
Neurosymbolic Artificial Intelligence -1 (2024) 1–26 1
DOI 10.3233/NAI-240712
IOS Press
CORRECTED PROOF

Neuro-symbolic Predicate Invention:
Learning relational concepts from visual
scenes
Jingyuan Sha a,*, Hikaru Shindo a, Kristian Kersting a,b,c and Devendra Singh Dhami d

a Computer Science Department and Centre for Cognitive Science, Technische Universität Darmstadt, Germany
b Hessian Center for Artificial Intelligence (hessian.AI), Germany
c German Research Centre for Artificial Intelligence (DFKI), Germany
d Department of Mathematics and Computer Science, Eindhoven University of Technology, Netherlands

Editor: Alessandra Russo, Imperial College London, United Kingdom
Solicited reviews: Eleonora Giunchiglia, Imperial College London, UK; One anonymous reviewer

Received 11 October 2023

Revised 18 May 2024

Accepted 29 May 2024

Abstract. The predicates used for Inductive Logic Programming (ILP) systems are usually elusive and need to be hand-crafted
in advance, which limits the generalization of the system when learning new rules without sufficient background knowledge.
Predicate Invention (PI) for ILP is the problem of discovering new concepts that describe hidden relationships in the domain.
PI can mitigate the generalization problem for ILP by inferring new concepts, giving the system a better vocabulary to compose
logic rules. Although there are several PI approaches for symbolic ILP systems, PI for Neuro-Symbolic-ILP (NeSy-ILP) systems
that can handle 3D visual inputs to learn logical rules using differentiable reasoning is still unaddressed. To this end, we propose
a neuro-symbolic approach, NeSy-π , to invent predicates from visual scenes for NeSy-ILP systems based on clustering and
extension of relational concepts, where π denotes the abbrivation of Predicate Invention. NeSy-π processes visual scenes as
input using deep neural networks for the visual perception and invents new concepts that support the task of classifying complex
visual scenes. The invented concepts can be used by any NeSy-ILP system instead of hand-crafted background knowledge.
Our experiments show that the NeSy-π is capable of inventing high-level concepts and solving complex visual logic patterns
efficiently and accurately in the absence of explicit background knowledge. Moreover, the invented concepts are explainable and
interpretable, while also providing competitive results with state-of-the-art NeSy-ILP systems. (github: https://github.com/ml-
research/NeSy-PI)

Keywords: Predicate Invention, Inductive Logic Programming, Neuro-Symbolic Artificial Intelligence

1. Introduction

Inductive Logic Programming (ILP) learns generalized logic programs from data [3,24,26]. Unlike Deep Neural
Networks (DNNs), ILP gains vital benefits, including the capacity to discover explanatory rules from a small number

*Corresponding author. E-mail: jingyuan.sha@tu-darmstadt.de.

2949-8732 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

https://github.com/ml-research/NeSy-PI
https://github.com/ml-research/NeSy-PI
mailto:jingyuan.sha@tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/

2 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Fig. 1. NeSy-π discovers relational concepts from visual scenes. NeSy-π develops relational concepts for visual scenes through iterative
evaluation and invention of primitive predicates and visual scenes (on the left). The invented predicates are fed into a NeSy-ILP solver to learn
classification rules. The NeSy-ILP solver creates rule candidates utilizing given predicates and performs differentiable reasoning and learning
(on the right). Consequently, the classification rules can be effectively constructed with the invented predicates (best viewed in color).

of examples. Nevertheless, predicates for ILP systems are typically elusive and need to be hand-crafted, requiring
additional prior knowledge to compose solutions. This makes the wide-scale adaption of such systems difficult
and taxing. Predicate invention (PI) systems invent new predicates that map new concepts from expert-designed
primitive predicates. This extends the expression of the ILP language and consequently decreases reliance on human
experts [23]. A simple example is the concept of the blue sphere, which is the combination of two primitive concepts
blue and sphere. Consider the visual scenes illustrated in Fig. 1, where we see several objects in the scene, and
the task is to reason and learn about objects’ attributes and their relations. With PI systems, the non-primitive
concepts (e.g. blue sphere) are not explained in the background knowledge, but have to be learned from data.
For instance, given training data, a PI system can invent new predicate blue_sphere defined by the following
rule: blue_sphere(O): −color(O,blue),shape(O,sphere), where O is a variable, blue and sphere are
constants, and color and sphere are primitive predicates provided by experts. By using the invented predicate
blue_sphere, ILP systems can compose rules efficiently to solve problems.

Recently, a differentiable ILP framework has been proposed to integrate symbolic ILP with DNNs [10] solving
rule-learning tasks on symbolic or simple visual inputs, e.g. hand-written images. In a similar vein, neuro-symbolic
ILP (NeSy-ILP) systems 1 that can learn explanatory rules on complex visual scenes (e.g. CLEVR scenes [13]) have
shown their capability to reason and learn on abstract concepts and relations solving complex visual patterns [30].
NeSy-ILP systems outperform pure neural baselines on complex visual reasoning, since it involves inferring answers
by reasoning about objects’ attributes and their relations [21]. The main drawback of the current NeSy-ILP systems
is that they necessitate all predicates in advance, such as pre-trained neural predicates or manually constructed
background knowledge. In addition, obtaining background knowledge is expensive as it requires human experts
or the pre-training of neural modules with supplementary supervision. Consequently, this significantly restricts the

1There have been proposed different instances of NeSy-ILP systems to integrate DNNs with ILP. In this work, we particularly focus on
αILP [30], which performs structure learning on given positive and negative visual scenes, where each visual scene is converted to a set of
probabilistic atoms, and each weighted rule describes the scenes.

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 3

flexibility of the NeSy-ILP systems across various domains. Therefore, a question arises: How can a NeSy-ILP
system learn with less or no background knowledge in complex visual scenes?

To address this problem, we introduce Neuro-Symbolic Predicate Invention (NeSy-π), which can invent relational
concepts from visual scenes without additional supervision or hard coding. NeSy-π provides a rich vocabulary
for NeSy-ILP systems to produce effective solutions on 3D visual scenes. A briefly applying case is illustrated
in Fig. 1. Given positive and negative examples as visual scenes, NeSy-π performs PI finding useful relational
concepts, e.g. grouping several objects and capturing their spatial relations to compose complex patterns. Given
primitive predicates, NeSy-π performs the following 2 steps iteratively: (Step 1: Eval) evaluating available predi-
cates invented in the previous steps, and (Step 2: Invent) inventing new predicates based on the evaluation scores.
Additionally, we propose three novel metrics to evaluate invented predicates resulting in pruning of the redundant
candidates efficiently and gain high-quality vocabulary. The invented predicates can then be fed to NeSy-ILP sys-
tems to learn explanatory classification rules.

Overall, we make the following important contributions:

1. We propose NeSy-π , a novel neuro-symbolic predicate invention framework compatible with NeSy-ILP sys-
tems. It extends NeSy-ILP systems by providing the capability of learning vocabularies from 3D visual scenes.
NeSy-π enables them to learn using less background knowledge from human experts, mitigating the scaling
bottleneck of the current NeSy-ILP systems.

2. To evaluate NeSy-π , we propose three metrics. These metrics measure the percentage of examples covered or
eliminated by the predicates, enabling NeSy-π to efficiently discovers useful concepts.

3. To evaluate the ability of predicate invention using visual inputs, we propose 3D Kandinsky Patterns, extending
Kandinsky Patterns [25] to the 3D world. The Kandinsky Patterns environment can generate positive and
negative visual scenes using different abstract patterns. However, it has been limited to simple 2D images,
and predicate invention has not been addressed. Thus we propose the first environment for the evaluation of
neuro-symbolic predicate invention systems that can process complex visual scenes, filling the gap between
the abstract synthetic tasks and realistic 3D environments.

4. We empirically show that NeSy-π solves challenging visual reasoning tasks outperforming the conventional
NeSy-ILP systems without predicate invention. In our experiments, we successfully applied NeSy-π to 3D
Kandinsky Patterns to invent new predicates for complex scenes, achieving higher performances than base-
lines. Moreover, NeSy-π produces highly-interpretable rules using invented predicates, which cannot be
learned by the previous systems.

We have made our code publicly available at https://github.com/ml-research/NeSy-PI. We proceed as follows:
we present the required background knowledge before introducing our NeSy-π architecture. We then illustrate the
effectiveness of our approach using extensive experiments. Finally, we discuss the related work before concluding.

2. First-order logic and Inductive Logic Programming

Before introducing NeSy-π , we revisit the basic concepts of first-order logic and Inductive Logic Programming
First-Order Logic (FOL). A Language L is a tuple (P,A,F ,V), where P is a set of predicates, A is a set of
constants, F is a set of function symbols (functors), and V is a set of variables. A term is a constant, a variable, or a
term consisting of a functor. A ground term is a term with no variables. We denote an n-ary predicate p by p/n. An
atom is a formula p(t1, . . . ,tn), where p is an n-ary predicate symbol and t1, . . . ,tn are terms. A ground atom
or simply a fact is an atom with no variables. A literal is an atom or its negation. A positive literal is simply an
atom. A negative literal is the negation of an atom. A clause is a finite disjunction (∨) of literals. A ground clause is
a clause with no variables. A definite clause is a clause with exactly one positive literal. If A,B1, . . . , Bn are atoms,
then A ∨ ¬B1 ∨ · · · ∨ ¬Bn is a definite clause. We write definite clauses in the form of A :- B1, . . . , Bn. The atom
A is called the head, and the set of negative atoms {B1, . . . , Bn} is called the body. For simplicity, we refer to the
definite clauses as clauses in this paper.

Inductive Logic Programming (ILP). An ILP problem Q is a tuple (D+,D−,B,L), where D+ is a set of
positive examples, D− is a set of negative examples, B is background knowledge, and L is a language. We assume

https://github.com/ml-research/NeSy-PI

4 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

that the examples and background knowledge are ground atoms. The solution of an ILP problem is a set of definite
clauses H ⊆ L that satisfies the following conditions: (1) ∀A ∈ D+, H ∪ B |= A and (2) ∀A ∈ D−, H ∪ B �|= A.
Typically, a search algorithm starts with general clauses and incrementally weakens them through the process known
as refinement. Refinement is a crucial tool for ILP when the current state clauses are overly general and result in too
many negative examples being included.

NeSy Inductive Logic Programming. We address the problem of Neuro-Symbolic Inductive Logic Program-
ming (NeSy-ILP) presented in 3D visual scenes, which we refer to as the “Visual ILP Problem”. The classification
pattern is based on high-level concepts encompassing attributes and object relations. To solve visual ILP problems,
differentiable ILP frameworks have been proposed such as ∂ILP [10] and αILP [30]. They employ a differentiable
implementation of forward reasoning in first-order logic(FOL) to enable gradient-based learning of the classifica-
tion rules. The optimization problem they solve to this end is minW loss(Q, C,W), whereby Q is an ILP problem,
C represents the set of clause candidates, W denote the set of clause weights, and loss is a loss function that returns
a penalty when training constraints are breached.

3. Neuro-symbolic predicate invention: NeSy-π

In this section, we present the predicate invention system NeSy-π in the following steps: Section 3.1 is an
overview of the system. Section 3.2 explains the clause extension, where the extended clauses are one of the in-
puts of the NeSy-π system. Section 3.3 explains the clause evaluation, which employs two metric proposed in
this paper. The scores assigned to the clauses form the other input of the NeSy-π system. Section 3.4 presents the
predicate invention and its evaluation. Section 3.5 presents the grouping module, a data prepossessing module that
combines related objects into groups to simplify the problem. Section 3.6 provides the pseudo code for the system.

3.1. Architecture overview

The NeSy-π is a neuro-symbolic system to invent high-level relational concepts as predicates. The invented
predicates are further be used by NeSy-ILP system for target clause searching. The workflow of solving visual ILP
problem using the NeSy-π system is illustrated in Fig. 2. The process is divided into two major components: the
training and the evaluation. Training utilizes the training examples D = {D+,D−} to search for target clauses C,
which satisfies two conditions: 1) ∀A ∈ D+, C ∪ B |= A and 2) ∀A ∈ D−, C ∪ B �|= A, as the target clauses and
selected background knowledge should entail only positive images and no negative images. During evaluation, test
examples will be classified as positive or negative based on the target clauses C returned during the training.

As a prepossessing step, we prepared a dataset for training a perception module, such as Mask R-CNN [11]. The
dataset for perception module is similar as training examples in D, which includes scenes with same object types
but positioned randomly. Each scene is annotated with object labels and bounding boxes.

Once the perception module is trained, the four modules, perception module, grouping module, NeSy-ILP, and
NeSy-π perform an end-to-end training, which takes training examples d ∈ D as input and reasons target clauses
C. Firstly, the perception module takes the RGB image of training example d to detect the labels and the bounding
boxes of the objects, then the 3D positions of each object can then be calculated by utilizing depth map of each
example d , the camera matrix K along with the labels and bounding boxes from the output of perception module.
After acquiring the object positions, for providing simple and high-level descriptions of the scenes, the Grouping
Module (GM) combines objects into groups based on their positions and encodes these scenes as group tensors,
which capture the geometric information of the group, such as dimension scales and positions. These group tensors
are then utilized as input for the NeSy-ILP system, which iteratively generates and evaluates clauses on the group
tensors to identify the target clauses C. In each iteration of clause searching, NeSy-ILP outputs the searched clauses
and their respective evaluation scores to NeSy-π . NeSy-π then invents new predicates by taking disjunctions of the
promising clauses and returns them to NeSy-ILP. By incorporating these new invented predicates, NeSy-ILP can
use them in the subsequent iterations to search for new clauses with greater precision in describing the rules. The
final output of the training session is the set of target clauses produced by the NeSy-ILP system.

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 5

Fig. 2. Workflow of visual scene reasoning (train, left) during the training phase, NeSy-π learns a set of rules C to describe common patterns
within the given RGB-D images. This process involves using four models: a pretrained perception module (e.g. Mask R-CNN [11]) for object
detection; a grouping module (GM) that fits objects to lines base on their 3D positions; NeSy-ILP as a rule learner; NeSy-π as a concept inventor.
GM groups objects together (e.g. a group of objects aligned on a line) to form complex spatial relations (e.g. a check mark). (Evaluate, right)
in the evaluation phase, given a test RGB-D image, the system predicts whether the image follows the set of rules C (positive) or not (negative).
The GM and perception module are used for image processing, while a differentiable forward reasoner is employed for reasoning purposes.

During evaluation, the system classifies the test scenes as either positive or negative. Positive scenes satisfy the
target clauses while negative scenes do not. The perception and grouping module first interpret the data into group
tensors, just as during training. Then, a differentiable forward reasoner is used to classify the group tensors as
positive or negative based on the target clauses C.

3.2. Clause extension

We take the top-down approach for ILP, where new clauses are generated by specifying general rules [26]. We
extend clauses step by step by evaluating on visual scenes to prune redundant candidates. NeSy-π begins with the
most general clause for the search, e.g. the initial clause C0 is defined as follows:

(C_0) target(X):-in(O1,X).

where the atom in(O1,X) consists of the 2-arity predicate in/2 and variables O1,X, which represents the con-
fidence of the object O1 in the image X detected by the perception module. The atom target(X) provides the
probability that the image X is positive based on the atoms in the clause body. C0 is the most general clause that
assesses the object’s existence in the image without imposing any property constraints, such as color or shape.

The clauses set is extended incrementally, starting with the extension of C0 in the first step. Then a set of clauses
C = {C1, . . . Cn} is generated where each new clause extends the previous clause by an atom from the language
L .2 For instance, by adding atoms color(O1,red) and color(O1,blue) to the body of C0, the clause set
C = {C1, C2} is generated as follows,

(C_1) target(X):-in(O1,X),color(O1,red).
(C_2) target(X):-in(O1,X),color(O1,blue).

2This corresponds to a specific downward refinement operator [26], which generates new specified clauses by modifying given clause.

6 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

The clauses in C are then evaluated, as introduced in Section 3.3 and only the top-scored clauses are kept for the
next iteration.

3.3. Clause evaluation

We now describe the clause evaluation strategy in NeSy-π and three novel metrics to evaluate clauses efficiently
for predicate invention. Given the generated clauses (described in Section 3.2), NeSy-π scores each of them using
positive and negative examples D = {D+,D−}. Note that each example (d+

i ∈ D+ or d−
i ∈ D−) is given as a visual

scene. For clear presentation, we prepare the following notation:

– rC is a differentiable forward reasoning function using clause C in αILP [30]. We use it to evaluate each
clause. It takes visual scene as its input, converts them to probabilistic atoms, and performs differentiable
forward reasoning using clause C. We consider the output as the score for clause C. The domain of rC is [0, 1].

– rC(d+
i), d+

i ∈ D+ represents the confidence of clause C being true for positive example d+
i

– rC(d−
i), d−

i ∈ D− represents the confidence of clause C being true for negative example d−
i

– |D+| and |D−| indicate the number of positive and negative examples in the dataset, respectively.

We introduce metric P-Measure, which is used to evaluate the performance of the clause on positive examples.
The target clause has to be valid in all positive examples, thus the more positive examples that a clause satisfies, the
better the clause is. On the contrary, the less positive examples that a clause satisfies, the worse it is.

P-measure The P-Measure assesses the validation of clause on positive examples, with μP
C representing the P-

Measure of clause C. This value indicates the cumulative confidence of positive examples that satisfy clause C with
its value in the range [0, 1]. Since all positive examples should satisfy the target clauses, higher P-Measure of C

indicates better performance.

μP
C

(
D+) = 1

|D+|
∑

d∈D+
rC(d) (1)

If all the positive examples fulfill the clause C, then the P-Measure of C equals 1. This indicates that C is a necessary
condition for the positive examples, i.e. the clause C follows the implicational relationship

If μP
C(d) = 1, then d ∈ D+ ⇒ rC(d) = 1 (2)

Similarly, we introduce metric N-Measure, which is used to evaluate the performance of the clause on negative
examples. The target clause has to be invalid in all negative examples, thus the less negative examples that a clause
does not satisfy, the better the clause is. On the contrary, the more negative examples that a clause satisfy, the worse
the clause is.

N-measure The N-Measure evaluates the validation of clauses on negative examples. Given a clause C, its N-
Measure is denoted as μN

C , measuring the inverse of the cumulative confidence of negative examples that do not
satisfy C. The value of μN

C is in the range [0, 1]. As the target clauses are not intended to be satisfied by all of
the negative examples, a higher N-Measure of C indicates better performance. The N-Measure of C is defined as
follows:

μN
C

(
D−) = 1

|D−|
∑

d∈D−

(
1 − rC(d)

)
(3)

If none of the negative examples satisfy C, the N-Measure of C is equal to 1. Assuming the examples are either
positive or negative, if there is an example e that satisfies C, then d is a positive examples. The clause C is called a
sufficient condition for the positive examples, which follows the implicational relationship

If μN
C (d) = 1, then rC(d) = 1 ⇒ d ∈ D+ (4)

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 7

If all the positive examples are satisfied by C, and no negative examples satisfy C, then C meets the definition of
the target clause. In this scenario, both the P-Measure and N-Measure of C are 1, and C is a sufficient and necessary
condition of the positive examples. This follows the implicational relationship:

If μP
C(d) = 1 and μN

C (d) = 1, then rC(d) = 1 ⇔ d ∈ D+ (5)

However, the majority of the clauses yield P and N measure scores between 0 and 1, i.e. they satisfy neither
necessary nor sufficient condition. Since the sufficient and necessary condition is satisfied by μP

C(D+) = 1 and
μN

C (D−) = 1, the higher the clause resulting in both P-Measure and N-Measure scores, the closer it is to the target
clause. NeSy-π utilizes a best-first approach that take the both P-Measure and N-Measure into account, resulting in
the following PN-Measure.

PN-measure The PN-Measure evaluates a clause meeting the definition of the target clause. Given a clause C,
its PN-Measure is denoted as μPN

C , measuring the product of its P-Measure and N-Measure, which is defined as
follows:

μPN
C = μP

C · μN
C (6)

To assess a set of clauses C, NeSy-π computes μPN
C for each clause C ∈ C on the dataset, and selects the k top

scoring clauses for subsequent iterations of extension or predicate invention.

3.4. Predicate invention

NeSy-π invents new predicates by using the extended clauses C and their evaluations, which were described in
Section 3.2 and Sec, 3.3, respectively. New predicates are defined by taking disjunctions of the extended clauses.
We assume that all clauses in C have the same predicate for their head atom.

Definition 1 (Invented Predicate). Given a set of clauses C, s.t. 2 � |C|, any subset Cp ⊆ C, s.t. 2 � |Cp| � |C|
defines a new predicate p. The clause set Cp is called the explanation clause set of predicate p. The meaning of p

is interpreted as the disjunction of clauses in Cp.

For example, assume C = {C1, C2, C3} (|C| = 3) as follows:

C1: target(X) :- in(O1,X),in(O2,X),color(O1,blue),color(O2,blue).
C2: target(X) :- in(O1,X),in(O2,X),color(O1,red),color(O2,red).
C3: target(X) :- in(O1,X),in(O2,X),color(O1,green),color(O2,green).

A predicate inv_pred_1 can be invented by disjunctively combining the first two clauses. That is, let Cp =
{C1, C2} denote the explanation clause set of inv_pred_1, then inv_pred_1 is defined as follows

inv_pred_1(X):- in(O1,X),in(O2,X),color(O1,blue),color(O2,blue).
inv_pred_1(X):- in(O1,X),in(O2,X),color(O1,red),color(O2,red).

The invented predicate inv_pred_1 interprets the concept that there exists a pair of objects in the image with the
same color (either blue or red). Each clause within Cp is referred to as a variation. By taking the disjunction of the
clauses, the invented predicate can be assigned true if any one of its variations is true. Similarly, another predicate
inv_pred_2 can be invented by taking the disjunction of the last two clauses, inv_pred_3 can be invented by
taking the disjunction of all three clauses, and so on. In total, there are 2|C| − 1 − |C| predicates that can be invented
from a clause set C that includes at least two clauses in its explanation clause set. Due to the exponential growth
rate, the invention of predicates may be restricted by a threshold, denoted as a. This threshold is defined such that
2 � a � |C|, where |Cp| � a. As a result, subsets that surpass the cardinality of a are not utilized for predicate
invention. Applying the threshold a, enforces that the possible variations of concepts are within the limit of a.

8 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

The key of predicate invention in NeSy-π is to identify the explanation clause set, which is a subset of the clause
set C searched by the NeSy-ILP system. Due to the absence of guidance or background knowledge, the model lacks
the ability to choose the optimal explanation clause set. Nonetheless, it is feasible to invent the clauses first and then
evaluate them on a dataset. First, NeSy-π generates all possible clause combinations from the clause set C, then
evaluates each clause based on the dataset and finally selects the top-k highest-scoring new predicates.

Now we move on evaluating the newly invented predicates. Invented predicates can be evaluated using the P-
Measure and N-Measure metrics as introduced in Section 3.3. Let p be an invented predicate, Cp be the correspond-
ing explanation clause set, and V _i its i-th variation.

P-measure on invented predicate The P-Measure of invented predicate candidate p is utilized to evaluate the
validation of an invented predicate on positive examples. The validity of predicate p increases as more positive
examples are verified to hold true on it. The invented predicate is defined as the disjunction of the corresponding
explanation clause set Cp. The maximum score of the clauses in Cp determines the evaluation score of p, which is
calculated as follows

μP
Cp

(
D+) = 1

|D+|
∑

d∈D+
max
Vi∈Cp

(
rVi

(d)
)

(7)

N-measure on invented predicate The N-Measure is utilized to access the validation of an invented predicate on
negative examples. The fewer the number of the negative examples in which the invented predicate holds true,
the stronger its performance. The invented predicate is defined by the disjunction of the associated explanation
clause set Cp, and its evaluation score is determined by the highest-scoring clause. The score of predicate p on
example d is calculated as maxVi∈Cp

rVi
(d). To indicate that the higher the value, the better, the result is computed

as 1 − maxVi∈Cp
rVi

(d). It is also equivalent to minVi∈Cp
(1 − rVi

(d)). The N-Measure for an invented predicate is
determined in the following

μN
Cp

(
D−) = 1

|D−|
∑

d∈D−
min

Vi∈Cp

(
1 − rVi

(d)
)

(8)

PN-measure on invented predicate The PN-Measure assesses the performance of the predicate on both positive
and negative examples in a quantified, objective way. This measure is derived by calculating the product of the
P-Measure and the N-Measure. The formula for the PN-Measure can be written as follows:

μPN
Cp

= μP
Cp

· μN
Cp

(9)

In NeSy-ILP systems, target clauses are extended by searching for atoms within the given language. This search
relies on the assumption that all the necessary atoms are present in the given language. In contrast, NeSy-π does not
require such an assumption. If necessary atoms are absent from the language, the system can invent new predicates
and generate new atoms.

For instance, let us consider scenes with only two colors red and blue and two shapes sphere and cube. The pattern
three_same represents the concept that three objects have same color and shape simultaneously. A possible
solution for NeSy-ILP system necessitates the 3-arity predicate two_same/2, which is presented as the background
knowledge. The target clause can be then be obtained by extending two atoms from the initial clause

target(X):-in(O1,X),in(O2,X),in(O3,X),two_same(O1,O2),two_same(O2,O3).

The predicate two_same is explained by five clauses, as shown in Listing 1, which are presented as background
knowledge. In NeSy-π , such kind of background knowledge is not provided, but learned by the system. An example
of rules that NeSy-π might learn is illustrated in Listing 2. By updating the invented predicates for the language,
NeSy-π can search for the target clause as follows:

target(X):-in(O1,X),in(O2,X),in(O3,X),inv_pred2(O1,O2),inv_pred2(O2,O3).

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 9

two_same(A,B):-same_color_pair(A,B),same_shape_pair(A,B),in(A,X),in(B,X).
same_shape_pair(A,B):-shape(A,sphere),shape(B,sphere),in(A,X),in(B,X).
same_shape_pair(A,B):-shape(A,cube),shape(B,cube),in(A,X),in(B,X).
same_color_pair(A,B):-color(A,red),color(B,red),in(A,X),in(B,X).
same_color_pair(A,B):-color(A,blue),color(B,blue),in(A,X),in(B,X).

Listing 1. Background knowledge of concept two_same

inv_pred1(O1,O2):-color(O1,blue),color(O2,blue),in(O1,X),in(O2,X).
inv_pred1(O1,O2):-color(O1,red),color(O2,red),in(O1,X),in(O2,X).
inv_pred2(O1,O2):-in(O1,X),in(O2,X),inv_pred1(O1,O2),shape(O1,sphere),shape(O2,sphere)
inv_pred2(O1,O2):-in(O1,X),in(O2,X),inv_pred1(O1,O2),shape(O1,cube),shape(O2,cube).

Listing 2. Predicates invented by NeSy-π that relate to concept two_same

The predicate target(X) corresponds to the concept three_same. It takes five clauses to explain, which are
learned instead of given. The predicates inv_pred1/2 and inv_pred2/2 are invented predicates. The other
three predicates shape/2,color/2, and in/2 are given beforehand. Predicate invention enhances the system’s
ability to learn new concepts with less reliance on background knowledge.

3.5. Object grouping

In a scene with numerous objects, it is often unnecessary to consider every relationship. For instance, if there
are three objects on a table, it is reasonable to query whether any two of them have the same color or same shape.
However, if there are 20 objects on the table, it is not necessary to investigate whether any two of them share a
property. It would be more expedient to initially consider conditions such as whether more than half or all of the
objects share a property. In order to gain a comprehensive understanding of an image, it is advisable to begin by
accessing it at a global level, rather than delving into its particulars right away.

For complex patterns that comprise a multitude of objects, NeSy-π utilizes an object Grouping Module (GM) that
can recognise line patterns in a more efficient and organised manner. The grouping module employs the position
characteristics of each object to group them accordingly. It is essential to view multiple objects as a single entity in
complex scenes since the number of object relationships increases at a factorial rate, specifically O(n!), with n being
the number of objects in a scene. Examining relationships between different groups instead of individual objects can
significantly decrease the number of relations under consideration. However, not all patterns can be fully described
by line groups; rather, isolated objects must be treated individually.

Five steps are required to convert an image example to group tensors G. The main procedures of the grouping
module are illustrated in Fig. 3. Additionally, the algorithm provides certain thresholds. ε denotes the distance
threshold between an object and a group, whereas NG is the minimum number of objects required in each group.

Object perception In the first step, the grouping module detects the object labels OLabel ∈ Z
N×1 and the bounding

boxes OBox ∈ R
N×4 in the RGB image IRGB ∈ R

W×H×3 based on an object detector, such as Mask-RCNN
[11], where N is the number of objects detected, W and H are the width and height of the image. Based on the
camera matrix K , the 3D coordinates of all the pixels I3D ∈ R

W×H×3 relative to the camera coordinate system
can be calculated from the depth map IDepth ∈ R

W×H×1. Since in RGB-D images, the pixels on IRGB and IDepth

correspond to each other, each bounding box in OBox corresponds to the same region in I3D based on the pixel
coordinate system. This allows the object surface positions to be recorded relative to the camera coordinate system.
For each object there is a set of surface points. The object position can be approximated by the median number of
these points. For all the objects, their positions are given by O3D ∈ R

N×3. Given O3D and OLabel, objects can be
encoded into tensors E ∈ R

N×M , where M is the number of properties for each object. In NeSy-π , the properties

10 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Fig. 3. Grouping module. The grouping module takes an image as input and produces the group tensors G in 5 stages. (1) the perception module
detects objects and encodes them as tensors E ; (2) objects are chosen based on their properties to generate small groups. (3) extend each small
group with as many objects as possible. (4) evaluate and select the highest-scoring groups. (5) encode groups into group tensors G.

taken into account are position, color, and class. The position is specified by the 3D coordinates of the object, while
both colors and classes are one-hot coded.

Group generation NeSy-π proposes an approach to gather objects into line groups based on their 3D positions.
The strategy is to first generate small groups and then expand them to the maximum size. Since two points define a
line, a small group is generated by two objects. The object positions can also be used to determine the corresponding
line function. For N objects,

(
N
2

)
small line groups are generated. As shown in Fig. 3, seven objects are placed on

the table in the given example, thus
(7

2

) = 26 small groups are generated from this scene.

Group extension The groups are further extended based on their line functions. For each small group, the remaining
N − 2 objects not contained in the groups can be evaluated based on their distances to the line. By specifying a
threshold parameter ε, the objects with have distances within ε can be extended to the groups. As shown in Fig. 3,
Obj1 and Obj2 can generate a small group. Let l12 be the line defined by this group, the system will calculate the
distance between the remaining objects Obj3,Obj4,Obj5,Obj6,Obj7 to l12, and then compare the distances
with the threshold ε. By setting a suitable threshold, Obj3 is extended to the group. Similarly, the small group
created by Obj3 and Obj4 can be extended with Obj5,Obj6 and Obj7.

Group evaluation Since the motivation of grouping module is to decrease the relations between objects, it is
important to minimize the number of groups. After the group generation,

(
N
2

)
group are generated and then expanded

to their maximum potential. The group evaluation removes duplicate groups. Additionally, a minimum group size
of NG is established, which serves as a system parameter to remove groups with fewer objects than the threshold.
Choosing a smaller value of NG enables the explanation of rules in great detail, but at the cost of increased time
and space requirements. Conversely, choosing a larger value of NG leads to faster reasoning, but pattern details may
be overlooked. For our experiment, we opted for the smallest possible value of NG that still maintained acceptable
reasoning times in order to enhance its robustness.

Group encoding Finally, the groups are encoded as tensors G. The position of each group is determined by aver-
aging the positions of objects within the group.

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 11

The group module is an optional module of NeSy-π . It is used for scenes with potential group structures, like lines
in this given example. By generating rules at group level, the logical structures between objects can be expressed
much more clearly and easily. The invented predicates are also invented at the group level.

3.6. NeSy-π algorithm

Algorithm 1 provides the pseudo code of the process of predicate invention utilizing the NeSy-ILP and NeSy-π
systems. The NeSy-π system focuses on extending the initial language L0 to the output language Lout through the
invention of new predicates. Meanwhile, NeSy-ILP is tasked with searching for target clauses.

The algorithm includes a grouping module as discussed in Section 3.2–3.5. The initial language L0 includes
all the background predicates alongside the initial clause C0, namely target(X) : −in(O1,X). Additionally, the
camera matrix K , image dataset IRGB and the corresponding depth map IDepth are also inputs. The algorithm’s
output is the extended language Lout, which includes all invented and background predicates.

(Line 1–4) Produce object tensors E from the input dataset IRGB and IDepth. An object detector, like Mask R-
CNN [11], is employed to identify object labels OLabel and bounding boxes OBox in the RGB images IRGB. The
3D coordinates of all pixels I3D can then be transformed, relative to the camera’s coordinate system, from the
depth map IDepth and the camera matrix K . The 3D position of the objects O3D can be determined by taking the
median value of the corresponding region in I3D with respect to corresponding bounding box OBox. (Line 5–7)
Group the objects based on their positions O3D . (Line 9–12) The iteration variable N is responsible for specifying
the number of groups covered by the searched clauses. The given parameter Nmax _groups controls the maximum
number of groups covered by the clauses, which is set with respect to the complexity of the training patterns. For
complex Kandinsky Patterns, this parameter is set to 2, while for Alphabet Patterns, it is set to 5 or 6, as detailed in
Section 4.1. Additionally, two lists are initialized. Pinv_all serves as a repository for invented predicates, while Pbk is
the set of all background predicates in the initial language L0. (Line 14–17) In each iteration, a background predicate
P is selected from Pbk. A new language L is instantiated with no pre-existing predicate. P is the first predicate that
is used to update this language. (Line 19) The for-loop spanning lines 19–38 comprises the clause extension (line
22–29) and predicate invention (line 33–37). Nstep_ max determines the maximum length of the clauses that can be
extended. (Line 22–31) Extend the clauses in the clause set C for Nstep_ max iterations. During the first iteration,
the clause in C serves as the initial clause. The clauses are subsequently extended with new atoms, followed by
the evaluation of the whole dataset. The top-scoring clauses are retained while the rest is pruned. If a target clause
has been identified, then the for loop is terminated. (Line 32–37) After the clause extension, invent the predicates.
Each element in C is a subset of extended clauses C, as well as an explanation clause set. The new predicates
Pinv are generated from C. The evaluation of the invented predicates is based on the clauses in the corresponding
explanation clause set. The score of these clauses can be obtained directly from μPN. By limiting the number of
invented predicates, only the top-k invented predicates are retained. The invented predicates are then added to the
list Pinv_all and the language L. (Line 44) The algorithm returns a language Lout consisting of all the remaining
invented predicates from Pinv_all.

4. Experimental evaluation

NeSy-π aims to aid NeSy-ILP systems such as αILP [30] in tackling visual reasoning tasks. Frequently used
evaluation datasets are the 2D dataset Kandinsky Patterns [25], and the 3D dataset CLEVR-Hans [34], which is a
variant of CLEVR [13]. Both datasets utilize geometry objects to represent fundamental concepts of common sense.
In this paper, we propose three datasets for evaluating NeSy-π , which follow the similar dataset configuration with
αILP [30]. The calibrated RGB-D camera captures all the scenes. The RGB images serve as input for the perception
module. The system locates the 3D positions of the objects relative to the camera coordinate system using the
corresponding depth maps and camera matrix.

12 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Algorithm 1 Predicate invention on visual scenes using NeSy-ILP and NeSy-π

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 13

Fig. 4. Simple Kandinsky Patterns. These patterns are designed with only a few objects. Each pattern refers to a logical concept, as indicated
by the name, which is not explained by background knowledge. Close: two objects are close to each other. Diagonal: two objects are diagonally
located. Same: three objects have the same shape and the same color. Two Pairs: two pairs of objects are in the scene. A pair is defined by two
objects with the same color and shape.

4.1. Datasets

The datasets comprise synthetic images generated using the Unity game engine [35]. In every image, objects are
positioned on a table and captured by a calibrated RGB-D camera. A scene in the dataset refers to an image cap-
tured by the camera. Every scene is made up of basic objects that represent logical concepts. The object categories
comprise of three types: sphere, cube, and cylinder; the objects come in three colors: red, green, and blue. The size
and surface texture of the objects remain consistent across all scenes. A pattern refers to a set of scenes consisting of
both positive scenes and negative scenes. All of the positive scenes follow a common logical concept, while none of
the negative scenes do. To examine the predicate invention performance of the NeSy-π , every pattern in the dataset
is accompanied by at least one new concept not included in the initial language.

Simple Kandinsky Patterns This dataset represents four logical patterns, as shown in Fig. 4. The patterns comprises
a maximum of four objects. In each pattern, several objects are placed on the table. The details of each pattern is
introduced as follows:

(Close) In positive scenes, two objects are located close to each other. The maximum distance between two objects
is one-seventh of the table’s width. Negative scenes are two objects that are far apart, with a minimum distance
between them of half of the table’s width.

(Diagonal) Positive scenes require two objects to be positioned diagonally from each other, while negative scenes
involve two objects being positioned horizontally.

(Three Same) Three objects appear in scenes, positive scenes require that all objects possess the same color and
shape. Negative scenes, however, involve three objects that have at least two differences in color or shape.

(Two Pairs) In scenes with two pairs of objects, positive scenes require that each pair share the same color and
shape. Negative scenes require at most one pair that shares the same color and shape.

Complex Kandinsky Patterns This dataset uses objects to represent four logical patterns, as shown in Fig. 5. Com-
pared to the simple Kandinsky patterns, the complex Kandinsky patterns consists of a considerately larger number
of objects and relations among objects. The objects are ordered according to certain spatial rules, such as perpen-
dicular, parallel and so on. The details of each pattern is introduced as follows:

(Check Mark) In positive scenes, five to seven objects form a check mark shape. The direction of the check mark is
rotated in range 0 to 45 degrees in each scene. In negative scenes, five to eight objects form two intersecting
lines, with the intersection point never being an endpoint of both lines simultaneously.

(Parallel) Positive scenes consists of six to eight objects arranged in two parallel rows. Negative scenes consist of
six to eight objects arranged in two rows with an angle between them ranging from 20 to 80 degrees.

(Perpendicular) In positive scenes, six to eight objects are arranged in two perpendicular rows. Negative scenes
consist of six to eight objects arranged in two rows with angle between them ranging from 20 to 80 degrees.

14 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Fig. 5. Complex Kandinsky Patterns. These patterns are designed with at least five objects in the scenes. These objects form 2D shapes
by their position. Check Mark: several objects form the shape of check mark. Parallel: multiple objects are arranged in two parallel rows.
Perpendicular: multiple objects are arranged in two perpendicular rows. Square: several objects are arranged in the shape of a square.

Fig. 6. Latin Alphabet Patterns. Latin letters (including upper and lower case) consisting of multiple objects. The shape of the individual letters
consists mainly of lines. For more examples, see appendix B.

(Square) In positive scenes, several objects form the shape of a square, with consistent spacing between adjacent
objects on each edge. The square size in each scene range from 3, 4, or 5 objects per edge. In negative scenes,
the objects are arranged in the shape of a rectangle, with a consistent spacing between adjacent objects on
each edge. The longer side of the rectangle consists of 5 objects, while the shorter side consists of 3 objects.
The rectangle is located either horizontally or vertically.

Latin Alphabet Patterns This dataset uses objects representing 26 Latin letters. Figure 6 shows some examples
of the letter patterns. A complete version is shown in the Appendix B. These patterns are composed of line-based
elements. In each pattern, a set of objects is placed on a table and forms the shape of a letter in the Latin alphabet. In
order to introduce more variations for each pattern, letter cases (upper case and lower case) are considered, i.e. each

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 15

Table 1

Background predicates for solving logical patterns

Predicate Description

in/2/O,X Evaluate whether the object/group O exists in the image X.

shape/2/O,S Evaluate whether the object/group O is of the form S.

color/2/O,C Evaluate if the object O has color C.

phi/3/O1,O2, φ Evaluate whether the direction of object/group O2 corresponds to the object/group O1 falls within the range of φ.

rho/3/O1,O2, ρ Evaluate whether the distance between the object O2 and O1 falls within the range of ρ.

slope/2/G,k Evaluate whether the slope of object group G falls within the range of k.

pattern has two variations. The colors and shapes of the objects are changed randomly in each scene. The center
position of all objects is also shifted slightly in each scene. The dataset of each pattern consists of the same number
of positive and negative scenes. The positive scenes are created based on the two variations of that pattern, and the
negative scenes are created based on the variations of all the other patterns.

4.2. Evaluation results

The experiments aim to answer the following questions:

Q1. Can NeSy-π invent useful predicates from visual scenes improving the performance of NeSy-ILP systems?
Q2. Can NeSy-π solve complex patterns that cannot be solved by the state-of-the-art NeSy-ILP baseline?
Q3. Is NeSy-π computationally efficient?
Q4. Is NeSy-π robust to unseen falsifying examples?

A1 (NeSy-π effectiveness): The background predicates utilized for solving the patterns in this work are listed in Ta-
ble 1. All predicates invented by NeSy-π are based on these predicates. Moreover, no other predicates or background
clauses are provided for the reasoning process. In αILP [30], certain concepts such as same_color,same_shape
are explained using a set of background clauses, but no such clauses are provided for reasoning in NeSy-π . How-
ever, certain background predicates necessitate parameters determination for precision purposes. The parameter Nρ

decides the precision of the distance predicate (rho/3). For example, Nρ = 20 means that the distance between
two objects can be characterized from rho0 ([0.00W, 0.05W]) to rho19 ([0.95W, 1.00W]) with W as the table
width. Similarly, the precision of the direction predicate (phi/3) is determined by the parameter Nφ , while the
precision of the slope predicate (slope/2) is determined by the parameter Nslope. These parameters determine the
granularity of the concepts that can be handled in the system.

Figure 7 shows an example of the learning result for the simple Kandinsky pattern close. The target clause is
searched by αILP, and the used predicate inv_pred253 is invented by NeSy-π , which can be interpreted by the
distance between object O1 and O2 is in the range rho4 to rho8. The invented predicates that are not used in
the target clauses are not listed in the figure. Appendix B shows the corresponding target clauses and the invented
clauses of the rest patterns.

Table 2 shows the evaluation result of all simple Kandinsky patterns based on the proposed metrics in Section 3.3.
NeSy-π has successfully invented new predicates and found the promising target clauses for all simple patterns,
resulting in PN-Measure values over 100% higher than the baseline model αILP, with the exception of the diagonal
pattern at only 14.94%. This is due to the limited variations in the diagonal pattern compared to others. Only two
variations exist in the positive scenes (since a square has two diagonals), and two variations exist in the negative
scenes (forming a row either at the top or bottom of the table). Other patterns, such as close, have randomly changed
object distances within a specified range. Consequently, there are many more variations in these patterns. PN-
Measure is a balanced measurement that considers both positive and negative examples simultaneously. Therefore,
the outperforming of PN-Measure does not guarantee the outperforming of both P-Measure and N-Measure.

A2 (Complex Patterns): For the complex Kandinsky patterns, NeSy-π uses the Grouping Module to gather the
objects into groups. The predicates are invented on the group level. In the experiment, the maximum group number
of the grouping module, i.e. the parameter N in Algorithm 1, is given as 5. The dataset Complex Kandinsky Patterns

16 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Fig. 7. Pattern Close. The logic of the pattern is that two objects are close to each other. Left: two positive (green border) and two negative (red
border) examples of the pattern Close. Right: learned target clauses and the corresponding invented predicates of the pattern Close. The distance
precision parameter Nρ is given as 20. The predicate inv_pred253 evaluates if the distance of O1 and O2 in range rho4 ∼ rho8 (15% ∼ 40%
of table width).

Table 2

Learning result on Simple Kandinsky Patterns. α is the baseline approach based on αILP [30], π is the proposed approach using αILP with
NeSy-π , � is the improvement in percentage calculated as (π −α)/α × 100%, #Inv_Pred is the number of invented predicates used in the target
clauses

Pattern #Object #Image P-Measure N-Measure PN-Measure #Inv_Pred

α π � α π � α π �

Close 2 100 0.43 1.00 132.56% 1.00 0.91 −9.00% 0.43 0.91 111.63% 1

Diagonal 2 100 0.87 1.00 14.94% 1.00 1.00 0.00% 0.87 1.00 14.94% 1

Same 3 100 0.50 0.92 84.00% 0.67 1.00 49.25% 0.34 0.92 170.59% 2

Two Pairs 4 100 0.64 0.96 50.00% 0.68 1.00 47.06% 0.44 0.96 118.18% 2

uses objects representing basic line relations and other basic geometry shapes. The given background knowledge is
the given predicates shown in Table 1, and the line grouping module explained in Section 3.5.

Figure 8 lists the learned target clauses and the corresponding invented predicates of the pattern check mark.
The target clause is described by 2 invented predicates. The used invented predicate inv_pred0 is explained as
follows: the group O2 is either in the direction phi3, phi4, phi10, or phi12 of O1, which corresponds to the
direction ranges [36◦, 54◦], [54◦, 72◦], [162◦, 180◦], and [198◦, 216◦] respectively. The predicate inv_pred211
is explained as follows: the distance between two groups is in the range rho4 to rho7, which corresponds to the
distance ranges [0.15W, 0.35W] with W as the table width. Appendix B shows the learned clauses of the remaining
three complex Kandinsky patterns. Table 3 shows the scores of each pattern based on proposed metrics. NeSy-π
improves the scores in both P-Measure and N-Measure with using 1–2 invented predicates in the target clauses.

Furthermore, we have also analyzed the more intricate dataset Alphabet Patterns, which consists of 5 to 20
objects. The learning result of certain letters on NeSy-π with αILP systems are shown in appendix B. Table 4
illustrates the best learning result of each patterns on two systems. NeSy-π shows an average PN-Measure score
of 0.911, exhibiting a 6.55% improvement compared to αILP. The average P-Measure is 0.942 and N-Measure is
0.987. Certain letters achieves even 20% to 30% improvement on PN-Measure, such as letter I, L, M and R. Some
letters achieves only minor or even negative improvement, that is because the baseline model αILP already achieves
high scores (mostly higher than 0.9), thus the improvement spaces left to the NeSy-π are limited, such as letter
D, H, K. In addition, NeSy-π does not guarantee a higher PN-Measure comparing to αILP alone, such as letter C.
That is because the clauses are extended in a best-first approach in each step. The predicates in two systems are
different, thus the best atoms for extension in two systems can be different. It is possible that a clause with invented
predicates achieves high score in the previous steps, but increases only minor score in the following steps. In this
case, the target clauses still contain the invented predicate, but its measurement can be smaller than the clause

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 17

Fig. 8. Pattern Check Mark. The logic of the pattern is that several objects form a shape of check mark. The number of objects on the right side
of check mark changes randomly from 3 to 5 in each scene. Left: two positive (green border) and two negative (red border) examples of pattern
Check Mark. Right: learned target clauses and the corresponding invented predicates of the pattern Check Mark. The predicate inv_pred0
evaluates if the direction of O1 and O2 in range phi3/phi4/phi10/phi12.

Table 3

Learning result on Complex Kandinsky Patterns. α is the baseline approach based on αILP [30], π is the proposed approach using αILP with
NeSy-π , � is the improvement in percentage calculated as (π −α)/α × 100%, #Inv_Pred is the number of invented predicates used in the target
clauses

Pattern #Object #Image P-Measure N-Measure PN-Measure #Inv_Pred

α π � α π � α π �

Check Mark 5–6 100 0.66 0.93 40.91% 0.90 0.99 10.00% 0.59 0.92 55.93% 2

Parallel 6–8 100 0.33 0.93 181.82% 1.00 1.00 0.00% 0.33 0.93 181.82% 1

Perpendicular 6–8 100 0.63 0.92 46.03% 0.88 1.00 13.64% 0.55 0.92 67.27% 2

Square 8–16 100 0.50 0.83 66.00% 0.72 1.00 38.89% 0.36 0.83 130.56% 1

without invented predicate. In total, there is 1 pattern that does not invent any predicate, 11 patterns invent one
predicate, 9 patterns invent two predicates and 5 patterns invent three predicates. On average, 1.65 new predicates
are invented to describe each pattern.

A3 (NeSy-π efficiency): NeSy-π can improve the time efficiency for αILP system. The invented predicates im-
prove the expressiveness of the language so that the rules can be expressed by shorter clauses. Consequently, the
algorithm needs fewer iterations to search the target clauses, thereby improving the time efficiency.

In Fig. 9, the graph displays the runtime for each alphabet pattern. The height of each bar represents the corre-
sponding letter’s run-time, with the color indicating the number of groups N covered by the respective target clause.
The fewer groups the target clause covers, the fewer iterations the algorithm requires. Figure 9 (c) and (d) show the
ranking of the training time in descending order. On average, the NeSy-π+αILP method requires 64 minutes and 47
seconds to solve one letter, while the αILP method takes 126 minutes and 28 seconds to solve one letter. Therefore,
NeSy-π is roughly twice as fast. On the other hand, it is apparent that fewer iteration N adheres to the less training
time. The letter B has the highest iteration and also the longest training time. On the other hand, letters such as U,
X have the fewest iterations and, as a result, have the fastest training time. On average, αILP with NeSy-π module
requires 0.46 fewer iterations than αILP alone.

A4 (NeSy-π robustness): In this experiment, we show that NeSy-π is robust to falsifying patterns that have not
seen in the training phase, i.e. NeSy-π exhibits robustness in distinguishing similar positive and negative examples
in the dataset, achieving high accuracy despite their similarity.

Dataset. In order to evaluate the robustness of the learned clauses, another test dataset for the alphabet patterns is
generated with similar positive and negative scenes. The positive scenes are still generated from the original letter

18 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Table 4

Learning result of NeSy-π on Latin Alphabet Patterns. α is the base-line approach based on αILP [30], π is the proposed approach using
αILP with NeSy-π , � is the improvement in percentage calculated as (π − α)/α × 100%, #Inv_Pred is the number of invented predicates used
in the target clauses

Pattern #Object #Image P-Measure N-Measure PN-Measure #Inv_Pred

α π � α π � α π �

Letter A 14 100 0.92 0.86 −6.52% 0.85 0.96 12.94% 0.78 0.83 5.58% 1

Letter B 13–20 100 0.93 0.93 0.00% 1.00 1.00 0.00% 0.93 0.93 0.00% 0

Letter C 9–12 100 0.96 0.96 0.00% 1.00 0.99 −1.00% 0.96 0.95 −1.00% 3

Letter D 13–14 100 0.95 0.95 0.00% 0.98 1.00 2.04% 0.93 0.95 2.04% 2

Letter E 11–14 100 0.96 0.96 0.00% 1.00 1.00 0.00% 0.96 0.96 0.00% 1

Letter F 9–10 100 0.96 0.88 −8.33% 0.79 0.95 20.25% 0.76 0.84 10.23% 1

Letter G 16–18 100 0.96 0.96 0.00% 0.86 0.98 13.95% 0.83 0.94 13.95% 1

Letter H 11–12 100 0.96 0.91 −5.21% 0.93 1.00 7.53% 0.89 0.91 1.93% 1

Letter I 9 100 0.76 0.93 22.37% 0.94 0.94 0.00% 0.71 0.87 22.37% 1

Letter J 11 100 0.96 0.93 −3.13% 0.91 0.99 8.79% 0.87 0.92 5.39% 2

Letter K 11–14 100 0.90 0.94 4.44% 1.00 1.00 0.00% 0.90 0.94 4.44% 2

Letter L 7–8 100 0.71 0.96 35.21% 0.96 0.94 −2.08% 0.68 0.90 32.39% 2

Letter M 11–13 100 0.78 0.90 15.38% 0.86 0.97 12.79% 0.67 0.87 30.14% 1

Letter N 9–12 100 0.96 0.96 0.00% 0.98 0.98 0.00% 0.94 0.94 0.00% 3

Letter O 12–16 100 0.94 0.95 1.06% 1.00 1.00 0.00% 0.94 0.95 1.06% 1

Letter P 14–15 100 0.93 0.94 1.08% 1.00 1.00 0.00% 0.93 0.94 1.08% 3

Letter Q 15 100 0.98 0.98 0.00% 1.00 1.00 0.00% 0.98 0.98 0.00% 2

Letter R 8–18 100 0.88 0.90 2.27% 0.79 0.99 25.32% 0.70 0.89 28.16% 3

Letter S 15–18 100 0.96 0.95 −1.04% 0.99 1.00 1.01% 0.95 0.95 0.00% 2

Letter T 9 100 0.96 0.96 0.00% 0.97 1.00 3.09% 0.93 0.96 3.09% 2

Letter U 11–13 100 0.95 0.95 0.00% 0.95 1.00 5.26% 0.90 0.95 5.26% 3

Letter V 5–9 100 0.96 0.96 0.00% 0.98 1.00 2.04% 0.94 0.96 2.04% 1

Letter W 9–13 100 0.95 0.95 0.00% 0.83 0.97 16.87% 0.79 0.92 16.87% 2

Letter X 5–9 100 0.96 0.96 0.00% 1.00 1.00 0.00% 0.96 0.96 0.00% 1

Letter Y 7 100 0.88 1.00 13.64% 1.00 1.00 0.00% 0.88 1.00 13.64% 2

Letter Z 10–13 100 0.95 0.96 1.05% 1.00 1.00 0.00% 0.95 0.96 1.05% 1

Average 11.73 100 0.922 0.942 2.169% 0.945 0.987 4.444% 0.855 0.911 6.550% 1.692

patterns. However, the negative scenes are generated by intervening the positive scenes, i.e. randomly removing
one object from the positive patterns, as shown in Fig. 10. Such negative patterns are not seen by the model during
training. To solve this task correctly, models need to be keen on small violations of the learned logical concepts.

Result. Fig. 11 shows the evaluation result for the robustness test dataset. In comparison to the efficiency result
in A3, when negative examples with similar patterns as positive examples are used, NeSy-π performance on N-
Measure decreases from 0.98 to 0.77. Additionally, none of the test image patterns were seen by the model during
the training period, and they are also very similar to the positive patterns (with only one object removed). In ad-
dition, when the robustness test dataset is applied to the clauses acquired through αILP, the N-Measure average is
approximately 0.70, as demonstrated in the right plot of Fig. 11. In this case, the NeSy-π attains a higher N-Measure.

5. Related work

We revisit relevant studies of NeSy-π .
Inductive Logic Programming and Predicate Invention. Inductive Logic Programming (ILP) [3,22,24,26] has

emerged at the intersection of machine learning and logic programming. ILP learns generalized logic rules given
positive and negative examples using background knowledge and language biases. Many symbolic ILP frameworks

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 19

Fig. 9. Time consumption on Alphabet Patterns. Time consumption of the individual letters in descending order. The red dashed lines show
the average time for each plot. The colors of the bars differ according to the number of groups covered by the target clauses. (A). Grouping time
of αILP. (B). Grouping time of αILP with NeSy-π . (C). Training time of αILP. (D). Training time of αILP with NeSy-π .

Fig. 10. Examples of robustness test dataset. The top row displays a selection of the original letter patterns. The bottom row shows negative
letter patterns with one object randomly removed. To solve this dataset correctly, the model needs to be robust to the falsifying negative scenes
not appeared in the training phase.

Fig. 11. NeSy-π is robust to unseen falsifying examples. The evaluation of Alphabet pattern’s robustness is presented. Left: the NeSy-π
performance in distinguishing negative examples is evaluated on two test sets. The purple line is based on a test set with dissimilar patterns
as the negative examples, where different letters are used as negative examples. The orange line use a test set with similar patterns as negative
examples, where one object is randomly removed from the same letters used as negative examples. Right: the performance of αILP and NeSy-π
on the test set, where negative examples using similar patterns as positive patterns. The N-measure of NeSy-π achieves a higher average score
compared to αILP.

have been developed, e.g., FOIL [27], Progol [22], ILASP [19], Metagol [6,8], and Popper [4], showing their advan-
tages of learning explanatory programs from small data. To handle uncertainties in ILP, statistical ILP approaches
have been addressed, e.g. Markov Logic Networks [28] with their structure-learning algorithm [15]. Predicate in-
vention (PI) has been a long-standing problem for ILP and many methods have been developed [2,5–7,12,17,33],
and extended to the statistical ILP systems [16].

20 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Recently, differentiable ILP frameworks have been developed to integrate DNNs with logic reasoning and learn-
ing [10,29–31]. ∂ILP [10] is the first end-to-end differentiable ILP solver, where they learn rules by gradient descent.
∂ILP can perform predication invention to compose solutions with less inductive biases. ∂ILP-ST [29] extends it by
incorporating efficient search techniques developed for symbolic ILP systems, enabling the system to handle more
complex rules using function symbols. To this end, Neuro-Symbolic ILP systems that can handle complex visual
scenes as inputs have been developed. αILP [30] performs differentiable structure learning on visual scenes, how-
ever, these extended differentiable ILP systems do not support predicate invention. NeSy-π extends this approach by
providing the predicate invention algorithm, leading them to learn from less supervision and background knowledge.
Many other neuro-symblic systems have been established, e.g. DeepProbLog [20], NeurASP [37], SLASH [32] for
parameter learning and FFNSL [9] for structure learning. NeSy-π could be integrated to these systems to allow
predicate invention from complex visual scenes.

Meta rules, which define a template for rules to be generated, have been used for dealing with new predicates in
(NeSy) ILP systems [10,14]. NeSy-π achieves memory-efficient predicate invention system by performing scoring
and pruning of candidates from given data, and this is crucial to handle complex visual scenes in NeSy-ILP systems
since they are memory-intensive [10].

Visual Reasoning. The machine-learning community has developed many visual datasets with reasoning re-
quirements. Visual Question Answering (VQA) [1,18,36] is a well-established scheme to learn to answer questions
given as natural language sentences together with input images. VQA assumes the programs to compute answers
are given as a question, however, NeSy-π learns the programs from scratch using positive and negative examples.
Kandinsky Patterns [25] are proposed as an environment to generate images that contain abstract objects (e.g. red
cube) to evaluate neural and neural-symbolic systems. In a similar vein, CLEVR-Hans [34] has been developed,
where the task is to classify 3D CLEVR scenes [13] based on classification rules that are defined on high-level
concepts of objects’ attributes and their relations. These datasets can be used to evaluate various models on vi-
sual reasoning, however, they do not involve with predicate invention, thus it is not trivial to evaluate predicate
invention systems using them. The proposed 3D Kandinsky Patterns extends these studies by having predicate in-
vention tasks at its core, and it is the first to evaluate neuro-symbolic systems in terms of the ability of predicate
invention.

6. Conclusion

We proposed Neural-Symbolic Predicate Invention (NeSy-π), which discovers useful relational concepts from
complex visual scenes. NeSy-π can reduce the amount of required background knowledge or supplemental pre-
training of neuro-symbolic ILP frameworks by providing invented predicates to them. Thus NeSy-π extends the
applicability of neuro-symbolic ILP systems to wide range of tasks. Moreover, we developed 3D Kandinsky Pat-
terns datasets, which is the first environment to evaluate neuro-symbolic predicate invention systems on 3D visual
scenes. In our experiments, we have shown that (i) NeSy-π can invent useful predicates from visual scenes im-
proving the performance of NeSy-ILP systems, (ii) NeSy-π can solve complex patterns that cannot be solved by
the state-of-the-art NeSy-ILP baseline, (iii) NeSy-π is computationally efficient, and (iv) NeSy-π is robust to un-
seen falsifying examples. Developing a differentiable approach to fine-tune the given parameters is a promising
avenue for future work. Also taking an unsupervised approach for predicate invention is another interesting future
direction.

Appendix A. Experiment setting

A.1. Spatial neural predicates

To represent the spatial relationships between two objects, we have developed two types of spatial neural pred-
icates, i.e., rho(O1,O2, ρ) and phi(O1,O2, φ), which are given as basic knowledge. They are used for new
predicates invention in some patterns associated with spatial concepts.

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 21

Fig. 12. Spatial neural predicates explanation by examples. Left: directions of red circle with respect to green circle denoted by symbols
φ1, . . . , φ7. The red circle is in the direction of φ1. Right: distance of red circle to the green circle denoted by the symbols ρ1, . . . , ρ5. The red
circle is located at the distance of ρ2. For 3D KP, we assume all the object placed on a flat surface with same height. Thus their positions can be
mapped to 2D space with ignoring the axis denoting the height. The positions of each object can be evaluated from depth map of 3D scenes.

rho(O1,O2, ρ) The neural predicate rho(O1,O2, ρ) describes the distance between object O1 and O2, where
ρ is the measure. Let W denotes the maximum possible distance between O1 and O2. To symbolize the distance
between O1 and O2, we divide W into Nρ parts and denote each part by ρ0, . . . , ρNρ−1 (as shown in Fig. 12 right).
Each measure ρi, 0 � i � Nρ − 1 actually covers a range of distance. For example, if Nρ = 4, then ρ0 denotes
[0.00W, 0.25W], ρ1 denotes [0.25W, 0.50W], ρ2 denotes [0.50W, 0.75W], ρ3 denotes [0.75W, 1.00W]. In the
experiment, we assign each ρi as the middle value of its covered range to ensure it is a constant, e.g. ρ0 = 0.125W ,
ρ1 = 0.375W , ρ1 = 0.625W , ρ1 = 0.875W for Nρ = 4. The positions of the objects are rounded to the value of
closest ρi .

phi(O1,O2, φ) The predicate phi(O1,O2, φ) describes the direction of O2 with respect to O1. Based on the
polar coordinate system, we consider the first argument O1 as the original point, then the direction of O2 is in the
range [0, 360). We divide the range into N sections, each section is denoted by φ1, . . . , φN (as shown in Fig. 12). In
the experiment, we assign each φi, 0 � i � N − 1 as the middle value of its covered range to ensure it is a constant.
e.g. φ0 = 45◦, φ1 = 135◦, φ2 = 225◦ and φ3 = 315◦ for N = 4.

Appendix B. More experiment result

Figure 13 shows the learning result on Simple Kandinsky Patterns (Diagonal, Three Same, Two Pairs). Two
positive and two negative images are given as examples in the left side. The target clauses searched by αILP and the
predicated invented by NeSy-π are listed on the right side.

Figure 15 shows the examples of each letter patterns in Alphabet Pattern Dataset. Each letter includes
its upper and lower case examples. Figure 17 shows the learning result on some of the Alphabet Pat-
terns.

22 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Fig. 13. Simple Kandinsky patterns from top to bottom: Diagonal, Three Same, Two Pairs. In each patterns, two positive (green border) and
two negative examples (red border) are shown in left side. The target clauses searched by NeSy-α and the predicates invented by NeSy-π are
listed on the right side.

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 23

Fig. 14. Complex Kandinsky patterns from top to bottom: parallel, perpendicular, square. In each patterns, two positive (green border) and two
negative examples (red border) are shown in left side. The target clauses searched by NeSy-α and the predicates invented by NeSy-π are listed
on the right side.

24 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

Fig. 15. Latin Alphabet Patterns. Latin letters (including both upper and lower cases) constructed by multiple objects. The shape of each letter
is mainly composed of lines.

Fig. 16. Alphabet Pattern N and E from top to bottom: letter N, E. In each patterns, upper and lower case examples are shown in left side. The
target clauses searched by NeSy-α and the predicates invented by NeSy-π are listed on the right side.

J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes 25

Fig. 17. Alphabet Pattern S and Y from top to bottom: letter S, Y. In each patterns, upper and lower case examples are shown in left side. The
target clauses searched by NeSy-α and the predicates invented by NeSy-π are listed on the right side.

References

[1] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C.L. Zitnick and D. Parikh, Vqa: Visual question answering, in: International Conference
on Computer Vision (ICCV), 2015.

[2] D. Athakravi, K. Broda and A. Russo, Predicate invention in Inductive Logic Programming, in: 2012 Imperial College Computing Student
Workshop, OpenAccess Series in Informatics (OASIcs), Vol. 28, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2012, pp. 15–21.

[3] A. Cropper, S. Dumancic, R. Evans and S.H. Muggleton, Inductive logic programming at 30, Mach. Learn. 111(1) (2022), 147–172. doi:10.
1007/s10994-021-06089-1.

[4] A. Cropper and R. Morel, Learning programs by learning from failures, Mach. Learn. 110(4) (2021), 801–856. doi:10.1007/s10994-020-
05934-z.

[5] A. Cropper and R. Morel, Predicate Invention by Learning from Failures, 2021, arXiv preprint, arXiv:2104.14426.
[6] A. Cropper, R. Morel and S. Muggleton, Learning higher-order logic programs, Mach. Learn. 109 (2019), 1289–1322. doi:10.1007/s10994-

019-05862-7.
[7] A. Cropper, R. Morel and S.H. Muggleton, Learning higher-order programs through Predicate Invention, in: Proceedings of the AAAI

Conference on Artificial Intelligence (AAAI), 2020, pp. 13655–13658.

https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-021-06089-1
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/s10994-020-05934-z
http://arxiv.org/abs/2104.14426
https://doi.org/10.1007/s10994-019-05862-7
https://doi.org/10.1007/s10994-019-05862-7

26 J. Sha et al. / Neuro-symbolic Predicate Invention: Learning relational concepts from visual scenes

[8] A. Cropper and S.H. Muggleton, Metagol System, 2016, https://github.com/metagol/metagol.
[9] D. Cunnington, M. Law, J. Lobo and A. Russo, FFNSL: Feed-forward neural-symbolic learner, Mach. Learn. 112(2) (2023), 515–569.

doi:10.1007/s10994-022-06278-6.
[10] R. Evans and E. Grefenstette, Learning explanatory rules from noisy data, J. Artif. Intell. Res. 61 (2018), 1–64. doi:10.1613/jair.5714.
[11] K. He, G. Gkioxari, P. Dollár and R. Girshick, Mask R-CNN, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017,

pp. 2980–2988. doi:10.1109/ICCV.2017.322.
[12] C. Hocquette and S.H. Muggleton, Complete bottom-up Predicate Invention in meta-interpretive learning, in: Proceedings of the Twenty-

Ninth International Joint Conference on Artificial Intelligence, (IJCAI) International Joint Conferences on Artificial Intelligence Organiza-
tion, 2020, pp. 2312–2318.

[13] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C.L. Zitnick and R. Girshick, Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 2901–2910.

[14] T. Kaminski, T. Eiter and K. Inoue, Exploiting answer set programming with external sources for meta-interpretive learning, Theory and
Practice of Logic Programming 18(3–4) (2018), 571–588. doi:10.1017/S1471068418000261.

[15] S. Kok and P. Domingos, Learning the structure of Markov logic networks, in: International Conference on Machine Learning, 2005.
[16] S. Kok and P.M. Domingos, Statistical Predicate Invention, in: International Conference on Machine Learning (ICML), 2007.
[17] S. Kramer, Predicate Invention: A Comprehensive View 1, 2007.
[18] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L. Li, D.A. Shamma, M.S. Bernstein and L. Fei-Fei,

Visual genome: Connecting language and vision using crowdsourced dense image annotations, Int. J. Comput. Vis. 123(1) (2017), 32–73.
doi:10.1007/s11263-016-0981-7.

[19] M. Law, A. Russo and K. Broda, Inductive learning of answer set programs, in: Logics in Artificial Intelligence – 14th European Conference
(JELIA), E. Fermé and J. Leite, eds, Lecture Notes in Computer Science, Vol. 8761, 2014, pp. 311–325.

[20] R. Manhaeve, S. Dumančić, A. Kimmig, T. Demeester and L. De Raedt, Neural probabilistic logic programming in DeepProbLog, Artif.
Intell. 298 (2021), 103504. doi:10.1016/j.artint.2021.103504.

[21] J. Mao, C. Gan, P. Kohli, J.B. Tenenbaum and J. Wu, The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from
natural supervision, in: International Conference on Learning Representations (ICLR), 2019.

[22] S. Muggleton, Inverse entailment and progol, New Generation Computing, Special issue on Inductive Logic Programming 13(3–4) (1995),
245–286.

[23] S. Muggleton and W.L. Buntine, Machine invention of first order predicates by inverting resolution, in: Proceedings of the Fifth Interna-
tional Conference on Machine Learning, ML’88, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988, pp. 339–352. ISBN
0934613648.

[24] S.H. Muggleton, Inductive Logic Programming, New Gener. Comput. 8(4) (1991), 295–318. doi:10.1007/BF03037089.
[25] H. Müller and A. Holzinger, Kandinsky patterns, Artificial Intelligence 300 (2021), 103546. doi:10.1016/j.artint.2021.103546.
[26] S.-H. Nienhuys-Cheng, R.D. Wolf, J. Siekmann and J.G. Carbonell, Foundations of Inductive Logic Programming, 1997.
[27] J.R. Quinlan, Learning logical definitions from relations, Mach. Learn. 5 (1990), 239–266. doi:10.1007/BF00117105.
[28] M. Richardson and P.M. Domingos, Markov logic networks, Mach. Learn. 62(1–2) (2006), 107–136. doi:10.1007/s10994-006-5833-1.
[29] H. Shindo, M. Nishino and A. Yamamoto, Differentiable Inductive Logic Programming for structured examples, in: Proceedings of the

35th AAAI Conference on Artificial Intelligence (AAAI), 2021, pp. 5034–5041.
[30] H. Shindo, V. Pfanschilling, D.S. Dhami and K. Kersting, αILP: Thinking visual scenes as differentiable logic programs, Mach. Learn.

(2023).
[31] H. Shindo, V. Pfanschilling, D.S. Dhami and K. Kersting, Learning Differentiable Logic Programs for Abstract Visual Reasoning, 2023,

arXiv preprint, arXiv:2307.00928.
[32] A. Skryagin, W. Stammer, D. Ochs, D.S. Dhami and K. Kersting, Neural-probabilistic answer set programming, in: International Confer-

ence on Principles of Knowledge Representation and Reasoning (KR), 2022.
[33] I. Stahl, Predicate invention in ILP – an overview, in: Machine Learning: ECML-93, P.B. Brazdil, ed., Springer, Berlin Heidelberg, 1993,

pp. 311–322. doi:10.1007/3-540-56602-3_144.
[34] W. Stammer, P. Schramowski and K. Kersting, Right for the right concept: Revising neuro-symbolic concepts by interacting with their

explanations, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 3619–3629.
[35] Unity Technologies, Unity, https://unity.com/.
[36] Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick and A. Van Den Hengel, Visual question answering: A survey of methods and datasets, Image

Vis. Comput. 163 (2017), 21–40. doi:10.1016/j.cviu.2017.05.001.
[37] Z. Yang, A. Ishay and J. Lee, NeurASP: Embracing neural networks into answer set programming, in: International Joint Conference on

Artificial Intelligence (IJCAI), C. Bessiere, ed., 2020, pp. 1755–1762.

https://github.com/metagol/metagol
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.1613/jair.5714
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1017/S1471068418000261
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1007/BF03037089
https://doi.org/10.1016/j.artint.2021.103546
https://doi.org/10.1007/BF00117105
https://doi.org/10.1007/s10994-006-5833-1
http://arxiv.org/abs/2307.00928
https://doi.org/10.1007/3-540-56602-3_144
https://unity.com/
https://doi.org/10.1016/j.cviu.2017.05.001

	Introduction
	First-order logic and Inductive Logic Programming
	Neuro-symbolic predicate invention: NeSy-pi
	Architecture overview
	Clause extension
	Clause evaluation
	Predicate invention
	Object grouping
	NeSy-pi algorithm

	Experimental evaluation
	Datasets
	Evaluation results

	Related work
	Conclusion
	Appendix A. Experiment setting
	Spatial neural predicates

	Appendix B. More experiment result
	References

