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Abstract. On exploratory class missions, such as a voyage to Mars, astronauts will be exposed to doses and types of radiation
that are not experienced in low earth orbit where the space shuttle and International Space Station operate. Astronauts who
participate in exploratory class missions outside the magnetic field of the earth will be exposed to galactic cosmic rays which
are composed of alpha particles, protons and particles of high energy and charge. Exposure to cosmic rays produces changes in
neuronal and behavioral functioning which are characteristic of aged organisms. As has been observed with aging, maintaining
rats on antioxidant berry diets can prevent/ameliorate the radiation-induced changes in neural and behavioral function. As such,
these diets have the potential to provide protection to astronauts from the deleterious effects of exposure to space radiation.
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1. Space radiation

On exploratory class missions, such as a voyage to
Mars, astronauts will be exposed to doses and types
of radiation that are not experienced in low earth orbit
(LEO) where the space shuttle and International Space
Station operate [1–3]. For missions in LEO, astronauts
are afforded some degree of protection from the types
of radiation encountered in space by the magnetic field
of the earth. Astronauts who participate in exploratory
class missions outside the magnetic field of the earth
will be exposed to galactic cosmic rays (GCR) which
are composed of alpha particles, protons and particles
of high energy and charge (HZE particles), such as
56Fe, 48Ti, 12C and 16O. The primary source of high
energy protons are solar particle events (“solar flares”).
HZE particles are of celestial origin and, while some
may be given off as a consequence of solar particle
events, most are free particles in space remaining from
the formation of the universe [4].

The amount of energy deposited in tissue (and hence
tissue damage) following irradiation is indicated by
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the linear energy transfer (LET) of the specific parti-
cle. LET varies inversely with the particle energy: the
LET of 1000 MeV/n 56Fe is ≈ 150 keV/�m; the LET
of 600 MeV/n 56Fe is ≈ 189 keV/�m. In general, the
higher the LET of a particle the greater the relative
effectiveness of the radiation in affecting physiologi-
cal endpoints. While exposure to all types of radiation
will lead to the development of cancer [5–8], exposure
to higher doses of low LET X- and gamma rays are
needed to produce cancers compared to the higher LET
HZE particles. However, with regard to neurobehav-
ioral performance, exposure to low doses of gamma-
or X-rays do not affect central nervous system function
in mature organisms. In contrast, low dose, non-lethal
exposures to HZE particles produce changes in neu-
ronal functioning [9] and a significant disruption of
cognitive/behavioral performance [10–14].

The differences in the neurocognitive effects of
exposure to low or high LET types of radiation may
result from differences in how the different types of
radiation interact with tissue [e.g., 15, 16]. X-rays and
gamma rays exert diffuse effects on tissue, and the
dose delivered to tissue decreases exponentially as a
function of depth in tissue. In contrast, HZE particles
deposit energy along a well-defined track, the length
of which is determined by the energy of the particle.
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The dose deposited in the tissue is relatively constant,
except at the point at which the particle stops, where
there is a significant increase in energy deposition [17].

The neural mechanisms underlying the changes in
neurocognitive function are not completely certain.
One suggestion has been that the passage of HZE par-
ticles through the brain makes a series of microlesions
[18, 19]. That is, as an HZE particle passes through neu-
ral tissue, cells that are along and adjacent to the track
are destroyed or inactivated. Therefore, the subsequent
loss of functioning neurons is responsible for the dis-
ruption of cognitive performance following exposure
to HZE particles. Although the evidence of an actual
loss of tissue along the particle track is weak, it is possi-
ble that neurons along the track are no longer functional
[20].

A complementary/alternative hypothesis is that
exposure to HZE particles produces oxidative stress
and neuroinflammation. Oxidative stress occurs when
endogenous and exogenous sources of reactive oxygen
species (ROS) exceed the capacity of the endogenous
antioxidant systems to remove them. A number of
studies have shown an increase in reactive oxygen
species and a decrease in antioxidant enzymes in the
brains of organisms exposed to ionizing radiation
[21–24]. The consequences of oxidative stress include
aging [25], carcinogenesis [26] and a variety of
neurodegenerative disorders such as Parkinson’s and
Alzheimer’s diseases [27].

Neuroinflammatory responses also occur as a
response to exposure to toxic treatments, including
both high and low LET ionizing radiation [28–31].
Toxic treatments can affect central nervous system
function directly through the release of peripheral
cytokines into the circulatory system [32] or indi-
rectly through the mediation of the vagus nerve [33].
The consequences of neuroinflammation may include
the development of neurodegenerative disorders such
as Parkinson’s and Alzheimer’s diseases [32]. Behav-
iorally the effects of neuroinflammation may include
depression, anxiety, psychomotor slowing and cogni-
tive dysfunction [34].

2. Aging

Aging is characterized by changes in central ner-
vous system (CNS) functioning compared to young
adult and middle-aged organisms. Exposure to space

radiation also produces changes in CNS functioning
compared to non-irradiated controls. Aging-related
changes have been reported in a variety of neuro-
transmitter systems including dopaminergic [35, 36],
glutamatergic [35, 37] and muscarinic acetylcholine
[38] systems. Changes have also been reported in
hippocampal proteome [39] and in protein kinase C
activity in the prefrontal cortex [40] as a function of
age. There are also age-related changes in hippocampal
neurogenesis [41–43] and in autophagy [44]. Similar
changes have been reported following exposure to HZE
particles (see below).

Behaviorally, aging is characterized by deficits in
dopamine-mediated motor function [45] and by an
increase in the frequency of occurrence of cognitive
dysfunction. Although the cognitive performance of
some rats remains unimpaired compared to young
organisms, other rats show a reduction in their ability
to perform a variety of cognitive tasks [e.g., 35, 37, 39,
46, 47]. Performance decrements have been reported
in spatial learning and memory using the Morris water
maze [35, 37, 46, 47] and the radial arm water maze
[48]; in object location memory [49]; in executive func-
tion using attentional set shifting [38, 50]; and in novel
object recognition [51–53].

Current theories propose a role for both oxidative
stress [54–58] and neuroinflammation [59–61] in the
aging process. While the free radical theory of aging
may not be able to account for all aspects of aging
[62], it is generally accepted that oxidative stress is
a key component of the aging process. The deficits
in cognitive performance that accompany the aging
process have been linked to the effects of oxida-
tive stress [63–65] and neuroinflammation [66–68] on
brain function. Complementary research using diets
which reduce oxidative stress and neuroinflammation
show an amelioration of the cognitive deficits that
accompany the aging process [69–72].

Heavy particle radiation, like other toxic stimuli,
produces oxidative stress [21, 23, 73, 74] and neu-
roinflammation [28, 75–77] resulting in changes in
neuronal function. Given that both exposure to HZE
particles and aging produce oxidative stress and neu-
roinflammation, similar changes in neuronal function
should also occur. As observed in aged animals, expo-
sure to HZE particles causes changes in dopaminergic
[78] and muscarinic acetylcholine [79, 80] activity in
the striatum, in hippocampal neurogenesis [75, 81, 82]
and in autophagy [77]. In effect, exposure to HZE par-
ticles accelerates the aging process [78, 79] in terms
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of changes in neuronal functioning. As a result of
accelerating neuronal aging, there is a corresponding
effect on behavioral performance.

Exposing rats to low doses (<100 cGy) of the
types of radiation encountered in space (protons and
HZE particles) disrupts behaviors that are depen-
dent upon the integrity of the dopaminergic system,
including motor performance [83]; startle responses
[84]; amphetamine-induced conditioned taste aver-
sion learning [10, 11, 85]; and operant responding on
an ascending fixed-ratio schedule [12, 86]. Similarly,
exposure to low doses of HZE particles disrupts spa-
tial learning and memory measured using the Morris
water maze [14, 87] and the radial arm water maze
[22]. Performance on the novel object recognition task
is also disrupted [88] as is executive function using the
attentional set shifting task [89]. Overall, these studies
indicate that exposure to low doses of the types of radia-
tion encountered in space affect cognitive performance
on a wide range of tasks, including spatial learning and
memory, motivation, anxiety and executive function.

In addition to accelerating the aging process,
research has shown that there is an interaction between
age and exposure to HZE particles such that exposing
subjects to doses of 56Fe particles that do not affect
the performance of younger rats do produce a signifi-
cant disruption in performance in these same animals
at older ages [90]. Also, lower doses of 56Fe HZE par-
ticles are needed to produce neurocognitive deficits
in subjects that are exposed at older ages [91]. The
interaction between age and susceptibility to the neu-
rocognitive effects of exposure to space radiation may
result from the fact the neurocognitive effects of both
the aging process and exposure to HZE particles are
mediated by oxidative stress and neuroinflammation
and exposure to HZE particles accelerates the decline
in cognitive performance.

3. Nutrition

To the extent that oxidative stress plays a role
in the cognitive decline that accompanies the aging
process, then treatments that reduce oxidative stress
should reduce the aging-induced performance decre-
ment. Within the last 15 years, a large number of
studies have been conducted evaluating the effects of
antioxidant diets (i.e., diets with antioxidant activi-
ties) to ameliorate the age-induced deficit in cognitive

performance [92, 93]. While the antioxidant capac-
ity of many different compounds has been explored,
including vitamins C [94] and E [95], caffeine [96],
resveratrol [97, 98], and folic acid [99] by far the most
research has been concerned with the effectiveness of
flavonoid-containing fruits and vegetables to reverse
the age-induced increase in oxidative stress and the
corresponding decline in cognitive function [69, 70,
72, 100–103]. Research suggests that phytochemical
compounds contained in colorful fruits and vegeta-
bles exhibit potent antioxidant and anti-inflammatory
activities [104]. These effects may be due to the types,
quantities, and combinations of dietary antioxidants
and anti-inflammatories found in them. Moreover,
recent work also suggests that the polyphenolic com-
pounds found in berry fruits may actually have direct
effects on the brain, which may also contribute to their
beneficial effects with respect to cognitive and motor
behaviors. Specifically, berry fruits mediate signaling
pathways involved in inflammation and cell survival
in addition to enhancing neuroplasticity, neurotrans-
mission, and calcium buffering, all of which lead to
attenuation of age- and pathology-related deficits in
behavior [105]. Overall, the general finding has been
that treatments that reduce oxidative stress and neuro-
inflammation also reduce or prevent the disruption of
cognitive function that occurs in the aged organism.
Specifically, inclusion of antioxidant extracts in the
food of aged rats results in improved performance on
object recognition [96, 100, 103]; spatial learning and
memory [69, 70, 94]; and in plus-maze and avoidance
tasks [99, 101].

Historically, little attempt has been paid to issues
related to the development of cognitive deficits
following exposure to space radiation. As a con-
sequence of this approach, attempts to develop
radioprotectors have been concerned with the role
of antioxidant treatments on biological endpoints
[23]. Within this category, there have been tests of
chemical antioxidant compounds as potential radio-
protectants, including selenomethionine [106, 107],
alpha-tocopheral [108]; tamoxifen [109], melatonin
[110], alpha-lipoic acid [111], DSMO [112] and an
inhibitor of pro-inflammatory cytokines [76]. These
studies have shown that treatment with a variety of
free radical scavenging compounds is effective in pre-
venting/ameliorating the biological consequences of
exposure to radiation.

In as much as exposure to HZE particles and pro-
tons produces oxidative stress and neuro-inflammation
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leading to decrements in cognitive performance that
are characteristic of the aged organism, antioxidant
diets should be equally effective in mitigating the dele-
terious effects of exposure to the types of radiation
encountered in space. In contrast to the studies cited
above, attempts to ameliorate the cognitive effects of
exposure to space radiation have utilized the same com-
pounds that have been shown effective for the treatment
of aging-induced cognitive deficits. The majority of
these studies of have utilized blueberry and strawberry
extract added to the diet of rats prior to exposure to
56Fe particles.

Maintaining rats on diets containing 2% blueberry
or strawberry extract for two months prior to expo-
sure to 56Fe particles (1.5 Gy, 1 GeV/n) prevented the
radiation-induced decreases in potassium-stimulated
dopamine release in the striatum [113]. Exposure to
2.5 Gy of 1 GeV/n 56Fe particles alters gene expres-
sion in the hippocampus related to the regulation of
oxidative and inflammatory signals. When rats were
maintained on strawberry and blueberry diets the
radiation-induced changes in gene expression were
ameliorated [114].

Concordant with the effects of berry diets on neu-
ronal function, antioxidant diets also ameliorate the
cognitive/behavioral deficits produced by exposure
to HZE particles, although the effectiveness of the
blueberry or strawberry diet varies as a function
of the specific behavioral endpoint. For dopamine-
dependent conditioned taste aversion learning, rats
maintained on either the blueberry or strawberry diet
failed to show the 56Fe particle-induced disruption of
an amphetamine-induced CTA [115]. In contrast, the
irradiated rats fed a control diet failed to acquire an
amphetamine-induced taste aversion, which is consis-
tent with previous research [10, 11]. Similarly, rats
maintained on either a 2% or 4% strawberry or blue-
berry diet for two weeks prior to exposure to 150 cGy
1000MeV/n 56Fe particles did not show a disruption
of novel object recognition performance compared to
irradiated rats maintained on a control diet [88]. As
with conditioned taste aversion learning, there were
no differences in the degree of protection as a function
of the diet (blueberry or strawberry).

Similarly, rats exposed to 56Fe particles maintained
on either the blueberry or strawberry diet showed
improved performance on the Morris water maze com-
pared to irradiated rats maintained on the control
diet [113, 116]. Although the irradiated rats showed
improved performance on both diets, there were differ-

ences in the pattern of responding as a function of the
specific diet (blueberry or strawberry). The improved
performance of the rats fed the strawberry diet may
have reflected better ability to retain place informa-
tion which is mediated by the hippocampus; whereas
the rats maintained on the blueberry diet showed
better performance on the striatal-dependent reversal
task.

The effects of antioxidant diets on operant respond-
ing on an ascending fixed-ratio schedule also varied
as a function of the specific diet. Following exposure
to 150 or 200 cGy of 56Fe particles, the animals fed
either the control or blueberry diets showed signifi-
cantly poorer performance on an ascending fixed-ratio
reinforcement schedule than the non-irradiated rats
[117, 118]. The performance of the rats fed the straw-
berry diet was not significantly different from that of
the non-irradiated controls and significantly better than
that of the irradiated rats fed the blueberry diet, which
did not differ from that of the irradiated rats fed the
control diet.

While for some cognitive tasks both blueberry
and strawberry diets are equally effective in prevent-
ing/ameliorating HZE particle-induced disruption of
cognitive performance (e.g., taste aversion learning;
novel object recognition), for other cognitive tasks the
effectiveness of the diets differs (e.g., spatial learn-
ing and memory; operant responding on an ascending
fixed-ratio schedule). The factors that might account
for the differing effectiveness of the different diets on
different cognitive tasks following exposure to HZE
particles remain to be determined. It is possible that
the differences in effectiveness result from a differen-
tial sensitivity to oxidative stress and the effects of free
radical scavengers in the specific tissue that mediates
the behavior. For the most part, spatial learning and
memory depends upon the integrity of the hippocam-
pus whereas the operant responding on an ascending
fixed-ratio schedule depends upon the integrity of the
striatum. An alternative factor influencing the differen-
tial effectiveness of the two diets is that neurocognitive
endpoints may be related to the chemical compo-
sition of the diets, which could influence or affect
their antioxidant capacity and their ability to cross the
blood-brain barrier. While all berries contain bioactive
chemicals including phenolics, anthocyanins, hydrox-
ycinnamates and flavonols, the relative amounts of
these constituents varies as a function of the specific
berry: blueberries have more proanthocyanins whereas
strawberries have more ellagitannins. This, in turn
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may affect the antioxidant capacity of strawberries and
blueberries as well as their ability to cross the blood-
brain barrier [119–121].

In addition to the capacity of antioxidant berry diets
to prevent or ameliorate the effects of exposure to
space radiation on cognitive performance, maintain-
ing rats on these diets also prevents the development
of radiation-induced tumors. Rats maintained on a diet
containing 2% strawberry or blueberry extract for 4
weeks prior to and up to 1 week after exposure to 56Fe
particles (150 cGy, 1 GeV/n) developed significantly
fewer tumors than rats given the control diet [122].
The reduction in the frequency of occurrence of tumors
only required that the enhanced diet-induced antioxi-
dant capacity be functional at the time of exposure
and not throughout the remaining life of the organ-
isms. Both strawberry and blueberry diets were equally
effective in reducing the frequency of development of
HZE particle-induced tumors.

The human equivalents of the animal research cited
above is 1-2 cups of blueberries or strawberries. This
translates into 12–24 g/day of freeze dried powder. On
a spacecraft for long-duration exploratory class mis-
sions, much of the food will be freeze-dried. For a
900-day Mars mission, approximately 21 kg of pow-
der would be needed for each astronaut to provide
significant protection against the deleterious effects of
exposure to cosmic rays. Given the proven benefits, it
seems reasonable to propose that freeze-dried blueber-
ries or strawberries should constitute one component
of the astronauts’ diet.

4. Conclusions

On exploratory class missions to other planets, astro-
nauts will be exposed to types and doses of radiation
(cosmic rays) which are not experienced in low earth
orbit. Exposure to low, non-lethal doses of space radi-
ation can produce changes in neuronal function and
in neurocognitive performance that resemble those
seen in aged organisms: exposure to space radia-
tion produces accelerated aging. The disruption of
neurocognitive performance by exposure to space radi-
ation may affect the ability of an astronaut to perform
critical tasks during a mission or affect the quality of
life of an astronaut after the conclusion of a mission
by accelerating the aging process, perhaps leading to
the development of Alzheimer’s or Parkinson’s dis-

eases. It is therefore necessary to reduce the exposure
of astronauts to HZE particles, either by increasing
the shielding of the space capsule or by other means.
However, shielding is not always an effective means
of protecting astronauts, both because of the energy
of the HZE particles and because particles striking
the shielding material give rise to secondary particles
[123–125]. This means that some other means must
be found to provide the necessary degree of protection
to permit an astronaut to successfully meet mission
requirements and not produce a premature degrada-
tion in the quality of life after the conclusion of the
mission. The data summarized in this review suggest
that dietary supplements can meet this goal.
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