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Metabolic and immune risk factors for
dementia and their modification by
flavonoids: New targets for the prevention
of cognitive impairment?
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Food and Pharmacy, University of Reading, Reading, UK

Abstract. A number of contributory factors have been implicated in the pathogenesis of Alzheimer’s disease. One of these
factors is chronic inflammation, with the over expression of pro-inflammatory cytokines and acute phase reactants consistently
observed in the post mortem brain and plasma of AD patients. Furthermore, cardiovascular risk factors, such as hypertension,
impaired vascular function and elevated LDL cholesterol, also appear to be predictive of increased dementia risk. Although
classically associated with cardiovascular disease risk, both vascular and immune mediators may have direct deleterious effects
on the brain, which contribute to the development of vascular dementia and Alzheimer’s disease, as well as impairments in
memory and neuro-cognitive function. Dietary agents previously noted for their ability to modulate these cardiovascular risk
factors leading to reductions in chronic, low-grade inflammation and/or vascular dysfunction, may also possess an ability to
moderate the progression of dementia. Flavonoid-rich foods such as tea, berries and cocoa have been reported to attenuate
age-related deficits in memory and cognition, although the precise mechanisms of their action are unclear. As these flavonoid
rich-foods/beverages also appear to mediate inflammatory processes, attenuate endothelial dysfunction and reduce hypertension,
such actions may contribute to their efficacy in the brain. This review will explore these concepts with the view to further
unravelling the actions of flavonoids and flavonoid-rich foods against brain disease and to highlight the importance measuring
such factors in future clinical studies.
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1. Alzheimer’s disease and dementia

Alzheimer’s disease (AD) is the most common form
of dementia, accounting for approximately 62% of all
cases. Worldwide it is estimated that there are 35.6
million sufferers and, due to increased life expectancy,
the number of sufferers has been predicted to rise to
65.7 million by 2030 and 115.4 million by 2050, with
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the sharpest rise incurring in low and middle income
countries [1]. In addition to the personal and social
burden of the disease, it is estimated that dementia
costs the global economy in excess of £370 billion
sterling per year with 70% of these costs incurred in
Western Europe and North America. AD is a progres-
sive, age-related neurodegenerative disorder with the
majority of cases being late onset, primarily affecting
individuals of 65 years and over [2] and often preceded
by a condition known as ‘mild cognitive impairment’
(MCI). MCI can be described as a transitional state
between normal aging and dementia, where cognitive
decline is greater than expected for the individual’s age
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but remaining distinct from dementia due to everyday
activities remaining unaffected [3]. Afflicting between
3% and 19% of adults over the age of 65 it is esti-
mated that more than half of MCI patient’s progress
to dementia within 5 years [4]. The neuropathology of
MCI appears to be comparable to that apparent in early
AD and is likely to occur at least a decade prior to the
emergence of clinical symptoms [5, 6]. It is hoped that
preventive treatments/drugs may be capable of reduc-
ing the number of MCI individuals that progress to
AD through the effective modulation of the underlying
pathology.

It is widely accepted that the brain areas initially
affected in AD are located in the medial temporal
lobes including the hippocampus, transentorhinal cor-
tex, entorhinal cortex and the subiculum ll, [7]. The
pathology is known to include the deposition of senile
plaques (SP’s) and neurofibrillary tangles (NFT’s)
composed of hyper-phosphorylated tau, which lead
to significant neuronal/synaptic loss over time. Such
changes may be triggered in part by changes in blood
brain barrier permeability brought about by abnormal
neuroinflammatory processes [8]. SP’s are primarily
composed of two isoforms of amyloid beta (A�), A�40
and A�42, which are produced as a result of abnor-
mal processing of amyloid precursor protein (APP),
catalysed by beta-secretase 1 (BACE 1), followed
by gamma-secretase cleavage [5]. Normal, processing
of APP by alpha-secretase precludes A� production
and is down-regulated in AD [9]. These events, con-
tribute to the ‘amyloid cascade hypothesis’, which
involves initial A� production, plaque formation and a
downstream inflammatory response thought to induce
tau hyper-phosphorylation and neurofibrillary tangles
[10]. However, this mechanism has been questioned in
that A� and NFT’s may only represent end products
of neurodegeneration and not it’s cause [11].

It has been postulated that neuroinflammation may
play a major contributory role in pathology of AD,
as evidenced by an altered immune response in
AD patients [12] and by a variety of immuno-
histochemical, biochemical and molecular data [13].
Microglia, the primary immune cells of the cen-
tral nervous system (CNS), when activated, produce
numerous inflammatory mediators including cytokines
and chemokines [14]. Pro-inflammatory cytokines,
such as tumour necrosis factor-alpha (TNF-�), appear
to play a major role in neurodegeneration due to their
ability to: 1) activate other pro-inflammatory mediators
such as acute phase proteins, e.g. C-reactive protein

(CRP); 2) up-regulate the expression of inducible
nitric oxide synthase (iNOS) resulting in the neu-
rotoxic levels of nitric oxide (NO); and 3) interact
with inflammatory signalling pathways capable of
inducing neuronal apoptosis [15]. In support of this,
chronic or intermittent cerebral ischemia induces neu-
roinflammation, which may then directly contribute
to vascular dementia and AD pathology by triggering
the necrotic/apoptotic death of neurons or by render-
ing them more susceptible to subsequent pro-apoptotic
stimuli [16]. Furthermore, chronic or intermittent
hypo-perfusion of the brain appears to exert amy-
loidogenic effects by enhancing expression of APP,
by up-regulating �-secretase and down regulating
�-secretase [17, 18].

As well as these pro-inflammatory events, there is
emerging evidence that the progression of atheroscle-
rosis and neurodegeneration, in particular typical and
atypical dementia may share common risk factors and
gene associations, including the presence of the ε4
allele of the apolipoprotein E genotype, hypertension,
endothelial dysfunction, elevated total cholesterol and
type II diabetes mellitus (T2DM) [19, 20]. Although
there is only limited data at present detailing the ben-
efits of flavonoids with regard to neurodegenerative
disease and dementia, there is extensive data collected
on the ability of flavonoids to attenuate a number of
vascular pathologies, including endothelial dysfunc-
tion, hypertension, hypercholesterolemia and type II
diabetes. Such studies indicate that attenuation of such
mediating factors may play a role in the potential of
flavonoids to slow the progression of neurodegenera-
tive pathologies and age-related deficits in cognitive
decline. This review will attempt to give an overview
of the involvement of such factors in the progression of
dementia and will assess the potential role of flavonoids
to influence dementia and AD development through
their ability to modulate these same immune, vascular
and lipid factors (Fig. 1).

2. Risk factors for dementia and AD

2.1. Apolipoprotein E

Apolipoprotein E (ApoE) is a major genetic risk fac-
tor for the development of AD [21, 22]. Synthesised
primarily in the liver but also within the central nervous
system (CNS) by microglia, astrocytes and to a smaller
extent neurons, relatively little is known about the role
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Fig. 1. Proposed associations between flavonoid intake immune and metabolic mediators and dementia.

of this 34-kDa secretory protein in the brain [23]. ApoE
appears to be the principal lipid transport vehicle in
cerebrospinal fluid (CSF) and is involved in the redis-
tribution of lipids and cholesterol during membrane
repair and synaptic plasticity, during development, or
after injury, including injury caused by inflammation
[24]. ApoE is encoded by a gene located on chromo-
some 19, within a region previously associated with
familial late-onset Alzheimer’s disease [25]. It is a
polymorphic gene with two missense mutations result-
ing in 3 common isoforms, apoE ε2, apoE ε3 and apoE
ε4, which engender 6 different genotypes (ε2/ε2, ε2/ε3,
ε2/ε4, ε3/ε3, ε3/ε4 and ε4/ε4), with apoE ε3 being the
ancestral isoform of the protein [26]. Approximately
25% of the Caucasian population carry one or more of
the ε4 alleles and those individuals who inherit one or
two copies of this allele have a greater risk (2 to 10
fold, respectively) of developing AD at an earlier age
of onset [22, 27, 28] and an increased conversion of
MCI to AD [6].

In addition, the ε4 allele is also associated with
a 40–50% increased risk of developing cardiovascu-
lar disease which was traditionally attributed to its
effects on higher circulating cholesterol and TAG lev-
els [29] however, more recently it has been associated
with increased inflammation [30–32]. Indeed, inflam-
matory gene expression is greater in apoE ε4/ε4 mice
compared to apoE ε3/ε3 mice, in response to LPS injec-
tion, which may be due to incorrect regulation of the
NF-k� signalling cascade in apoE animals [33]. In
support of this, apoE ε4/ε4 microglia, produce higher
levels of pro-inflammatory cytokines and increased
NO production relative to their apoE ε3/ε3 equivalents
[30]. A similar elevated inflammatory response has

been repeatedly observed in macrophages derived from
apoE transgenic mice [34–36] and in macrophages
derived from apoE ε4/ε4 AD patients compared to
healthy, age matched individuals or to AD patients with
an apoE ε3/ε3 genotype [37].

It has also been suggested that apoE4 may also
exhibit a reduced neuronal repair, remodelling and pro-
tective ability relative to that of apoE3 and apoE2,
with E3 stimulating normal neurite development and
apoE4 inhibiting neurite growth [38, 39]. Alternatively,
ApoE3 but not apoE4 has been found to interact with
Tau, protecting it against hyper-phosphorylation and
it’s self-assembly into the paired helical filaments that
form NFT’s [40]. Collectively these data provide some
explanation for the increased severity in neuropatho-
logical features of AD, particularly evident in carriers
of the apoE ε4/ε4 genotype [41]. Clearly the ApoE
genotype is not modifiable by diet. However, due to
its involvement in lipid metabolism/transport, vascular
responsiveness and immune homeostasis (individually
detailed below), and due to its clear involvement in
AD and dementia risk, it seems highly appropriate to
screen individuals for this genotype for their inclusion
in future clinical studies. Such a critical determinant
of AD risk is likely to impact on pathophysiology on
many levels and thus is important to take into account
when studying the impact of any diet/dietary agent on
medium to long-term cognitive impairment.

2.2. Immune factors

Elevated levels of tumour necrosis factor alpha
(TNF-�) and other pro-inflammatory cytokines have
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also been proposed to contribute to the neuronal
injury observed in neurodegeneration, mainly through
their ability to amplify inflammatory processes [42]
(Table 1). In a cohort of 300 AD patient’s, a high
baseline plasma concentration of TNF-� was found
to be associated with a 4-fold increase in the rate of
cognitive decline over a 6-month period [43]. Further-
more, plasma levels of TNF-� have been observed
to be elevated in MCI patients compared to healthy,
age-matched individuals [44]. In support of these
observations, TNF-� is over expressed in the affected
regions of the AD brain [13] and is elevated in the cere-
brospinal fluid (CSF) of AD patients [45]. It has also
been suggested that a higher spontaneous production of
IL-1 or TNF-� by peripheral blood mononuclear cells
may be a marker of future risk of AD in older indi-
viduals [46]. The neurotoxicity of TNF-� and other
immune factors is likely linked to their potential to
induce microglial production, leading to the produc-
tion of neurotoxic levels of nitric oxide [15] and/or their
ability to stimulate A� production [47], which in turn
stimulates the production of further pro-inflammatory
cytokines [48].

Increased plasma levels of the acute phase protein,
serum C-reactive protein (CRP), have also been repro-
ducibly measured in AD [49] and MCI patients [50],
whilst high circulating levels of CRP are associated
with an increased risk of dementia [51–54] (Table 1).
Furthermore, elevated CRP levels predict poorer mem-
ory performance in healthy older adults [55, 56] and
are associated with accelerated cognitive decline and
an increased risk of dementia in patients with MCI
[57]. In support of this relationship, whilst CRP is not
typically localised in the brain [58], it has been consis-
tently observed to be co-localised with senile plaques
and neurofibrillary tangles in the AD brain [58, 59].
Collectively, these data emphasize the pathophysio-
logical role of inflammation in the development of AD
and highlight potential targets for drugs and nutrients
designed to slow AD pathology.

2.3. Vascular function

Recent observations regarding the involvement
of vascular risk factors in cognitive decline has
led to the so called ‘vascular hypothesis’ of AD,
in which neuro-vasculature dysfunction contributes
to the pathogenesis of AD and other dementias
[60–62]. This observation has been supported by both

neuroimaging and post-mortem histopathological
studies, which have indicated that vascular pathol-
ogy is evident in up to one-third of AD patients [63].
Vascular dysfunction occurs when the endothelium
expresses changes in nitric oxide generation, increased
vasoconstrictor release and a shift towards a more pro-
inflammatory/pro-thrombotic status [64]. The function
of the endothelium is known to be impaired with age-
ing [65], but is more strongly affected in AD patients
[66, 67] and is associated with the severity of AD [66].
Vascular dysfunction undoubtedly contributes to the
reduced level/volume of cerebrovascular blood flow
(CBF) evident in AD patients [68, 69]. Indeed, imag-
ing studies indicate that CBF is greatly reduced to
specific brain regions, primarily the prefrontal and
inferior paritetal cortices in AD patients compared to
age-matched controls [69], whilst reduced CBF in the
frontal lobe has also been observed in AD patients
[68]. In the Rotterdam study (1730 subjects aged 55+)
researchers investigated the relationship between CBF
velocity, dementia and cognitive decline and found that
subjects with a greater CBF velocity were less likely
to go on to suffer from dementia. As such, it seems
that cerebral hypoperfusion proceeds, and potentially
contributes to, brain pathophysiology and the onset of
clinical dementia [70].

2.4. Hypertension

Hypertension is the major clinical manifestation of
impaired endothelial function and is a well-known risk
factor for vascular dementia [71] and more recently
has been implicated in cognitive decline and AD
[62]. A number of longitudinal cohort studies have
reported a strong association between hypertension
(systolic blood pressure above 140 mmHg and/or a
diastolic blood pressure above 90 mmHg) in middle
age or late in life and an increased risk of AD [19,
72–74]. Notably, Odds Ratios for the risk of demen-
tia were as follows: OR 3.8 (95% CI; 1.6–8.7) for
DBP of 90–94 mmHg; OR 4.3 (95% CI; 1.7–10.8)
for DBP >95 mmHg compared to those with DBP
of 80–89 mmHg. Similar results were observed with
a SBP of 160 mmHg or above: OR 4.8 (95% CI;
2.0–11.0), compared to those with SBP of 110 to
139 mmHg [72]. Furthermore, if patients with elevated
blood pressure are effectively treated the association
between hypertension and any form of dementia is
eliminated [72]. This observation is supported by a
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Table 1

Metabolic and immune factors and their association with Alzheimer’s disease and dementia risk. OR: odds ratio; HR: hazard ratio; RR: relative
risk; T2DM: type 2 diabetes mellitus; SBP: systolic blood pressure; DBP: diastolic blood pressure; NS: No studies

Biomarker Epidemiology Clinical evidence Potential mechanism

TNF-� NS Over expressed in AD brain Stimulates
neuroinflammation, NO
production and neuronal
apoptosis

Elevated in plasma of MCI
and AD patients

CRP OR 1.49;
CI, 1.23–1.81

Over expressed in AD brain Not clear but evident within
plaques and tangles
characteristic of AD

Elevated in plasma of MCI,
AD and other dementias

High levels predict poorer
memory in healthy adults

Found co-localised with
senile plaques and NFT

Hypertension SBP↑ HR 1.6
SBP: >160 mmHg:

OR 4.8

Hypertension in mid and late
life increases the risk of
AD and other dementias

Damage to microvasculature
and BBB resulting in
hemodynamic changes,
inflammatory response and
A� deposition

Anti-hypertensive medication
lowers AD risk in
hypertensive patients

DBP: 90–94 mmHg:
OR 3.8

DBP >95 mmHg:
OR 4.3

Vascular dysfunction NS Classical vascular pathology
observed in a third of AD
patients at PM

Ischaemia/reperfusion
injury/apoptosis

Compromised cerebral blood
flow in AD

Restricted O2 and nutrient
supply

Type II diabetes T2DM: RR: 1.9
Older T2DM: RR: 1.3

to 2.27
T2DM + Insulin: RR

4.3
T2DM: OR 1.69

Fasting insulin and 2-hour
post load plasma glucose is
associated with the SP

Reduced sensitivity of insulin
receptors

Increased risk of dementia in
T2DM is elevated by
insulin treatment

Reduction in glucose
utilisation

IR receptor influence on
neuronal plasticity

Hyper-cholesterolemia 200–239 mg/dl: HR
1.23

>240 mg/dl:
HR 1.57

Elevated total cholesterol in
mid life associated with
increased risk of AD

Contributes to atherosclerosis
which impedes CBF and
promotes an amyloidogenic
environment

number of trials with anti-hypertensive drugs, includ-
ing diuretics, which have been found to reduce the
incidence of AD (HR 0.57; 95% CI, 0.33–0.94) [75]
and dihydropyridine, a calcium channel blocker, which
reduces the risk of dementia by 55% [76].

Despite these convincing epidemiological evidence
regarding the involvement of hypertension in the
progression of AD, it is relatively unclear as to
how hypertension is mechanistically linked to the
disease pathology. It has been postulated that sustained

increases in blood pressure result in damage to the
micro-vascular structure in the brain [62], a process
that over time may lead to hemodynamic changes, and
the subsequent activation of microglia and chronic,
low grade neuroinflammation [77]. Moreover, it has
been hypothesised that hypertension causes an increase
in the permeability of the blood brain barrier, some-
thing evident in AD patients compared to age matched
controls [78]. Further support stems from neuropatho-
logical and imaging studies, which have revealed that
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non-demented individuals with high blood pressure
exhibit an increase in AD related pathologies prior to
the onset of the disease, including increased NFT’s, A�
plaques, large areas of demyelination, tissue degen-
eration, cortical infarctions and hippocampal atrophy
[60]. These processes may even be linked, in that
hypertension-induced permeability of the blood brain
barrier may be a causal factor for the increased depo-
sition of A� [79].

2.5. Type II diabetes mellitus

Characterised by both hyperglycaemia and hyper-
insulinemia, type II Diabetes Mellitus (T2DM) is a
well-established risk factor for CVD [60] and more
recently has been linked with both accelerated cogni-
tive decline [80] and an increased risk of developing
AD [81–85] (Table 1). Patients with T2DM have been
found to have an almost doubled risk of dementia,
RR 1.9 (95% CI; 1.3–2.8), with those patients treated
with insulin having an even greater risk, RR 4.3 (95%
CI; 1.7–10.5) [83]. In older, dementia free individu-
als, T2DM slightly increased dementia risk, RR 1.3
(95% CI; 0.8–1.9) [84] with men having a higher
risk, RR 2.27 (95% CI;1.55–3.31) than women, RR
1.37 (95% CI: 0.94–2.01) [82]. Twin studies have also
corroborated this increased dementia risk associated
with T2DM, with an OR of 1.69 (95% CI; 1.16–2.36)
reported for developing AD and that the risk was
greater when T2DM occurred in mid life compared
to in late life [85].

Accumulating evidence suggests that the reduced
sensitivity of insulin receptors (IR’s) measurable in
T2DM may have multiple effects in the brain [86, 87].
In addition to its clear influence on glucose utili-
sation, IR’s are also involved in neuronal growth,
synaptic development and neurotransmitter release all
of which are disturbed in T2DM [81]. Additionally,
there is evidence to suggest that in combination with
ApoE4, hyperinsulinemia and hyperglycemia induced
by insulin resistance may accelerate senile plaque for-
mation [88]. Hyperglycaemia itself has been proposed
to be pro-apoptotic due to its potential to increase
advanced glycation end product production, many
of which have been shown to be neurotoxic [60].
Furthermore, T2DM increases the risk of ischemic
cerebrovascular disease and accelerates cerebrovascu-
lar inflammation, thus contributing to AD pathology
discussed above [89].

2.6. Hypercholesterolemia

Hypercholesterolemia has long been a risk fac-
tor for CVD, although more recent epidemiological
data has suggested that elevated total plasma choles-
terol may also be a risk factor for AD and other
dementias [90–92]. For example, moderately high
plasma cholesterol (200–239 mg/dl) has been asso-
ciated with an increased risk of AD: Hazard Ratio
(HR) 1.23 (95% CI; 0.97–1.55), whilst high choles-
terol (>240 mg/dl) increases the risk further to HR 1.57
(95% CI; 1.23–2.01) [91]. It has been postulated that
elevated cholesterol in midlife may represent an inde-
pendent risk factor for AD with an OR of 2.8 (CI,
1.2 to 6.7) [92]. Brain cholesterol is largely synthe-
sised in the CNS (as the BBB prevents it from entering
from the peripheral blood), where it plays a vital role
in maintaining neuronal function and plasticity [93].
However, if the BBB is compromised, due to vascular
damage, hypertension or inflammation, an accumula-
tion of cholesterol in the brain can occur [20], leading to
arteriosclerosis of the cerebral vasculature, followed by
an impairment of CBF and the deposition of A� [93].

2.7. Flavonoids and cognitive function

Many lifestyle factors, including diet have been
postulated to reduce the risk of neurodegenerative
diseases [42, 94–96] and to maintain normal cogni-
tive function during ageing [97–99]. There has been
much interest in a group of phytochemicals known
as flavonoids, found in a wide variety of fruit and
vegetables, as well as tea, red wine and cocoa, in
reducing the risk of dementia [100, 101], attenuate cog-
nitive decline [102], modify cardiovascular risk factors
[103–105] and improve cognitive function [106–108].
Whilst the mechanisms of their action against neuro-
pathophysiology are unknown, their actions against
dementia may partly involve interactions with the vas-
cular and immune systems. In the next two sections we
will outline the evidence for the actions of flavonoids
and flavonoid-rich foods against cognitive ageing and
the progression of dementia.

2.8. Flavonoids and dementia

Prospective cohort studies have highlighted positive
associations between the consumption of flavonoid-
rich foods and a reduction in the risk of developing
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dementia [100, 101, 109, 110]. In the Paquid study,
which followed a cohort of 1367 healthy older adults
(aged 65+) for 5 years, there was an age related RR
for dementia of 0.49 (95% CI: 0.26–0.92; p = 0.04) for
the two highest tertiles of flavonoid intake compared
to the lowest (after adjustment for gender, education,
weight and vitamin C intake) [100]. In addition, both
total flavonoids and flavonol intake has been associated
with lower population rates of dementia [101], whilst
frequent flavonoid-rich fruit and vegetable consump-
tion has been linked with a reduced risk of dementia
and AD [109], something which was observed to be
more pronounced in ApoE4 carriers. Indeed, the Haz-
ard Ratio for AD has been calculated to be 0.24 (95%
CI, 0.09–0.61) for individuals consuming fruit and veg-
etable juices at least 3 times per week and 0.84 (95%
CI, 0.31–2.29) for individuals consuming 1–2 times
per week, compared to those who consume less than
one per week [110]. However, associations between
flavonoid intake and reductions in dementia are not
entirely consistent, with the Rotterdam study [111]
and the Honolulu aging study [112] failing to show
any associations. The reasons for these inconsisten-
cies may relate to study design, measurement errors in
reported dietary intake data and residual confounding
bias by lifestyle factors. Further studies, including con-
trolled intervention studies in patient populations are
required to fully substantiate the efficacy of flavonoids
in preventing dementia and AD.

2.9. Flavonoids and neuro-cognitive performance

Flavonoid-rich food/beverage intake has also been
linked with a better cognitive test performance in
healthy, older people [113, 114] and with an improved
cognitive evolution over a 5 year period [102]. A
number of dietary intervention studies have added
to this data, with many showing flavonoid rich
foods effective in improving cognitive function [106,
115–118]. Despite these positive findings, the Loth-
ian Birth cohort failed to find an association between
flavonoid intake and a variety of cognitive test scores
after adjusting for confounding factors including child-
hood IQ [97]. Again, these inconsistencies are likely
to be related to aforementioned differences in dietary
intake methodology and the bias due to confounding
lifestyle factors, although the differences in cognitive
testing methods used in these studies make reliable
comparisons between them difficult.

Despite two null findings [115, 117], positive cog-
nitive outcomes have been reported following supple-
mentation with isoflavone-rich foods, predominantly
soy [116, 119–121] (Table 2). Multiple improve-
ments in cognitive performance have been observed
in response to soy intake, including processing speed,
executive function and mood [116], sustained attention
and episodic memory [119], improvements in verbal
memory [119], improvements in episodic memory and
executive function/working memory tasks [122] and
improvements in MMSE score and attention [121] fol-
lowing interventions of varying length. Such effects
have been suggested to be due to their ability to mimic
the actions of oestrogen in the brain [123, 124], or
to influence the synthesis of acetylcholine and neu-
rotrophic factors such as BDNF [125, 126]. However,
cognitive improvements have also been observed in
young adults [127], suggesting alternative mechanisms
independent of their oestrogen mimicking effects.

Intervention with the flavonoid-rich Ginkgo biloba
extract, EGb 761, has also been found to result in
improvements in general cognitive functioning in both
MCI and AD patients [128] and improvements in
episodic memory including free and delayed recall
and recognition memory in cognitively intact older
adults [129]. Furthermore, supplementation of healthy
older adults with flavonoid-rich pine bark extracts
also revealed memory improvements [130, 131]. Sup-
plementation for 5 weeks (960 mg/day) resulted in
improved response times in a spatial working mem-
ory tasks and a task of immediate recall [130] and
supplementation for 3 months resulted in improve-
ments in working memory [131]. With regards to more
commonly consumed foods/beverages, a 12 week
intervention with purple grape juice has been found
to induce significant improvements in verbal learn-
ing in older adults with early memory decline [118],
whilst blueberry intake improved paired, associate
learning and word list recall [106]. In addition to these
moderate term interventions, an acute intervention
with flavanol-rich cocoa has also been shown to
improve working memory (Serial Three’s task) and at
higher doses improve attention (reduction in response
times in the RVIP Task) [108].

In support of this human data, animal studies
have also indicated that pomegranate [132], blueberry
[133, 134], strawberry and spinach [135], Concorde
grape juice [136], blackberry [137], Vaccinium berries
[138], Ginkgo biloba [139, 140], green tea cate-
chins [141], pure (−)-epicatechin [142] and quercetin
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Table 2

Cognitive improvements induced by intervention with flavonoid-containing foods

Flavonoid and intervention Population Cognitive improvement Reference

60 mg/day; 24 weeks n = 78; 44–54 yrs.
Post menopausal
women

Faster processing speed Improved executive
function and mood

[116]

60 mg/day; 12 weeks n = 33; 50–65 yrs.
Post menopausal
women

Improved episodic memory Sustained
attention

[119]

60 mg/day; 6 weeks n = 50; 51–66 yrs. Improved episodic memory Improved
executive function/working memory

[122]

79 mg/day; 16 weeks n = 79; 48–65 yrs.
Post menopausal
women

No significant improvements [115]

60 mg/day; 6 months n = 28; 60+ yrs. No significant improvements [117]
110 mg/day; 6 months n = 53; 55–74 yrs.

Post menopausal
women

Improved verbal memory [120]

100 mg/day; 3 months n = 127; 50–65 yrs. Increase in general cognition (MMSE)
Improved attention

[121]

100 mg/day; 10 weeks n = 27; 22–30 yrs.
Healthy adults

Improved episodic memory Improved
executive function/working memory

[127]

Ginkgo biloba 120 mg/day
(Egb 761); 12 months

n = 236; 45–90 yrs.
AD patients

General improvements in ADAS-Cog score
and GERRI scores

[128]

Ginkgo biloba 180 mg/day
(Egb 761); 6 weeks

n = 262; 60+ yrs.
Healthy

Improved episodic memory [129]

Pine bark extract;
960 mg/day; 5 weeks

n = 42; 50–65 yrs.
Healthy males

Increase in processing speed Enhanced
visuospatial memory Improved spatial
working memory

[130]

Pine bark extract;
150 mg/day; 3 months

n = 101; 60–85 yrs.
Healthy

Improved working memory [131]

Blueberry juice; 6–9 ml/kg
BW; 12 weeks

n = 9; mean 76.2 yrs.
Healthy with self
reported memory
decline

Improved episodic memory [106]

Concorde grape juice;
6–9 ml/kg BW; 12 weeks

n = 12; mean 78.2 yrs.
Healthy with self
reported memory
decline

Improved episodic memory [118]

Cocoa flavanols 520 mg &
994 mg Acute 0–8 h

n = 30 mean age
21.9 y Healthy

Working memory (both doses) Attention and
processing speed (994 mg only)

[108]

and rutin [143] are all capable of reversing age-
related deficits in learning and memory. Mechanistic
investigations have suggested that improvements in
memory, normally assessed as increased spatial mem-
ory performance, may be linked to the potential of
flavonoids/metabolites to induce hippocampal ERK-
CREB-BDNF signalling [133–135, 144, 145] and
potentially increase angiogenesis and neuronal spine
density [142]. These observations are supported by
in vitro experiments, which indicate that epicatechin
at physiologically relevant concentrations stimulates
ERK1/2 and PI3 kinase dependent phosphorylation of
CREB [146]. Despite these direct actions of flavonoids

and their metabolites on the brain, it is also possible
that they may influence neuronal and glial function,
brain ageing and cognitive function from actions in the
periphery. As discussed above there are many vascular
and lipid factors well reported to influence the pro-
gression of AD and vascular dementia. Concurrently,
there is good evidence that intervention with flavonoid-
rich foods/beverages can impact on many, if not all, of
these factors. As such, the modification of such classi-
cal CVD risk factors, known also to be associated with
AD pathology, by flavonoids may play a role in delay-
ing, or even preventing, the progression of AD and
other dementias (Fig. 1). In the following sections we
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detail the evidence that flavonoid-rich foods by mod-
ulate the risk factors detailed earlier in the review and
discuss how these may impact upon the development
of dementia and cognitive impairments.

3. Modification of vascular and immune risk
factors by flavonoids and implications for
AD

As discussed above, although the precise cause of
AD is unclear, chronic inflammation [44] and vascular
pathology [60–62] have been implicated in the cause
and progression of the disease. In the next sections,
we present evidence that flavonoids and flavonoid-rich
foods are capable of attenuating chronic, low grade
inflammation and lowering risk factors associated with
vascular pathology (Fig. 2). As such, it is conceivable
that such interactions in vivo may in part be responsible
for their potential to delay cognitive impairment and/or
the onset and progression of AD.

3.1. Inflammatory mediators

A large cross sectional study (n = 8332) has indi-
cated that total flavonoids (P < 0.01), as well as indi-
vidual flavonols (P < 0.01), anthocyanidins (P < 0.05),
isoflavones (P < 0.01) and the pure flavonoids,
quercetin (P < 0.01), kaempferol (P < 0.01), malvidin
(P < 0.01), peonidin (P < 0.05), daidzein (P < 0.05),
and genistein (P < 0.01), are all inversely correlated
with serum CRP concentrations [147]. In support
of this, a number of dietary intervention studies
have provided evidence that dietary flavonoids are
capable of modulating TNF-� and CRP produc-
tion [147–153]. Notably, intervention with green
tea catechins (580 mg) in healthy male smokers
[148] and a flavonoid rich grape extract in pre and
postmenopausal woman [149] have highlighted the
potential to significantly lower plasma TNF-�. Fur-
thermore, interventions with flavanol rich red wine
[151], flavanol-rich cocoa [152] and a chokeberry
extract [153] all significantly reduce CRP levels in both
healthy and diseased individuals.

In animals, both pure luteolin [150] and flavonoid-
rich Ginkgo biloba [154] have been shown to inhibit
TNF-� production after LPS stimulation. Plausible
mechanisms exist for the anti-inflammatory effects of
flavonoids with many flavonoids and flavonoid-rich
foods having been shown to inhibit TNF-� production

in activated microglia [155–157] through the modula-
tion of both nuclear factor NF-k� signalling pathway
[154, 155] and the MAP kinase signalling pathway.
Such a modulation of peripheral immune homeostasis
by flavonoids may be important in light of stud-
ies suggesting that the activation of the peripheral
immune system elicits a discordant central (i.e. in
the brain) inflammatory response in aged but other-
wise healthy subjects compared with younger cohorts
[156]. As such, regulation of peripheral immune cells,
and their production of pro-inflammatory cytokines by
flavonoids may protect against neurodegeneration and
cognitive deficits through their ability to inhibit low-
grade, sustained peripheral immune system activation,
such as occurs during systemic infections, cardiovas-
cular disease, cancer or autoimmune diseases [162]
(Fig. 2). Indeed, data suggests that flavonoids may be
capable of influencing this immune-to-brain signal-
ing pathway, thus exerting anti-inflammatory actions
that are capable of mitigating microglial activation in
the brain and thus limiting neuronal injury and cog-
nitive losses with aging [165]. Such links between the
peripheral and central immune systems, as well as asso-
ciations between cognitive performance and immune
dysfunction, are certainly worthy of further investiga-
tion, particularly in future chronic dietary intervention
trials.

3.2. Vascular function

A large number of human intervention studies have
provided evidence that a variety of flavonoid-rich
foods promote vascular function. In particular, there is
strong evidence for the vascular effects of flavanol-rich
cocoa [104, 166, 167], black tea [168–171], green tea
[171–175] and Ginko Biloba [176]. Flavonoid-induced
improvements in endothelium-dependent vascular
function, as indicated by increases in flow mediated
dilation of the brachial artery and changes in pulse
wave amplitude have been recorded in healthy sub-
jects [104, 163, 164, 166–169], in older individuals
[176, 178], in smokers [173, 174, 179] and in hyper-
tensive individuals [166]. Such changes in vascular
function have been linked to alterations in circulat-
ing nitric oxide species, suggesting that these effects
are mediated by flavonoid/metabolite increases in
NO production [104, 163]. This is supported by in
vitro studies, which indicate that flavonoids increase
NO production in endothelial cells by the activation
of endothelial nitric oxide synthase (eNOS) through
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Fig. 2. The interactions of flavonoids and their metabolites with the immune system, the vascular system and the brain and how such interactions
influence brain ageing, cognition and dementia.

the phosphatidylinositol 3-kinase pathway [180, 181].
In addition to these peripheral vasodilator effects,
improvements in blood flow to the brain have been
observed after consumption of flavanol-rich cocoa
[182, 183]. Here, a weeks intervention with a high
flavanol cocoa drink resulted in an increase in the
mean cerebral blood flow (CBF), measured by tran-
scranial Doppler ultrasound in healthy older adults
[183]. In support of this, increased CBF velocity,
and an increase in blood oxygenation level-dependent
(BOLD) responses to a cognitive task measured by
functional Magnetic Resonance (fMRI), has been
observed after cocoa ingestion [182].

Collectively these data suggest that flavonoids
may be capable of regulating endothelial function
leading to acute changes in vascular function and
blood perfusion and longer-term changes in blood
pressure (Fig. 2). In doing so flavonoid-rich diets
appear to be capable of inducing changes that may
restore endothelial/vascular homeostasis to normal,
healthy conditions, thus reducing the progression of
atherosclerosis and/or lowering or maintaining blood

pressure at healthy levels. Maintenance of normoten-
sive conditions is critical, as hypertension is known
to cause damage to the microvasculature, an event,
which is left unchecked, is capable of inducing cog-
nitive impairments by disrupting oxygen and nutrient
delivery to specific brain areas. In addition, periph-
eral and cerebrovascular regulation by flavonoids may
also limit vascular dementia via a potential to inhibit
atherosclerosis and attenuate neuronal injury following
a stroke (ischaemia/reperfusion injury). Alternatively,
increased blood flow and enhanced cerebrovascular
function are potentially significant as collectively they
are thought to facilitate adult neurogenesis in the hip-
pocampus, a process which may lead to enhanced
cognition through the generation of new neuronal con-
nections in the brain [184].

3.3. Hypertension

The interest in the effects of flavonoids against
hypertension was principally reinvigorated with the
Kuna Indian study of the San Blas islands, Panama
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[185]. Although originally believed to be due to
genetic factors, the low rates of hypertension in island
dwelling Kuna (relative to those living on the main-
land) was found to be associated with a high dietary
intake of cocoa. Such observational data is supported
by the Zutphen elderly study, which highlighted an
association between cocoa intake and lower blood
pressure [186]. In addition to cocoa, anthocyanins,
apigenin and catechin [187], green tea [188] and black
tea [189] have all been associated with a reduced risk
of hypertension. Human intervention studies support
this observational data, indicating blood pressure
lowering effects of cocoa in hypertensive patients
[103, 166, 190, 191] and in healthy volunteers [192].
Indeed, the blood pressure lowering effects of cocoa
and dark chocolate are well reported in clinical studies
where systolic BP is reduced by 5.88 mmHg (−9.55,
−2.21; 5 studies), whilst diastolic BP reduces by
3.30 mmHg (−5.77, −0.83; 4 studies) [193]. A soy
protein isolate (but not other soy products) have
also been shown to reduce diastolic BP by a smaller
degree: 1.99 mmHg (−2.86, −1.12), although it is
unlikely that these effects were mediated entirely by
flavonoids [193]. With regards to pure flavonoids,
quercetin intake (730 mg/day for 28 days) has also
been shown to lower BP in untreated hypertensive
patients (systolic BP: −7 ± 2 mmHg; diastolic BP:
−5 ± 2 mmHg) [194], although the BP lowering
effects of tea appear to be more inconsistent [195].

Studies in animal models of hypertension, using a
variety of flavonoid-rich foods, support these positive
findings [196–198]. As mentioned above the mech-
anism of action is likely to be mediated be the actions
of flavonoids and/or their metabolites on the bioavail-
ability of NO and a reduction in the production
of vasoconstrictors such as endothelin-1 [200, 201].
As mentioned above, flavonoid-induced reductions in
blood pressure in hypertensive individuals may impact
on dementia and cognitive decline by preventing vas-
cular damage caused by excessive blood pressure in
the brain (Fig. 2). Indeed, hypertension is an important
predictor of acute ischaemic stroke and is associated
with cognitive impairments. However, the situation is
far from clear. Although lowering BP is beneficial in
most patients with vascular risk factors, the effects of
BP reduction on cognition remain unclear, in that low
BP and antihypertensive treatment may be associated
with cognitive impairment once cerebrovascular dis-
ease is established, raising questions surrounding the
desirability of lowering of BP beyond a certain level

in such patients. This is most likely as indiscriminate
BP reduction may compromise cerebral perfusion and
function in these patients, increasing the risk of cogni-
tive decline and cerebrovascular disease progression.
Given the predicted increase in the numbers of peo-
ple with cognitive impairments, it seems appropriate
that clinical trials designed to examine the relation-
ship between cognitive function and hypertension are
essential. Such trials, linking flavonoid intake to blood
pressure and to cognitive outcomes should provide
important information regarding the potential of such
foods to impact on stroke rates and cognitive impair-
ment long-term.

3.4. Type II diabetes mellitus

Studies with the Kuna also revealed that, in addi-
tion to the protective effect of cocoa in mediating
hypertension, a similar protective effect on the devel-
opment of T2DM may be plausible [202]. Indeed,
epidemiology has suggested a reduced risk of devel-
oping T2DM following intake of flavonoid rich foods,
including apple and tea [203]. Furthermore, dietary
intervention studies have highlighted the ability of
flavanol-rich chocolate to reduce insulin resistance, a
major metabolic factor in T2DM [192, 204], whilst
studies in animal models of T2DM show that the
flavanol myricetin can reduce plasma glucose and
improve insulin resistance [205, 206]. In vitro stud-
ies, suggest that these effects may occur through
effects on GLUT-4 and an ability to prevent phos-
phorylation/activation of insulin receptor substrate-1
(IRS-1) [207]. It also seems feasible that flavonoids
may positively influence insulin resistance due to
their anti-inflammatory effects, in that inflammation
is believed to play a distinct role in the development
of insulin resistance [208]. This may be mediated
by JNK- and ERK-induced phosphorylation of IRS-
1, which blocks tyrosine phosphorylation and reduces
the action of insulin [209]. Alternatively, TNF-� acti-
vated NF-kB signalling enhances the gene expression
of protein tyrosine phosphatise (PTB)-1B, a protein
which dephosphorylates tyrosine residues on IRS-1
and, therefore, blocks insulin signalling.

Unlike most other cells types, neurons and glia pri-
marily rely on glucose for energy production, and as
such, an acute interruption of this supply by systemic
hypoglycemia produces marked cognitive impairment,
whilst repeated severe hypoglycaemia similar to that
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experienced in diabetes cause both significant neu-
ronal death and cognitive impairment. Whilst the brain
may respond by up-regulating the efficiency of glu-
cose utilisation in response to hypoglycaemia, the
reduced sensitivity of insulin receptors, known to be
a feature in diabetes, may impact on brain function
through the inadequate regulation of blood glucose
[86, 87]. As such the ability of flavonoids and/or their
metabolites to improve insulin resistance, through their
effects on insulin receptor signalling may lead to bet-
ter utilisation of brain glucose and thus a reduction
in cognitive problems associated with hypoglycaemia.
Lastly, as diabetes is intimately linked to vascular dis-
ease, including ischemic cerebrovascular disease and
[89], the known impact of flavonoids on these condi-
tions (outlined above) may act to limit the secondary
vascular and immune damage associated with this
disease.

3.5. Hypercholesterolemia

Epidemiology has suggested that both total
flavonoid and pure quercetin intake may be associ-
ated with lower total and LDL cholesterol [210]. In
a Meta analysis of 92 trials investigating the effects of
flavonoids on CVD risk factors, only soy protein iso-
late and green tea were found to significantly lower
LDL [193]. However, in a smaller Meta analysis of
eight trials, cocoa intake was shown to lower blood
cholesterol dependent on the dose given to the subjects
and the health status of the population [211]. These
data are supported by animal studies where flavonoid
rich Hypericum perforatum L. has been shown to
reduce total and LDL cholesterol in high cholesterol
fed rabbits [212]. In the same animal model naringenin
and naringin have been shown to decrease hepatic
acyl-CoA: cholesterol acyltransferase (ACAT) activity
[213], an enzyme involved in the formation of insoluble
cholesterol esters and their subsequent accumulation
in macrophages and vascular tissue. Pure quercetin
intervention in mice has been shown to be protec-
tive against high cholesterol-induced neurotoxicity by
activating AMP-activated protein kinase resulting in
reduced fatty acid synthesis and thus brain choles-
terol accumulation [214]. These beneficial effects on
cholesterol biosynthesis have also been supported by
experiments with HepG2 cells that have shown that
naringenin, kaempferol and apigenin have the potential
to reduce cholesterol biosynthesis at physiologically
relevant quantities [215].

4. Summary and future insights

The large increases in life expectancy predicted in
the 50 years is expected to lead to a large increase in
the number of individuals suffering from both typical
and atypical age-related cognitive impairment. In the
absence of effective curative treatments for cognitive
impairment and dementia, there is an urgent need for
novel preventive approaches to delay the onset of, or
avert completely, cognitive deficits in old age. This has
led to an interest in the potential of diet and lifestyle
to affect such disorders. Historically, this research
derived from an understanding of the role oxidative
stress plays in the deterioration of specific brain struc-
tures and function [216, 217] and an interest in the
potential of in vitro classified ‘antioxidants’ to coun-
teract this. More recently, these ideas have developed
and evolved, predominantly through a better under-
standing of the absorption and metabolism of such
compounds in vivo [218], to include other potential
mechanisms of action (Fig. 2). These mechanistic lines
of evidence have included, amongst other things, their
direct interactions with neurons and glial cells post
blood-brain-barrier transfer [144, 145, 219, 220], a
‘scavenging’ of toxic species including oxidants and an
inhibition of neuroinflammation, through interactions
with activated microglia [15].

Such concepts are reasonably well developed and
probably explain, in part, the efficacy of flavonoid-rich
foods in the brain following consumption. However,
such mechanisms do not explain the totality of their
brain activity, in particular cognitive effects occurring
more acutely (2–8 h) after intake [107, 108]. A more
likely mechanism for this activity is the acute activation
of the peripheral vascular system by flavonoids and
their metabolites leading to subsequent changes in
blood perfusion, which also affects blood flow to,
and in, the brain. Increased blood flow to the brain
and perhaps even to specifics regions during activity,
would facilitate the delivery of oxygen and nutrients
thus enhancing signal processing and the encoding or
recall of information. It is conceivable that such daily
improvements in cerebrovascular blood flow over a
prolonged period may be capable of influencing cogni-
tive function through additional mechanisms, notably
changes in adult neurogenesis in the hippocampus
[221]. This is likely, as it has been observed that
changes in blood flow may lead to increased vascu-
larisation, which in turn may stabilise the presence of
new neurons [222]. Thus the enhancement of blood
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flow and vascular function by flavonoids in the periph-
ery has the potential to impact on both immediate and
medium to long-term cognitive function, independent
of the bioavailability of these phytochemicals to the
brain.

It is now relatively well established that chronic
inflammation is a contributory factor in both the onset
and progression of neurodegenerative diseases [42, 43,
49] and that flavonoids have the potential to reduce
circulating levels of pro-inflammatory mediators such
as TNF-� [148, 149] and CRP [151, 152]. Whilst
these changes are unlikely to be clinically significant
in the short term, small changes in immune factors
such as TNF-� and CRP may be capable of reducing
the neuronal destruction caused by neuroinflammation.
Flavonoid-induced reductions in circulating cytokine
levels (and other mediators of inflammation), espe-
cially in the context of disease has the potential to
preserve cognitive function by lessening the activation
of microglia and the damage they inflict on neurons
through release of neurotoxic mediators such as high
levels of nitric oxide. In the medium to long term, a
reduction in inflammatory processes in both the brain
and the next 50 years the periphery may act to promote
healthy aging and delay the onset and progression of
AD and other neurodegenerative diseases.

We propose that future intervention studies designed
to investigate the impact of flavonoids, or indeed,
other plant-based, polyphenol-rich foods on memory,
learning or neuro-cognitive performance should also
take account of the various metabolic and immune
factors mentioned above. Firstly, measurement of
how factors such as blood pressure, cytokines and
cholesterol change in response to dietary interventions
with flavonoid-rich foods and how these changing lev-
els correlate with cognitive function, will help to build
a casual relationship between intake of these foods
(and individual components) and effects on brain activ-
ity. Secondly, understanding how these risk factors for
dementia alter within the context of a human clini-
cal study aimed at assessing the influence of flavonoid
intake on cognition will provide a more complete
understanding of the mechanisms of action of these
pleiotropic compounds in vivo (Fig. 2). Such informa-
tion is likely to establish better evidence regarding the
potential of plant-based diets to counteract cognitive
impairment and in the longer term may provide poten-
tial candidate compounds for a new class of preventive
drugs effective against Alzheimer’s disease, dementia
and other neurodegenerative disorders.
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