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Impact of high fat diets, prebiotics
and probiotics on gut microbiota and
immune function, with relevance
to elderly populations

Yue Liu, Glenn R. Gibson and Gemma E. Walton∗

Department of Food and Nutritional Sciences, Whiteknights, University of Reading, Reading, UK

Abstract. According to WHO, the number of people over 60 years of age is set to rise to 2 billion by 2050. Dysbiosis of
microbial composition and impaired immune function have been observed in elderly persons compared to younger adults. As
a result, the aging population has a higher disease risk than other age groups. In addition, high fat intakes have been observed
to exert negative effects on microbial composition and immune function in murine studies. Elderly people have higher fat
intakes than recommended levels, and this may make them more vulnerable to disease risk. Therefore, the impact of high
fat consumption on elderly populations may be of relevance. Prebiotics and probiotics have been shown to have positive
effects on microbiota composition and immune function in the elderly. This review describes aged-related changes in gut
microbiome of elderly persons. It will also summarise studies concerning the impact of prebiotics, probiotics and high fat
diets on microbiota composition and immune function.
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1. General background on gut microbiology

1.1. Microbiota of the gastrointestinal tract

Over 1000 bacterial species exist within the human
gut [1] with more than 50 bacterial genera being
described [2]. The large intestine harbours the high-
est numbers of bacteria in the gastrointestinal tract, at
around 1011 to 1012 cells per gram. Decreased transit
time, readily available nutrients and a favourable pH
provide a suitable environment for microbial growth
in the large intestine [3].
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1.2. Substrate and products of microbial
fermentation

There are two main fermentation substrates from
the diet: non-digestible carbohydrates and undi-
gested proteins from the upper gastrointestinal
tract [4]. Carbohydrates that escape hydrolysis
and absorption in the upper colon are principal
substrates for bacterial growth. Saccharolytic fer-
mentation is mostly from species belong to the
genera Bacteroides, Ruminococcus, Bifidobacterium,
Lactobacillus, Eubacterium, and Clostridium [5].
The end-products of carbohydrate fermentation
include short chain fatty acids (SCFAs), mainly,
acetate, propionate and butyrate [6–8], lactate and
other metabolites such as CO2, H2, CH4 and ethanol
[9]. Amino acids, peptides and proteins, are also
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important substrates for bacterial growth. Proteolytic
fermentation is mostly from species belonging to the
genera Bacteroides and Clostridium [10]. The end-
products of protein fermentation include branched
chain fatty acids such as iso-butyrate, nitrogenous
and sulphur-containing compounds. Some are toxic
to host health, such as ammonia and amines [10].
Increased concentrations of ammonia have been sug-
gested to be responsible for hepatic coma syndrome, a
loss of consciousness, which may stem from impaired
liver function [11]. High levels of amines are also
related to increased risk of bowel diseases, such as
colorectal cancer [12]. In addition, high fat diets have
also been seen to have an impact on the microbiota
[13–15]. Although most dietary fat is digested in the
small intestine, there are still small amounts entering
the large intestine [16–18].

2. Definition and history of probiotics and
prebiotics

As the gut microbiota can be influenced by diet,
consumers may positively modulate their micro-
biome through consumption of specific functional
foods, namely probiotics and prebiotics. The first sci-
entific introduction of the probiotic concept was by
Metchnikoff at the beginning of the 1900 s. In his the-
sis called the ‘Prolongation of Life’, he hypothesised
that longevity in Bulgarian peasants was associated
with their large intakes of fermented milk contain-
ing health-promoting microorganisms (now known
as probiotics) [19]. In 2001 and 2002, the concept
of probiotics was proposed by a WHO/FAO working
party as ‘live microorganisms that, when adminis-
tered in adequate amounts, confer a health benefit on
the host [20, 21]’.

The concept of prebiotics was introduced when
Gibson and Roberfroid [22] observed that cer-
tain non-digestible oligosaccharides were selectively
fermented by bifidobacteria. A prebiotic is ‘a non-
digestible food ingredient that beneficially affects
the host by selectively stimulating the growth and/or
activity of one or a limited number of bacteria in
the colon that can improve host health [22]’. Sub-
sequently, due to improved knowledge of the gut
microbiota composition, a dietary prebiotic has been
defined as ‘a selectively fermented ingredient that
results in specific changes, in the composition and/or
activity of the gastrointestinal microbiota, thus con-
ferring benefit(s) upon host health [23]’.

3. What happens as we get older?

Currently, there is an increase in life expectancy
leading to an expanding aged population. According
to WHO, since 1980, the worldwide population of
adults aged over 60 has doubled and this number will
increase to 2 billion by 2050 [24]. Aging is defined
as ‘the regression of physiological function accompa-
nied by advancement of age [25]’. The aging process
leads to changes in the functional ability of many
organs and tissues, such as within the gastrointestinal
tract and immune system [26, 27]. Dietary compo-
nents, which are fermentation substrates for intestinal
microbiota, are able to inevitably affect the diver-
sity, numbers and activities of colonic bacteria. Their
metabolites may subsequently influence the immune
system [28]. Age-related changes can be associated
with increased disease risk.

3.1. Changes in gastrointestinal tract in elderly
population

Understanding changes within the gastrointestinal
tract of the elderly is important as manipulation of this
system may aid in maintenance of host heath. Older
people have an increased threshold for taste and smell
than younger adults [29]; consequently they often
find foods bland and tasteless [30]. Furthermore,
loss of teeth can lead to difficulties in masticating
[31] and swallowing [32]. Therefore, there are prob-
lems associated with the diet of older people [33].
In addition, intestinal motility is reduced, possibly
leading to faecal impaction and constipation [34–36].
Decreased faecal weight is indicative of physiolog-
ical gastrointestinal tract changes, associated with
reduced transit times and bacterial metabolites in
older persons [37–40]. A reduced transit time can also
lead to increases in detrimental proteolytic bacteria
metabolites, such as ammonia and amines, which can
be toxic to host gut health [9, 33].

3.2. Changes in immune function in elderly
populations

A compromised immune function, loosely defined
as immunosenescence has been observed in elderly
populations, where the aging process adversely
influences immune functionality [41]. Immunose-
nescence is characterised by a decreased immune
response to exogenous infectious agents and
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increased response to endogenous signals. Addition-
ally, increased levels of proinflammatory cytokines,
such as interleukin-1� (IL-1�), IL-6, and tumour
necrosis factor-� (TNF-�), decreased phagocyto-
sis and natural killer (NK) cell activity have been
observed in elderly populations [42, 43].

During aging, clearance of apoptotic cells is
impaired and not complete, resulting in an accu-
mulation of necrotic cells, with the production of
autoantigens such as nucleic acids [44]. Autoim-
mune and abnormal immune responses to the host
are observed during immunosenescence. In addition,
naive B cells, generated in the bone marrow, decrease
with increasing age [45], resulting in a reduced ability
to protect the host against infectious agents. Further-
more, elderly populations have been observed to have
intrinsic B cell dysfunction or declined CD4-T cell
helper function [46]. The T cell compartment has
been observed to be reduced due to a lowering in size
and cellularity of the thymus. Such alterations may
result in persistent viral infections and chronic dis-
ease by making cells more exposed to antigens [47].

3.3. Intestinal microbiota changes in an aging
population

Microbiota equilibrium is important in maintain-
ing host health and providing a natural defence
against invading pathogens. However, because of
age-related changes in the diet, immune function and
physiology of the gastrointestinal tract microbiota,
dysbiosis has been observed in the elderly [28]. For
example, culture based studies have shown decreased
Bacteroides in elderly compared to younger adults
[39, 48]. Also, by using fluorescence in situ hybridi-
sation (FISH) Mueller et al. [49] found this trend in
Italian elderly. Furthermore, increased Bacteroides
have been reported in Austrian elderly patients [50]
and Finnish elderly subjects [51] by using molecular
methods.

Bifidobacterium is an important genus thought to
be involved in health promotion [28]. A reduction
of bifidobacteria in terms of number and diversity
is one of the most notable changes in elderly popula-
tions and has been reported in studies using traditional
culture and modern molecular methods [39, 48, 49,
52–55]. These changes may result from declined
adhesion to the intestinal mucosa, although it is not
sure whether this is due to changes in bifidobacteria or
in the chemical component and structure of intestinal
mucosa [56, 57]. Overall, this may lead to a reduction

in gut function and immune response, and potentially
increased susceptibility to disease [33].

Clostridium cluster XIVa (Clostridium coccoides
group) and cluster IV (Clostridium leptum group) are
important bacterial groups within the gut microbiota.
A large proportion of bacteria producing butyrate, a
SCFA beneficial to gut health, belong to these two
clusters [58, 59]. A decrease of Clostridium clus-
ter XIVa in elderly persons was reported by Biagi
et al. [38]. Mueller et al. [49] and Makivuokko et al.
[51] found that such a change was dependent on the
nationality of the volunteer.

An increase in facultative anaerobes, such as strep-
tococci, enterococci and enterobacteria is a well
confirmed age-related occurrence [39, 49, 51, 52,
60, 61]. The enterobacteria group are considered to
be potentially detrimental; as such these are impli-
cated in pathogenesis when the host immune response
alters during the aging process.

3.4. Age-related changes and disease

As mentioned above, aging leads to gastrointesti-
nal tract changes in terms of the gut microbiota and
immune function. Immunosenescence is observed in
elderly persons with dysregulated immune response
[42, 43]. Elderly populations also have declined
colonic mucin production and elevated inflammatory
status, increasing the potential for bacteria to adhere
to gut epithelial cells [62]. Changes in the gut
microbiota may increase susceptibility to pathogenic
infections [62], which may lead to immune dysregu-
lation. The triadic relationship between an impaired
gastrointestinal tract, imbalanced gut microbiota
and chronic inflammation is significantly associated
with increased disease risk in elderly persons, such
as infections, inflammatory bowel disease (IBD)
and colorectal cancer (CRC) [62] (Fig. 1). IBD is a
chronic disorder characterised by inflammation and
ulceration of the gastrointestinal tract. Age-related
changes in microbiota, such as reduced gut micro-
biota diversity has been observed in IBD patients
[62–64]. In addition, decreased levels of Faecal-
ibacterium prausnitzii has been seen in Crohn’s
disease patients [65, 66]. An imbalance between
proinflammatory and immunoregulatory cytokines
found in the elderly also may contribute towards IBD
[67]. Elderly people have an increased risk of CRC;
one reason for this could be gut microbiota dysbiosis
and immune dysfunction. Decreased levels of short
chain fatty acids, especially butyrate, are found
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Fig. 1. Relationship between the impaired gastrointestinal tract, imbalanced gut microbiota, and chronic inflammation is significantly
associated with increased disease risk in elderly populations, such as infections, inflammatory bowel disease (IBD) and colorectal cancer
(CRC). Adapted from [154].

in western elderly populations and are considered
relevant to CRC risk. Butyrate shows anticarcino-
genic capacity by stimulating cell differentiation
and apoptosis as well as preventing cell proliferation
[4]. A decrease in butyrate levels is associated with
declined numbers of Faecalibacterium prausnitzii
and Clostridium cluster XIVa, a group containing
many known butyrate producers [68]. Chronic
inflammation related to immune dysfunction in the
elderly may also contribute to CRC risk [62].

4. Effects of prebiotics and probiotics in
elderly persons

4.1. Effects on microbiota composition

Prebiotics and probiotics can modulate colonic
microbiota composition in elderly people by increas-
ing bifidobacteria and may decrease other bacteria,
findings from such studies have been summarised in
Table 1. Well-tested prebiotics include short-chain
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fructooligosaccharides (scFOS), inulin and galac-
tooligosaccharides (GOS). One tested dose was
2.64 g B-GOS which acted as prebiotic, this was
taken for 10 weeks by healthy elderly [28]. Studies
of other prebiotics (scFOS and inulin) are often used
at higher doses than that of B-GOS [34, 69–71]. To
study specific bacterial number changes, enumeration
techniques, traditional culture methods, fluorescent
in situ hybridisation (FISH), real-time polymerase
chain reaction (PCR) may be applied. To study sta-
bility and diversity of microbiota changes, denaturing
gradient gel electrophoresis (DGGE) can be used. For
example, to investigate the impact of GOS on the fae-
cal microbiota, real-time PCR was used by Walton et
al. [71] and DGGE by Maukonen et al. [72]. Accord-
ing to their results, GOS exerted positive effects on
microbiota composition and host health in the elderly
by increasing numbers of bifidobacteria. However,
diversity was not assessed. Compared to other prebi-
otics, B-GOS may be more selective in stimulating
the growth of bifidobacteria, as the prebiotic is pro-
duced by enzymes (three � and one � galactosidase
enzyme) from a probiotic strain Bifidobacterium
bifidum NCIMB 41171 using lactose as a substrate
[73]. Similarly, composition of the microbiota in
elderly persons has been modulated through admin-
istration of selected probiotics (e.g. Bifidobacterium
and Lactobacillus spp.) (Table 1). Daily administra-
tion of L. casei has been observed to reduce numbers
of Enterobacteriaceae, some of which are pathogenic
[74]. Different L. casei strains have varying functions
and health benefits. Even within the same species,
strains may promote activities of different bacteria
[75–78] and lead to a range of health promoting prop-
erties [79]. Synbiotics, a mixture of prebiotics and
probiotics, also have shown modulatory effects on
colonic bacterial composition in the elderly (Table 1).
By using synbiotics, survival of probiotics in the
colon can be reinforced and modulatory effects for-
tified [80, 81]. Synbiotic, Bifidobacterium bifidum
BB-02, Bifidobacterium lactis BL-01 and inulin not
only stimulated specific probiotic numbers, but also
total bifidobacteria and lactobacilli [80]. This also
occurred with Lactobacillus acidophilus and lactitol
[81].

4.2. Effects on immune function

Prebiotics and probiotics may additionally help
regulate immune function of elderly persons, this
has been observed through altered immune mark-

ers such as NK cell and phagocytic activities, such
studies have been summarised in Table 2. Prebi-
otics, including B-GOS and scFOS, may regulate
immune responses in the elderly by down-regulating
proinflammatory cytokines, hence leading to positive
effects on the immune system. For example, studies
indicate that test prebiotics could reduce produc-
tion of proinflammatory cytokines IL-6 and TNF-�
in elderly people [28, 70, 82]. However, in one
study, oligofructose/inulin supplemented with vita-
mins and protein did not show immuno-regulatory
effects in elderly persons [83]. Probiotics may also
modulate the immune system of elderly people e.g.,
L. rhamnosus HN001 [84–87] and B. lactis HN019
[86, 88–90] are well studied strains. The targeted
immune markers of probiotics are similar to those
of prebiotics, indicating that both may share some
general mechanisms. A synbiotic containing lactitol
and L. acidophilus led to a significant increase in
prostaglandin E2 (PGE2) levels which are declined
in the elderly and essential in normal physiological
gut function including cytoprotection [81].

Prebiotics and probiotics exert direct or indirect
effects on modulation of gut microbiota and immune
function. In terms of probiotics, depending on prod-
ucts, a dosage range of 108 to 1012 CFU/day live
microorganisms is often consumed [91]. Prebiotics
(typical dose 4–8 g/d for FOS or GOS) stimulate the
growth and/or activity of endogenous microbiota or
probiotics when consumed. Gut microbiota can be
modulated by prebiotics and probiotics through the
latter’s ability to compete with pathogens for nutri-
ents and colonisation sites. For example, strains of
lactobacilli have been shown to compete for coloni-
sation sites with pathogens [92, 93]. In addition,
via saccharolytic fermentation, SCFAs can be pro-
duced, mainly acetate, butyrate and propionate [6, 7].
Prebiotic and probiotic treatment can increase sac-
charolytic fermentation and SCFA production, hence
the colonic pH becomes lowered. Reduced gut pH
encourages the survival and growth of commensal
bacteria preferring an acidic environment, thus may
reduce the activities of pathogens [91, 94]. The pro-
duction of butyrate is important as it serves as a
colonocyte energy source and regulates the growth
and differentiation of cells [7]. Butyrate can also
stimulate the production of mucins [95], which are
required for mucous layer maintenance and epithe-
lial protection [96], hence enhancing gut barrier
function.

Tight junction protein expression and localisa-
tion can also be improved following administration
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of prebiotics and probiotics [91, 97, 98], therefore
improving barrier function and preventing translo-
cation of pathogens. Antimicrobial substances, such
as bacteriocins, can be produced following prebiotic
and probiotic intake. These can inhibit the growth of
pathogenic bacteria in vitro [93, 99, 100] and may
result in reduced infections [91]. Modulation of gut
microbiota through prebiotics and probiotics may
alter bacterial immune-interactive profiles. These
interactions may lead to cytokine production with
improved immune status [101, 102]. Fermentation
products such as SCFAs can modify the activity
of immune cells and enterocytes. SCFAs influence
chemokine expression in intestinal epithelial cells
[103, 104]. SCFAs can modulate inflammation with
pro-inflammatory IL-12, IFN-� and TNF-� being
inhibited by butyrate [105–107] and immunoregula-
tory IL-10 being increased by acetate, butyrate and
propionate [107, 108].

5. Effects of high fat diet on elderly persons

Age-related changes in microbiota composition
and immune function in the elderly are considered
to be detrimental to health. Additionally, a high fat
diet has been shown to have an impact on the micro-
biota composition and immune function in animal
models [13–15, 109]. Elderly people have higher fat
intakes than recommended levels [110]. Therefore,
it is worth considering the impact of fat on elderly
microbiota and immune function.

5.1. Fat intake in elderly persons

According to Bates et al. [110], a typical elderly
person’s daily intake of total fat is 36.1% food energy
and daily intake of saturated fatty acids is 14.2%
food energy. The elderly daily intakes of total fat and
saturated fatty acid are higher than the UK Dietary
Reference Value (DRV), which are 35% and 11%
food energy respectively. According to several stud-
ies, fat can contribute and improve tenderness and
different flavours in food. This is relevant as the
elderly often have difficulties with their teeth, and
their threshold of taste and smell may become higher,
thus rendering food tasteless and bland [111]. Thus,
high fat foods become a feasible option for the elderly
[110]. High fat intake can have an impact on the
gut microbiota composition and immune function in
animal models. Elevated fat intake by elderly popula-

tions may make this group more vulnerable to disease
risk.

5.2. Effects of high fat diet on gut microbiota

Most dietary fat is digested by pancreatic lipases in
the small intestine; the products of this digestion are
absorbed into mucosal cells and mostly re-esterified
into triacylglycerol. However, there are still small
amounts of fat entering the large intestine as has been
shown by ileostomy studies [16–18]. In addition, the
fatty acid composition of ileostomy effluent resem-
bles that of the diet [18]. A high fat diet can alter
the composition of colonic microbiota. Importantly,
the most consistently observed impact of a high fat
diets are decreased numbers of the Bacteriodetes phy-
lum but increased Firmicutes (Table 3). This result, as
observed in murine studies, is relatively reproducible
and reliable.

The ultimate way to model the impact of a high-fat
diet on humans would be in a human population; how-
ever, due to ethical considerations this is not always
possible. The use of animal models offers a tempt-
ing alternative and enables tighter dietary controls to
be operated. Differences in the microbiota between
humans and animals can be reduced by the use of
gnotobiotic animals, whereby animals are inoculated
with a human microbiota. Gnotobiotic animals have
not always been used in such studies, however, in the
study of Respondek et al. [113], (Table 3) gnotobi-
otic germ-free mice were inoculated with fresh faecal
samples from human, and results showed that high fat
diets significantly reduced numbers of Lactobacillus-
Enteroccocus compared to control diet. This does also
match with the results of some non-gnotobiotic stud-
ies [118, 119]. However, caution must be taken when
comparing and interpreting this data from such mod-
els as differences in anatomy and physiologies to test
species, (e.g. mouse) are apparent. In the following
section murine high fat studies have often given rise
to similar results in older humans, showing, although
varied the data is useful.

As summarised from studies shown in Table 3,
within the Bacteriodetes phylum, the genus, Bac-
teroides has been shown to decrease in most murine
studies following a high fat diet [114–118]. How-
ever, within the phylum Firmicutes, specific bacterial
changes are more varied. For example, Eubacterium
rectale– Clostridium coccoides [114, 115], Rose-
buria spp. [117, 119] and Lactobacillus spp. [118,
119] decreased following high fat diets. Similarly, the
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phylum Proteobacteria decreased following a high
fat diet [15], however, within this phylum, Enter-
obacteriales increases were observed [120]. These
animal study findings have similarly been observed
in humans with decreases in Bacteroides [39, 48],
Clostridium coccoides [38] and increases in Enter-
obacteriales [39, 49, 51, 52, 60, 61] in elderly
populations.

Alterations observed in bifidobacterial numbers
following a high fat diet vary (Table 3). In a few
murine studies, numbers of bifidobacteria in cae-
cal samples have been seen to decrease following
a high fat diet [114, 115, 119]. In contrast, other
studies showed different results in terms of bifi-
dobacteria. For example, in the human study of Fava
et al. [112] and murine study of Respondek et al.
[113], high fat diets had no significant effect on bifi-
dobacterial numbers in faecal samples. In the murine
studies of Patrone et al. [118] and Neyrinck et al.
[117], bifidobacteria in caecal samples were shown
to be significantly higher following a high fat diet
compared to a control group. As the bifidobacterial
change following a high fat diet is inconclusive in
murine studies, it may not be observed in elderly
persons. The impact needs to be further investi-
gated in human trials. Although a high fat diet may
change specific bacterial numbers, total bacteria are
not generally affected (Table 3). A high fat diet
may result in an increased ratio of Firmicutes: Bac-
teriodetes, but could also impact on bacteria such
as Clostridium spp., Lactobacillus spp. and Bifi-
dobacterium spp. Such differences may be due to:
1, subject group/animal; 2, age groups; 3, type and
content of fat; 4, treatment protocol (duration and
sample size); 5, techniques used to enumerate bacte-
ria. Most studies have used mice as the experimental
model, because they are inexpensive and easily oper-
ated, furthermore they can receive much higher fat
content diets compared to humans. Also in human
studies, the overall diet is more difficult to con-
trol.

Many human studies have focused on comparisons
in faecal microbiota between obese and normal-
weight subjects. Most showed differences at the phy-
lum level, and some studies at the genus and species
level. Lower proportions of the Bacteriodetes phylum
and higher Firmicutes in obese subjects compared
to normal-weight subjects were first reported in the
study of Ley et al. [121]. A decrease in Bacteroidetes
and increase in Lactobacillus spp. within the Fir-
micutes phylum was also confirmed later [122].
An increased ratio of Firmicutes: Bacteriodetes

in obese subjects was also confirmed by Verdam
et al. [123]. Turnbaugh et al. [124] and Furet et al.
[125] however found no change in Firmicutes with a
decrease in Bacteroidetes (Bacteroides/Prevotella) in
obese subjects. Whereas, Collado et al. [126] found
increases in species level within both Firmicutes
phylum (Staphylococcus aureus) and Bacteroidetes
phylum (Bacteroides/Prevotella) in obese women.
Some other studies also reported no changes in
Bacteriodetes and Firmicutes between obese and
normal-weight subjects [127–129]. Changes in these
two phyla in obese subjects were not as consistent
as those seen in high-fat-diet treated animal mod-
els. In addition, some studies also reported decreases,
increases or no changes in Actinobacteria (the class
in which Bifidobacterium spp. belongs) in obese sub-
jects compared to healthy body mass index (BMI)
subjects [124, 126, 127, 129–132]. These human
studies indeed show that a high fat diet may impact
on the microbiota composition and there are dif-
ferences, although not well characterised, between
obese and normal-weight subjects. In the future, stud-
ies of larger sample sizes should be conducted by
applying standardised techniques and taking account
of different factors, design studies such as age, sex,
type and amounts of fat, and applied method used for
DNA extraction and microbial quantification.

5.3. Effects of the high fat diet on immune
function

A high fat diet can induce both intestinal and
systemic inflammation in experimental animal mod-
els, as evidenced by the monitoring of inflammatory
cytokines and mRNA expression, studies on this are
summarised in Table 4.

According to Table 4, a high fat diet may lead
to inflammation status and dysregulated immune
response in the host by upregulating proinflamma-
tory cytokines. Higher levels of TNF-�, IL-1 and IL-6
and their mRNA expression levels in plasma and tis-
sues following a high fat diet have been observed in
animal models [15, 109, 114, 115, 117, 133, 134].
Similar changes in these proinflammatory cytokines
have been observed in elderly populations, indicating
that a high fat intake may be one factor driving such
effects. Other immune system components are also
affected by a high fat diet, leading to intestinal and
systemic inflammation. For example, plasminogen
activator inhibitor type 1, F4/80, proinflammatory
cytokines MCP-1, and their mRNA levels have been
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reported to be higher following a high fat diet [114,
115, 117, 133].

Most studies shown in Table 4 have focused on
the impact of mixtures of fat and fatty acids, the spe-
cific types of fat may be relevant, as different types
may have varying impacts on immune status. For
example, unsalted butter rich in saturated fatty acids
may upregulate inflammatory status by influencing
proinflammatory cytokines [135]. However, a mater-
nal high fat diet rich in omega-3 polyunsaturated
fatty acids can down-regulate inflammation status
and modulate immune function in mice offspring,
by modulating the balance of proinflammatory and
anti-inflammatory cytokines [136].

Although excessive maternal n-3 fatty acid intake
has been shown to down-regulate inflammation sta-
tus in mice offspring [136], most studies applying
saturated and unsaturated fatty acid mixtures, have
suggested that high fat feeding may contribute to gut
and systemic inflammation, similarly immune func-
tion changes are also observed in elderly persons.
The impact of a high fat diet on some immune mark-
ers in animal models are similar to those driven by
the aging process in elderly. Therefore, there may be
an association between high fat intake and immune
function changes in elderly groups. In addition, these
studies were conducted in experimental animal mod-
els rather than human beings, therefore, the effects of
the high fat diet on immune function and the mech-
anisms still need to be confirmed further in human
subjects.

6. Mechanisms of high fat diet effects on
microbiota composition and immune
function

The mechanism of how a high fat diet affects
microbiota composition is not well known. When
studying the effects of a high fat diet it is also impor-
tant to control other factors, for example to make sure
diets contain the same energy. Normally, a high fat
diet is low in carbohydrate, while standard chow diet
or a low fat diet is significantly higher in carbohydrate
and fibre - the latter will also serve as substrate for
microbiota growth. Therefore, results may be influ-
enced by increased fat or decreased carbohydrate
content [137]. It has been suggested that the effect of
dietary fat on microbiota composition may be indi-
rectly related to bile acids. To help fat digestion,
bile salts emulsify lipids. With increasing fat intake,
hepatic production and release of bile acids from

the gallbladder to the small intestine is increased.
Some gut microbiota components can convert 7 �-
dehydroxylate primary bile acids into secondary bile
acids, which are potentially carcinogenic and related
to colon cancer and gastrointestinal diseases [138,
139]. These bacteria normally represent a small pro-
portion in the gut and consist of species belonging to
the genus Clostridium [140].

A high fat diet could lead to inflammation and
chronic disease via a few different pathways (Fig. 2).
It has been suggested that alterations in the microbiota
could lead to increased gut permeability following
a high fat diet by decreasing mRNA expression of
tight junction proteins including zona occludens-1
[13, 109]. Alternations in microbiota composition
could lead to elevated endotoxin production. With
impaired gut barrier function, this would lead to
increased lipopolysaccharide (LPS) translocation to
plasma, which in turn triggers inflammation and may
indicate metabolic disorder [14, 15, 114]. LPS, a com-
ponent of Gram-negative bacterial cell walls, may
bind to the CD14 toll-like receptor-4 (TLR-4) com-
plex at the surface of innate immune cells to trigger
an inflammatory process [141]. LPS absorption can
be increased following a high fat diet. Dietary fat is
transported from the gut as triglycerides into chy-
lomicrons after incorporation. Chylomicrons have a
high affinity with LPS; and therefore can carry and
move LPS from the gut lumen into the circulatory
system [142]. LPS can also be degraded by alkaline
phosphatase. Intestinal alkaline phosphatase (IAP), is
an intestinal brush border enzyme, mainly expressed
on the surface of enterocyte microvillus membranes
in the proximal small intestine [143]. The IAP is
directly secreted into the intestinal lumen and blood-
stream, with activity throughout the colon and within
faeces [144]. Dietary fat content and fatty acids can
affect this in different ways [14, 145, 146]. A decrease
in IAP activity may decrease LPS degradation and
increase circulating LPS levels [147].

In summary, due to changes in colonic microbiota,
gut integrity, immune markers and their interactions
following a high fat diet, disease risk may increase
leading to a detrimental impact on host health.

7. Can prebiotics and probiotics modulate
changes induced by a high fat diet?

As previously mentioned, changes in gut micro-
biota composition and immune markers driven by
high fat diets in animal models are similar to those
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Fig. 2. Relationship between a high fat diet, microbiota composition and metabolic endotoxaemia. LPS, lipopolysaccharide. Adapted from
[155].

driven by the aging process in elderly populations.
Prebiotics and probiotics have been shown to modu-
late the microbiota composition and improve immune
function in elderly populations. This presents the pos-
sibility that such interventions may counteract effects
induced by a high fat diet in the elderly. Therefore,
investigation is warranted to determine whether they
could improve changes caused by a high fat diet in
elderly populations.

7.1. Modulation of microbiota composition

As shown in Table 3, although the impact of a high
fat diet on bifidobacteria is controversial, prebiotic
supplementation can have positive effects. Prebiotics,
including FOS, inulin-type fructans, and GOS were
observed to increase bifidobacteria in several studies
[113, 115, 119]. Other carbohydrates, with prebi-
otic properties, such as arabinoxylans can also have
this potential [117, 119]. Changes in other bacte-
ria induced by a high fat diet were also modulated
and normalised by prebiotic supplementation [117,
119, 148]. In addition, prebiotics could regulate the
balance of dominating bacteria, hence modulating
microbiota equilibrium. In one study, the ratio of
Firmicutes: Bacteriodetes was significantly lower fol-
lowing supplementation of GOS compared to that of a
high-fat-diet treated group [148]. However, there was
no low fat group in this study, which was a limitation
of this experiment design.

7.2. Modulation in immune function

Prebiotics may modulate changes in immune
function induced by a high fat diet through
regulating immune markers including pro- and anti-
inflammatory cytokines (Table 4). In murine studies,
oligofructose, inulin and arabinoxylans have shown
this potential [115, 117, 149]. This provides the
possibility of using prebiotics to modulate immune
function in elderly people taking high fat diets.

Intestinal and systemic inflammation induced by
high fat diets could also be down-regulated by dif-
ferent probiotic strains (Table 4). The impact of
different probiotics has been tested and confirmed by
a few murine studies. Well-studied probiotics include
L. curvatus HY7601 and L. plantarum KY1032
[133], B. longum [134], L. rhamnosus GG and Propi-
onibacterium freudenreichii spp. shermanii JS [150]
(Table 4). These probiotics can downregulate both
intestinal and systemic pro-inflammatory changes
induced by a high-fat diet by reducing levels of some
proinflammatory cytokines (TNF- �, IL6, IL-1�).
Under high fat conditions, probiotics act to modu-
late immune markers in animal models, indicating the
possibility to impact on immune function in elderly
people consuming high fat diets. Synbiotics also have
this potential. In the study of Roller et al. [149], a
synbiotic combination of probiotics (Lactobacillus
rhamnosus GG and Bifidobacterium lactis Bb12) and
prebiotics (inulin enriched with oligofructose) could
reduce systemic inflammation.
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In summary, a high fat diet has an impact on
the microbiota composition and immune function
in animal models (Tables 3 and 4). Some changes
are similar to those induced by the aging process in
elderly populations. Prebiotics, probiotics and syn-
biotics may modulate changes in the microbiota
composition and immune function induced by a high
fat diet (Tables 3 and 4). Therefore, it is possible that
they could improve those changes induced by a high
fat diet in elderly persons. A few possible mecha-
nisms have been suggested, however they still need
to be confirmed.

8. Conclusion

With an increasing aged population, more atten-
tion to elderly health status should be made. The
aging process could lead to alterations in gut micro-
biota and dysregulation of immune function. These
changes are similar to those induced by high fat
intakes in animal models. Furthermore, elderly peo-
ple have higher fat intakes than recommended levels,
thus there may be an association between a high fat
intake and dysfunctional aging processes. High fat
diets may exasperate dysbiosis of gut microbiota and
lead to impaired immune function. Hence, the elderly
may be more vulnerable to disease risk, making the
impact of fat on the gut microbiota important. Prebi-
otics and probiotics have been shown to have positive
effects on microbiota composition, immune function
and repress metabolic disorder in elderly, but mainly
in animal models.
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