when
production of PGI2 was upregulated in an insulinoma
cell line, there was a concomitant increase in insulin
secretion in the presence of stimulatory glucose
[83].
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Finally, thromboxane A2 (TXA2), does not appear
to have an influence on insulin secretion as demon-
strated in perfused rat pancreases [73]. However,
TXA2 may have a more important role in the
cardiovascular disease risk, as type 2 diabetic
platelets have enhanced TXA2 production leading to
increased activation and aggregation [84–86].

5. Lipooxygenase (LOX) metabolites

Lipooxygenase (LOX) enzymes, which include 5-
LOX, 8-LOX, 12-LOX, and 15-LOX, utilize AA to
synthesize hydroxyeicosatetraenoic acids (HETEs)
and leukotrienes (LTs) and are categorized based
on where they oxygenate AA [7, 87]. Similarly to
prostaglandins, HETEs and LTs bind to GPCRs, and
can play a role in regulating blood glucose by influ-
encing insulin secretion and sensitivity.

In rat islets, 12-HETE is the most abundant prod-
uct of the LOX pathway and is produced in fairly
large quantities during glucose-induced insulin secre-
tion, whereas 5-HETE and 15-HETE could not be
detected or were only minor species [88–91]. More-
over, the addition of exogenous 5-, 12-, or 15-HETE
did not result in enhanced insulin secretion, indi-
cating that the production of HETEs alone may not
directly impact insulin secretion [91]. This is in con-
trast to another study, where rat islets treated with
exogenous 11-HETE or 15-HETE both had reduced
insulin secretion [92]. Interestingly, mice lacking 5-
LOX have �-cell hyperplasia and hypertrophy but
have blunted insulin secretion and are not insulin
resistant. Moreover, insulin secretion is reduced when
5-LOX is knocked down by siRNA in human islets.
These results suggest an important role for 5-HETE
production and signaling for islet function in both
humans and mice [93].

Interestingly, an unstable intermediate of HETE
metabolism, 12 hydroperoxyeicosatetraenoic (12-
HPETE), potentiated insulin secretion in the presence
of glucose, suggesting that labile products from this
pathway may play a greater role in �-cell func-
tion [58, 92]. Conversely, it was shown in human
islets that exogenous treatment with the 12(S)-
HETE stereoisomer reduces insulin secretion and
increases cell death [94]. Similarly, 12-HETE pro-
duction is closely linked to �-cell destruction by
immune cells in mouse islets and mice lacking the 12-
LOX enzyme are protected from chemically-induced
type 1 diabetes [95, 96]. Thus, the production of
12-HETE may be important for immune modula-

tion as opposed to function during �-cell glucose
metabolism.

In adipocytes, both 12- and 15-HETE may con-
tribute to insulin resistance. Mice fed a high fat diet
have an upregulation of 12-LOX and 15-LOX in adi-
pose tissue, and insulin signaling was impaired when
adipocytes were treated with either 12- or 15-HETE
[97]. Remarkably, 12-LOX knockout mice are pro-
tected from developing insulin resistance and �-cell
destruction when fed a high-fat diet [98]. 12-LOX
gene expression and 12-HETE production is upreg-
ulated in adipose tissue and islets from the Zucker
diabetic rat, linking this pathway to the progression
and development of insulin resistance in type 2 dia-
betes [99, 100]. Moreover, it was shown that rat
islets treated with exogenous 11-HETE, 15-HETE,
LTB4, and LTC4 all inhibited insulin secretion [92].
Although they may not appear to be endogenous islet
products, islet immune cell infiltration and subse-
quently eicosanoid production during diabetes may
contribute to defects in insulin secretion or �-cell
destruction, as demonstrated in a mouse model of
type-1 diabetes [101].

6. Cytochrome P450 (CYP) metabolites

Similarly to LOX enzymes, CYP enzymes can
also synthesize HETEs from AA, but also gener-
ate epoxyeicosatrienoic acids (EETs), with number
designations for the site of epoxidation [7, 102]. How-
ever, much less is known regarding the influence
of CYP450 metabolites and their impact on insulin
secretion.

One of the initial studies assessing the influence of
CYP450 metabolites on �-cell function only found
5,6-EET to potentiate insulin secretion whereas 8,9-,
11,12-, and 14,15-EET had no effect on insulin secre-
tion but did increase glucagon production in rat islets
[103]. Moreover, it was shown that a prominent CYP
enzyme, CYP2J2 in humans and CYP2J3 in rats, is
highly expressed in islets in addition to endogenous
production of EETs as determined by gas chromatog-
raphy/mass spectrometry indicating a potential role
for EET biosynthesis in islets [104]. Unfortunately,
EETs are short-lived in vivo making it difficult to
accurately quantify them. Recent work, however,
determined that selectively inhibiting or knocking
out a soluble epoxide hydrolase (sEH), an enzyme
responsible for the metabolism of EETs, protected
mice from chemically induced glucose intolerance
and enhanced insulin secretion [105]. This phenotype
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was further recapitulated in a diet-induced obese
mouse model treated with selective sEH inhibitors
or with sEH-null mice, which led to improved insulin
sensitivity and greater islet size [106]. Furthermore, a
genetic mutation in the human sEH gene EPHX2 that
reduces the efficacy of the enzyme improves insulin
sensitivity and increases EET production [107]. Thus,
it appears that EET degradation may be a critical
component in glucose regulation and may serve as
a potential target for the treatment of diabetes.

7. Omega-3 fatty acids: From mouse models
to eicosanoids

Similarly to the competition between omega-3
and -6 fatty acids for the elongase and desaturase
enzymes, EPA and AA utilize and compete for the
same enzymes required for eicosanoid biosynthe-
sis [46]. Generally, omega-3 derived eicosanoids are
considered less inflammatory compared to omega-6
derived eicosanoids and are shown to be protec-
tive in many cardiovascular based diseases including
atherosclerosis, hypertension, and thrombosis [108].
In contrast to the strong evidence supporting the bene-
fits of omega-3 LCPUFAs on cardiovascular function,
the current evidence regarding the beneficial effect
of increased omega-3 fatty acid consumption as a
method to enhance insulin secretion and sensitivity is
controversial [109–114]. Unfortunately, high omega-
3 fatty acid feeding studies in rodents tend to hinder
weight gain, making it difficult to attribute metabolic
findings to omega-3 fatty acids or lack of weight gain
[115]. Furthermore, the direct role of EPA-derived
eicosanoids on insulin secretion and insulin sensitiv-
ity is poorly characterized. However, emerging work
utilizing transgenic mouse models engineered to shift
the endogenous ratios of omega-3 and -6 fatty acids
may provide a better understanding of how omega-3
metabolites and eicosanoids contribute to protection
from and progression of diabetes.

A mouse model engineered to express the fat-1
gene from Caenorhabditis elegans is capable of
desaturating omega-6 into omega-3 fatty acids,
reducing the ratio of omega-6 to -3 ratios from
upwards of almost 49 : 1 in some tissues to less than
1 : 1 [116, 117]. Interestingly, islets isolated from
fat-1 mice secrete more insulin at sub-stimulatory
and stimulatory concentrations of glucose when
compared to wild-type islets, indicating a poten-
tial role for islet LCPUFA composition in insulin
secretion [117]. Moreover, fat-1 islets produced less

AA-derived PGE2 compared to wild-type controls,
suggesting a shift in prostaglandin production due
to changes in LCPUFA composition [117]. When
subject to diet-induced obesity, fat-1 mice are pro-
tected from glucose intolerance and overt diabetes
[118–121]. Part of this protection is due to enhanced
liver insulin sensitivity and improved �-cell morphol-
ogy when compared to wild-type controls [119, 120].
Moreover, the AA derived eicosanoids PGE2 and
LTB4 were reduced in livers from fat-1 mice, indi-
cating a potential reduction in inflammation and shift
in eicosanoid production [119]. To ascertain whether
fat-1 mice would be protected from age-related blood
glucose impairment, fat-1 mice were placed on non-
obesogenic diet for 2 and 8 months. Interestingly,
fat-1 mice were protected from developing glucose
intolerance due in part to endogenous blood glu-
cose production, indicating a potential benefit of
enhanced omega-3 fatty acids in preventing age-
related metabolic disease [122]. Lastly, when fat-1
is strictly expressed in adipocytes, only male mice
are protected from glucose intolerance (presumably
due to enhanced insulin secretion) suggesting both
sex- and tissue-specific effects of omega-3 fatty acids
[123].

In addition to diet-induced glucose intolerance
mouse models, fat-1 mice are protected from �-cell
destruction in mouse models of type-1 diabetes. When
fat-1 mice are treated with streptozotocin (STZ) to
induce type-1 diabetes, they do not become glucose
intolerant and �-cell structure and function is pre-
served [120, 124]. Furthermore, there was a reduction
in islet cell apoptosis and markers of inflamma-
tion, including reduced production of the AA-specific
eicosanoids PGE2 and 12-HETE [120, 124]. Inter-
estingly, enhanced production of the EPA-specific
eicosanoid 18-HEPE, which has anti-inflammatory
properties, was also upregulated in fat-1 mice treated
with STZ, suggesting a shift in eicosanoid production
based on substrate availability [124]. When isolated
islets were subject to cytokine-induced destruction,
fat-1 islets were protected from cell death indicating a
role for LCPUFAs in apoptosis [117].

There is very little evidence regarding the influ-
ence of specific EPA-derived eicosanoids and insulin
secretion or sensitivity. However, in addition to
GPR119 serving as a receptor for phosphatidyl-
choline and ethanolamide compounds, it can also
be activated by 5-hydroxy-eicosapentaenoic acid
(5-HEPE), an EPA-derived eicosanoid formed by 5-
LOX [125]. In a mouse insulinoma cell line, it was
shown that 5-HEPE bound specifically to GPR119



134 J.C. Neuman et al. / Dietary polyunsaturated fatty acids

and enhanced insulin secretion, suggesting GPR119
can be activated by a diverse set of ligands including
eicosanoids [125]. Additionally, further metabolism
of eicosanoids derived from EPA and docosahex-
aenoic acid (DHA) into compounds termed resolvins
and protectins, respectively, may confer benefits to
glucose homeostasis [126]. A hyperphagic mouse
model fed a diet high in omega-3 fatty acids had
enhanced production of resolvins and protectins,
which ultimately led to increased insulin sensitivity
[127]. Another study demonstrated that exogenous
treatment with resolvin D1 improved insulin sen-
sitivity and reduced fasting hyperglycemia in a
hyperphagic mouse model further supporting the ben-
eficial role for omega-3 eicosanoid metabolism in
protection from glucose intolerance [128].

8. Conclusions and future perspectives

During the past several decades in the U.S., high
dietary fat consumption was considered detrimental
to health, even with poor or uncertain scientific jus-
tification, leading to a drastic and questionable shift
in dietary recommendations for fat intake [129]. Ulti-
mately, this shift did not reduce caloric intake or the
prevalence of metabolic diseases, such as obesity and
diabetes [130, 131]. It is now becoming evident that
a shift in the types of fats consumed may be far more
important than an overall reduction in fat intake. This
is particularly true with the bioactive LCPUFAs, with
their potential role in contributing to or ameliorating
chronic conditions such as obesity and diabetes [4, 5,
129, 132].

Traditionally, omega-6 fatty acids are considered
more detrimental to health and promote disease
primarily due to their pro-inflammatory properties.
However, omega-6 LCPUFAs are absolutely required
for the development, maturation, and function of
the immune system [133]. Moreover, many human
studies assessing the impact of omega-6 LCPUFA
intake and cardiovascular risk fail to demonstrate any
significant changes in AA content in cells or changes
in pro-inflammatory markers [134–136]. Similar
findings demonstrate that omega-3 supplementation
does not appear to change morbidity or mortality or
inflammatory markers associated with type-2 dia-
betes [137]. Therefore, the essentiality of omega-6
fatty acids and limited evidence linking omega-6
LCPUFAs to inflammation in human studies hinder
the direct link between omega-6 LCPUFAs and
disease. But, the divergence in the ratio of omega-6 to

omega-3 fatty acids may inherently be the root of
the problem as opposed to any quantity of omega-6
LCPUFAs.

Perhaps more important than the species of LCP-
UFAs is the bioactive compounds they create.
Pharmaceutical interventions to limit eicosanoid pro-
duction, such as COX-2 inhibitors, are efficacious in
potentiating insulin secretion and may provide addi-
tional benefits in insulin sensitivity in human patients
[63, 138–140]. However, cardiovascular risk factors
are a cause for concern regarding this treatment, as
COX-2 inhibitors in type 2 diabetic patients may lead
to adverse cardiac events, particularly in a popula-
tion with increased basal risk [141, 142]. Moreover,
antagonizing eicosanoid receptors as a therapeutic
intervention is growing in interest and may be more
efficacious in diabetic treatment [14, 21, 143].

In an age where disease therapy is closely linked to
pharmaceutical treatment, a dietary intervention pro-
motingaLCPUFAprofilesimilar toourancestorsmay
alsoprovebeneficial in thepreventionandtreatmentof
both type 1 and 2 diabetes. The previously mentioned
transgenic mouse models demonstrate the importance
of the omega-6 to omega-3 ratios in directly and
indirectly altering insulin sensitivity and secretion.
Future dietary interventions designed to transform our
eicosanoid profiles may prove to be a potential therapy
for the long-term treatment of diabetes.
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