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Abstract. We have recently proposed a new paradigm for understanding how antioxidants in fruit and vegetables provide
protective effects for health [1]. Here we describe how this new paradigm is relevant to explaining how polyphenols in wine can
provide health benefits. The new paradigm of “para-hormesis” is based on the reality that in cells, the by far major antioxidant
mechanism is enzyme-catalyzed reduction of hydroperoxides rather than non-enzymatic scavenging of free radicals and other
oxidants and that dietary antioxidants increase antioxidant enzymes and their substrates. Indeed, non-enzymatic scavenging
by wine polyphenols may be restricted to the intestinal lumen as kinetic considerations rule out a significant contribution of
non-enzymatic scavenging in cells. Indeed, antioxidants function through their metabolism in cells to electrophiles that induce
antioxidant enzymes and elevate the concentrations of nucleophiles, particular NADPH, glutathione and thioredoxin that are the
substrates for these enzymes. This maintenance of “nucleophilic tone” provides the means for “antioxidant defense”

1. Introduction

We provide here a brief summary of our recent pro-
posal for how polyphenols present in wine, fruit and
vegetables provide antioxidant defense in cells. We
will also briefly review how wine polyphenols can
function in the intestinal lumen in post-prandial con-
sumption. The primary focus however, is on a new
paradigm for antioxidant function that we have named
para-hormesis.

First, we will define here how we use the terms
‘antioxidants,’ ‘reductants,’ ‘nucleophiles,’ ‘oxidants,’
and ‘electrophiles.’ Nucleophiles are molecules that
give electrons to other molecules, called electrophiles.
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Reductants are then nucleophiles that give one or two
electrons to an electrophile, without forming covalent
bond. The kind of electrophile that receives electrons
from a reductant without forming a covalent bond is
then called an oxidant. There are different functional
definitions for the word, ‘antioxidant.’ In chemistry,
antioxidants are nucleophilic reductants that directly
react with oxidants, thus preventing the oxidation of
a third molecule. In biology, antioxidants may act
directly or indirectly to increase the capacity to remove
electrophiles.

Approximately ten millennia ago humans developed
agriculture, which provided availability of nutri-
ents required for maintenance of metabolic energy.
Recognition of micronutrients including vitamins that
prevented deficiency diseases arose about a century
ago although the observation that fruits, vegetables
and wine contained substances that enhanced health
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existed in folk traditions well before the advent of
modern chemistry. But, the recognition that vege-
tal foods contain specific phytochemicals that may
generally reduce the incidence of disease is quite
recent [2–4]. Although their effectiveness was sup-
ported by epidemiological, animal and in vitro studies,
understanding of how specific phytochemicals provide
defense against oxidants developed under some major
misconceptions.

Increasing realization that free radical scavenging
cannot explain the effects of the beneficial effects
of phytochemicals (with the exception of vitamin
E) led some investigators to begin investigation into
other explanations for the apparent antioxidant activ-
ity of these compounds. But, as this was developing,
failed clinical trials for antioxidants and controversy
surrounding the effects on aging of resveratrol, the
polyphenol in wine receiving the most attention,
diminished enthusiasm for antioxidants even among
scientists in the field of free radical research. Nonethe-
less, looking at all the studies, including those with
negative findings, suggested to some that these com-
pounds have a maximal effectiveness similar to that of
vitamins so that supplemental polyphenols and other
phytochemicals only provide a benefit to those whose
diet is suboptimal in fruits and vegetable consump-
tion. As is clear from increasing obesity and incidence
of metabolic syndrome, far too many people consume
suboptimal diets.

Wine phytochemicals can be part of the solution,
although it may be less common to have a subopti-
mal diet among moderate wine consumers. Regardless,
proposing the use of wine as a supplement to food has
been controversial as the contribution of alcohol to both
beneficial and deleterious consequences for health pro-
vides a whole other set of issues. Here however, we will
restrict our discussion to the phytochemicals.

We will describe how the phytochemicals found in
wine and vegetal foods activate a signal transduction
pathway that results in an increase in the antioxidant
enzymes and their substrates, glutathione, thioredoxin
and NADPH, which we have named ‘nucleophilic
tone’ [1]. This involves an apparently paradoxical
effect in which the phytochemicals are metabolically
converted to electrophiles that drive the activation
of the Nrf2/EpRE pathway. The literature has many
examples of electrophilic compounds producing cel-
lular injury that triggers a hormetic response that
provides subsequent protection [5]. Here however,
we propose that the phytochemicals produce a “para-

hormetic” effect in which there is no toxicity to
overcome in increasing nucleophilic tone.

2. Antioxidants and free radicals

The ability of a very large number of organic com-
pounds to react rapidly with free radicals has been
recognized for almost two centuries and their use in
preventing oxidation of polymers and food is of great
importance [6]. There is also no argument about the
involvement of free radicals in many biological pro-
cesses both “good” and “bad” [7]. Important examples
of the bad side were the observations by Gershman of
the involvement of free radicals in radiation damage
and its enhancement by oxygen [8] and the develop-
ment of the free radical theory of aging by Harman
[9]. Thus, it was assumed that scavenging with antiox-
idants could prevent oxidative damage from excessive
free radical production and lead to a longer and health-
ier lifespan. Unfortunately, the syllogism that the more
antioxidants one could pack into cells and tissues, the
greater would be the resistance to pathology caused
by free radicals has run into the hard reality of failure
at least in higher animals and in human clinical trials
[10–13]. As described below, while the logic seemed
reasonable, limited physiological uptake and the kinet-
ics of competition with biological targets cause free
radical scavenging by antioxidants to be a negligible
component of antioxidant defense in cells. Although
still controversial, long term, high dose �-tocopherol
administration for cardiovascular disease prevention
may be the sole exception [14].

Despite the kinetic realities that antioxidants do
not work in cells by scavenging free radicals, some
investigators persist in reporting studies in which a
newly discovered antioxidant is demonstrated to scav-
enge radicals in vitro, thereby providing the next
‘great breakthrough’ (sarcasm intended) in antioxidant
defense. With the exception of vitamin E and enzy-
matic dismutation catalyzed by superoxide dismutase,
there is actually no evidence of significant defense in
cells by free radical scavenging. An explanation for
why vitamin E is an exception in physiologically rel-
evant free radical scavenging, a history of free radical
production in carbon tetrachloride toxicity and lipid
peroxidation, antioxidant defense, and a review of the
chemistry of oxygen that promotes free radical pro-
duction by phagocytes and mitochondrial metabolism
are provided in our recent publication [1].
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3. Phytochemical antioxidants versus
antioxidant enzymes in antioxidant defense

Scavenging by antioxidants is a second order reac-
tion in which Reaction rate = k[A][B], where [A] is
antioxidant concentration, [B] the free radical con-
centration, and k is the second order rate constant.
The most powerful free radical, hydroxyl radical
(HO·) reacts with almost all organic molecules with
rate constants approaching the rate of their diffusion
(>109 M−1s−1) [15, 16]. Thus, no scavenger can be
protective by reacting with HO·. Put another way, to
be 50% effective, the concentration of a scavenger
would need to be equal to the concentration of all the
other molecules combined. Alkoxyl radicals (RO·) that
derive from decomposition of lipid hydroperoxides are
produced in membranes [17, 18]. While they react
somewhat more slowly with organic molecules than
HO·, for both RO· and HO· the only efficient protection
against them is to prevention of their formation.

The rates of absorption, transport and competition
kinetics that limit antioxidant effectiveness in cells
do not apply everywhere. Such an exception is in the
intestinal lumen where oxidative degradation of food
can leading to post-prandial oxidative stress, which
has been demonstrated to be clearly prevented by con-
sumption of wine polyphenols with the food [19].

Although intracellular scavenging of free radicals
is not an effective mechanism of protection, antioxi-
dant defense can effectively remove the less reactive,
but still reactive species hydrogen peroxide (H2O2)
and lipid hydroperoxides by enzymatically reducing
them to their corresponding alcohols [20, 21]. Catalase
can dismutate H2O2 to H2O and O2, while perox-
idases and peroxiredoxins catalyze the reduction of
hydroperoxides using the electrons of nucleophilic
thiols, glutathione (GSH) or thioredoxin (Trx) [22].
Cells maintain GSH and Trx in their reduced forms
using enzyme-catalyzed reduction by NADPH primar-
ily. The pentose shunt is the primary source of NADPH
making glucose the principal “antioxidant” in cells.
Thus, by putting the burden of antioxidant defense on
two-electron reduction catalyzed by enzymes, nature
evolved a far more effective means of protection
than one-electron free radical scavenging. Indeed,
as H2O2 and lipid hydroperoxides are the source
of HO· and RO·, respectively, their removal by the
antioxidant enzyme/nucleophilic substrate-dependent
system is where two-electron biochemistry prevents
one-electron chemistry in cells.

Another misconception is that antioxidants can
reduce hydroperoxides in non-enzymatic two electron
reactions, efficiently. Indeed thiols, like glutathione
have reaction rates with hydroperoxides that are
relatively fast for a non-enzymatic reaction, up to
10 M−1s−1. But, this rate is trivial in comparison with
enzymatic reactions catalyzed by various peroxidases
and peroxiredoxins that may be 105 times or more
faster [22]. Therefore, peroxidase- or peroxiredoxin-
catalyzed reactions using nucleophilic thiols, rather
than non-enzymatic two-electron reactions are biolog-
ically significant.

4. Increasing the cellular adaptive response to
oxidative challenge brought by electrophiles

We have defined nucleophilic tone as “the capac-
ity to remove electrophiles through enzyme catalyzed,
dynamic flow of reducing equivalents from NADPH,
GSH and Trx” [1]. Increasing nucleophilic tone there-
fore involves increasing the overall potential for cells to
respond to an oxidative challenge from electrophiles.
Here we will describe the principal means through
which cells react to the production of oxidants and
how the phytochemicals in wine, fruit and vegetables
produce this response.

5. The paradoxical action of phytochemical
antioxidants: Activation of the Electrophile
Response element

So, if the phytochemicals in wine and other edibles
do not act as scavengers of oxidants, should we be
asking what the epidemiologists have been smoking?
The short answer is ‘No, because the phytochemicals
induce nucleophilic tone.’ Indeed, a large number of
phytochemicals, including wine polyphenols, induce
antioxidant enzymatic systems.

There are two mechanisms through which phy-
tochemicals induce nucleophilic tone. In one, the
chemistry is the generation of superoxide (O2

.−)

and H2O2, while in the other, the molecule is, or
is metabolized to an electrophile. In other words,
paradoxically, phytochemical antioxidants increases
nucleophilic tone by increasing electrophile concen-
tration. Fortunately, and the reason we refer to this
phenomenon as ‘para-hormesis,’ the concentrations of
electrophiles reached in mammals are well below toxic.
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Amusingly, it is the inability to reach the high concen-
trations needed to scavenge free radicals that accounts
for the lack of toxicity by the phytochemical itself.
An example of pathogen-induced hormesis is observed
in plants where bacteria and fungi cause a significant
increase in the concentrations of phytochemicals so
that they become lethal against the parasites and pro-
tective of the host [23]; however, the pathways through
which phytochemicals kill pathogens versus those that
protect mammals are markedly different.

The realization that it was actually the generation of
electrophiles that caused the increase in nucleophilic
tone came from a consideration of how some com-
pounds considered as planar aromatic antioxidants
were able to induce transcription of several genes in
the group called of antioxidant enzymes called Phase
II enzymes. As we will describe briefly, several stud-
ies [24–40]. Demonstrated that phenolic compounds,
along with sulforaphane, an isothiocyanate in crucif-
erous vegetables, increased endogenous antioxidant
protection through activation of transcription medi-
ated by what was first called the Antioxidant Response
Element (ARE) but is more accurately called the Elec-
trophile Response Element (EpRE).

When polyphenols and other planar aromatic ortho
and para hydroquinones are oxidized to quinones
(Fig. 1), they generate O2

.− and H2O2. Thus, it was
reasonably concluded that these species were respon-
sible for gene induction by planar aromatic compounds
that were oxidized to phenolic compounds [40]. We
now understand that high concentrations, H2O2 can
activate the EpRE [41], but twenty years ago the labs
of Talalay [37] and Daniel [39] clearly demonstrated
that it was electrophiles, including quinones generated
from planar aromatic phenolic compounds that were
more likely responsible than O2

.− or H2O2 for Phase
II enzyme induction.

Once the ARE/EpRE was recognized, the tran-
scription factor(s) that activated it were sought. Nrf2
(NF-E2-related factor 2) was found to be the principal
transcription factor that binds to the EpRE in response
to activation by electrophiles [42]. Nrf2 is a rapidly
turning over protein in the cytosol. This rapid turnover
is mediated by Keap1 (Kelch-like ECH-associated pro-
tein 1), [43] (also called called INrf2 (inhibitor of Nrf2)
[44]), that assists in Nrf2 ubiquitinylation that marks
the protein for proteasomal degradation [43]. If critical
cysteine residues in Keap1 are alkylated or oxidized,
Keap1 cannot facilitate Nrf2 degradation, which allows
Nrf2 to translocate to the nucleus [45].

The activation of EpRE by high concentrations of
H2O2 referred to above begins with the formation of
a disulfide between two Keap1 molecules [41]. It is
however, alkylation of a critical cysteine residue on
Keap1 by an electrophile that permits Nrf2 to escape
degradation. There are many cysteines in Keap1 but
which of these is the critical target appears to depend
upon the concentration of the particular electrophile
[46–51].

In the nucleus, Nrf2 forms a heterodimer with a part-
ner protein in binding to EpRE. Several studies suggest
this is c-Jun [52] while others claim it is a small Maf
protein [53]. Furthermore, phosphorylation of Nrf2 is
required for translocation to the nucleus and activation
of EpRE-regulated gene transcription [54–60].

6. Wine polyphenols in para-hormesis

Depending upon the type of grape and many other
factors, the polyphenol content of wine varies widely.
Rather than reviewing the individual chemistries of
hundreds of compounds, we will review the general
chemical issues and focus on resveratrol, which has
attracted considerable attention and is even being used
as a supplement in some wine and as a nutraceutical in
capsule form.

A principle consideration for the chemistry shown
in Fig. 1 is that the polyphenol must have two hydroxyl
groups in ortho or para relationship in order to redox
cycle to produce O2

.− and H2O2 and form the quinone.
The general structure that acts as the electrophile is the
�,�-unsaturated carbonyl (RHC = CH-CR = O) moi-
ety. This undergoes a Michael addition with a cysteine
that is in the thiolate (S−) form (Fig. 2). It has been
suggested that in Keap1, zinc coordinating to cysteine,
delocalizes the proton and thus increases the nucle-
ophilicity, accounts for its greatly enhanced sensitivity
to electrophiles than protein cysteines in general [61].
Thus, in a sea of cysteines, the zinc-coordinated cys-
teine residues of Keap1 can act as a sensor.

While many of the polyphenols in wine would be
expected to act through the chemistry in 2, resver-
atrol cannot! This is because resveratrol (Fig. 3) is
has a meta-hydroquinone and a phenol structure and
cannot be oxidized to form the �,�-unsaturated car-
bonyl structure. Nonetheless, as also shown in Fig. 3,
enzymatic oxidation of the phenol moiety by tyrosi-
nase [62] can form the ortho hydroquinone. The
3-hydroxyresveratrol can be a precursor to form-
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Fig. 1. General scheme for redox cycling and the generation of electrophilic quinones.

Fig. 2. Keap1 reacts with �,�-carbonyl moiety in a Michael addition. Enhancement by Zn.

ing the �,�-unsaturated carbonyl structure that then
reacts with Keap1 (Fig. 2). As a caveat to this entire
discussion, it should be noted that resveratrol, as
well as other polyphenols affect other signaling path-

ways besides the Nrf2/EpRE pathway; however, the
effect on nucleophilic tone through the Nrf2/EpRE
pathway can account at least for much of these
effects.
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Fig. 3. Resveratrol oxidation.

6.1. Nucleophilic tone, inflammation and health

Life is self-protecting and reactions to agents that
produce injury vary with the ability of cells to defend
themselves [63]. The basic elements of inflammation
as a “reaction to an injury” consist of an array of
mechanisms designed to eliminate stimuli, repair tis-
sues through elimination of the most damaged cells,
and proliferate. Remarkably, a large number of these
events operate through oxidative reactions in a network
of redox signaling [63, 64]. Indeed, in a general view,
inflammation as response to injury evolves with the
formation of electrophiles. This deviation from redox
homeostasis is often referred to as ‘oxidative stress.’

An excessive or inappropriate response to a given
physiological challenge can lead to the prolonged alter-
ation of homeostasis we classify as disease. Cancer,
liver and lung fibrosis, neurodegeneration, and other
diseases of aging., can all be seen as the outcome of
excessive activation of responses to injury. Survey-
ing the enormous amount of literature on nutraceutical
effects of natural compounds and recognition of the
value of these compounds in folk medicine around
the world, produces a leitmotif relative to regulation
of inflammation and protection from chronic degen-
erative diseases [3] and cancer [65, 66] by nutritional
phytochemicals.

In conclusion, we propose the name ‘Para-
Hormesis’ to describe the process by which nutritional
antioxidants optimize the cellular defense system by
mimicking electrophiles and increasing the Nucle-
ophilic Tone, preventing in this way diseases generated
by an excess of inflammatory response [63]. While
presenting ‘Para-Hormesis’ as a paradigm shift in
understanding physiological mechanisms of action by
nutritional antioxidants we are happy to recall, besides
modern epidemiology, the ancient wisdom describing
the health protective effect of wine which is certainly
one of the major sources of “nutritional antioxidants”.
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