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Abstract. Neural-Symbolic Integration (NSI) aims to marry the principles of symbolic AI techniques, such as logical reasoning,
with the learning capabilities of neural networks. In recent years, many systems have been proposed to address this integration
in a seemingly efficient manner. However, from the computational perspective, this is in principle impossible to do. Specifically,
some of the core symbolic problems are provably hard, hence a general NSI system necessarily needs to adopt this computa-
tional complexity, too. Many NSI methods try to circumvent this downside by inconspicuously dropping parts of the symbolic
capabilities while mapping the problems into static tensor representations in exchange for efficient deep learning acceleration.

In this paper, we argue that the aim for a general NSI system, properly covering both the neural and symbolic paradigms,
has important computational implications on the learning representations, the structure of the resulting computation graphs, and
the underlying hardware and software stacks. Particularly, we explain how the currently prominent, tensor-based deep learning
with static computation graphs is conceptually insufficient as a foundation for such general NSI, which we discuss in a wider
context of established (statistical) relational and structured deep learning methods. Finally, we delve into the underlying hardware
acceleration aspects and outline some promising computational directions toward fully expressive and efficient NSI.

Keywords: Neural-symbolic integration, computation graphs, learning representations, relational learning, hardware acceleration,
logical reasoning, dynamic deep learning, computational complexity

1. Introduction

During the past decade, deep learning (DL) has taken over the wider domain of artificial intelligence (AI) so
rapidly that many people now commonly confuse the fields as equivalent, expecting neural networks to eventually
solve all AI problems at hand. This has only been accentuated with the recent rise of foundation (neural) models [6],
which exhibit many AI capabilities that have previously been though as out of reach for DL. Indeed, the dramatic
progress in difficult, symbolic reasoning benchmarks has left a lot of people wondering whether there are even any
limits to the current strategy of scaling large Transformers [52].

However, from the computational perspective, one thing remains striking – these neural models arrive at the
answer to every possible input after a fixed number of the same computation steps, which is clearly suboptimal.
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For simple inputs, this is a waste of computation, and for complex inputs, there will always be a limit where this
is insufficient. Particularly, many (symbolic) AI capabilities, such as reasoning or planning, are provably NP-hard
(or worse) and thus require a number of computation steps exponential in the size of the input. Hence, this static
DL strategy is clearly not universal. However, such a fixed form of computation is the core characteristic of DL
that perpetuates the whole domain, as it is crucially required to make use of the underlying hardware-specific,
data-parallel acceleration, particularly with the Graphics Processing Units (GPUs).

Researchers often like to think of their models and algorithms independently of the underlying hardware (HW)
and software (SW). However, the resurrection of modern DL has been a very clear demonstration that these worlds
are deeply intertwined. And while the recent computing evolution in the direction of specialized HW accelerators
has been transformational for the success of DL, it unfortunately started to further deepen the gap between DL and
the, more general, symbolic AI compute, making the exploration of novel neural-symbolic methods aimed at their
integration increasingly more difficult. On the one hand, we have the symbolic, logic-based approaches to AI work-
ing in the regime of (hard) discrete optimization, with long historical roots reaching all the way back to the origins
of AI and computing itself. These make heavy use of stateful computation with conditional branching, leading to
very sparse and irregularly structured computation graphs that change dynamically from input to input. This form
of compute builds on the universal capabilities of the Central Processing Unit (CPU) architecture, which dominated
computing throughout history. On the other hand, we have the more recent, static, tensor-based neural approaches,
working in the simpler regime of continuous optimization, now depending crucially on the GPU architecture that,
however, lacks the universal support required for the (dynamic) symbolic compute. This underlying dichotomy is
then heavily reflected on the SW layer, too, with largely incompatible learning representations and models.

In this paper, we argue that the current trend of shifting to the static tensor-based (neural) methods is principally
limiting the expressiveness of the resulting NSI systems. To clarify the position, we overview evolution of the NSI
approaches to AI, with a particular focus on relational logic representations that lie at the core of the dichotomy
between the (static) neural and (dynamic) symbolic computation. We then discuss the limitations through insights
into so-called “lifted models” [31] from the associated field of (statistical) relational learning [36]. Finally, we link
these to the computing structures of the, increasingly popular, (deep) graph representation learning models [54], and
conclude the paper with a vision of how the field of NSI might benefit from the associated HW evolution [30].

2. A brief history of neural-symbolic computation

Historically, the mainstream vision for AI has been fluctuating from the almost purely symbolic approaches in
the early days to the almost purely neural approaches we see today. However, history teaches us that whenever there
are two streams of very opposing schools of thought, the resolution is typically somewhere in the middle.

2.1. From neurons to symbols

Perhaps surprisingly, the correspondence between the neural and logical calculus has been well-established
throughout history. Dating all the way back to the introduction of the first computational neuron by McCulloch
and Pitts in their 1943’s paper “A logical calculus of the ideas immanent in nervous activity” [38], we can see that
it was actually thought to emulate logic gates over binary propositions. The idea was based on the, now commonly
exemplified, fact that logical connectives of conjunction and disjunction can be easily encoded by binary threshold
units with weights (Fig. 1) – i.e., the perceptron, a learning algorithm for which was introduced shortly after.

While stacking these on top of each other was a clear path towards representation of more complex, nested
logical functions, it took until the 1980’s to reintroduce the chain rule for differentiation of nested functions as
the “backpropagation” method to calculate gradients in such “neural networks” which, in turn, could be efficiently
trained with gradient descent. For that, however, researchers had to replace the original binary threshold units with
differentiable activation functions, such as the logistic sigmoid, which started digging a gap between the neural
networks and their crisp logical interpretations.
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Fig. 1. An example correspondence between a neural network (left) and a propositional logic program (middle), based on conjunctive and
disjunctive activations emulated by the respectively weighted neurons (right), in the spirit of KBANN [50].

2.2. From deep learning to logic

These historical parallels might seem outlandish in the context of modern DL. However, interestingly, even the
modern idea of DL was not originally described as bound to the neural networks, but rather universally to methods
modeling hierarchical composition of useful concepts that are reused in different inference paths of target variables
from the input samples [4]. And while this concept has most commonly been instantiated through “hidden layers”
in DL, such hierarchical abstractions are common in logical reasoning, too. In fact, logic is the very science of
deduction of useful concepts from simpler premises in a hierarchical (nested) fashion. While constructing a proof in
logic, auxiliary lemmas are often created to reduce the complexity of the theory in scope, in a fashion very similar
to DL. Thus, instead of hidden neural layers, these hierarchical abstractions may also be thought of as “complicated
propositional formulae re-using many sub-formulae”.1

And from the NSI perspective, this is not just some metaphor, but actual systems reflecting this paradigm started
to emerge throughout the ’90s, such as the popular Knowledge-Based Artificial Neural Network (KBANN) [50]
(Fig. 1). However, as imagined by Bengio, such a direct neural-symbolic correspondence was insurmountably lim-
ited to the aforementioned propositional setting, popularly referred to as “propositional fixation” of neural net-
works [37].

2.3. Problems with relational logic

While the aforementioned computational correspondence between the propositional logic programs and neural
networks was very direct, transferring the same principle to the relational2 setting has remained a major chal-
lenge [3]. The issue is that in the propositional setting, only the (binary) values of the existing input propositions are
changing, while the structure of the logical program stays fixed. This is easy to think of as a boolean circuit (neural
network) sitting on top of a propositional interpretation (feature vector).

However, the relational input interpretations can no longer be thought of as individual values over a fixed
(bounded) number of propositions (interpretation vector), but an unbound set of related atoms that are true in a
given world (a Herbrand model [18]). Consequently, also the structure of the logical inference unfolded upon this
representation can no longer be represented by a fixed boolean circuit. Naturally, when proving a query in relational
(first-order) logic, we do not know the number of objects that will form input into the proof, we do not know the
number of auxiliary lemmas that will be created in the process, and we do not know the length of the proof nor the
overall size of the computation. Hence, there is just no way of mapping that relational reasoning into a static neural
computation with a fixed number of inputs, neurons in each layer, and overall depth, effectively corresponding to a
finite state machine, principally incapable of capturing the unboundedness, characteristic to the relational logic.

1quotation from the abstract of “Learning Deep Architectures for AI” by Y. Bengio [4].
2We use the common term “relational logic” to refer to first-order logic without function symbols, which would unnecessarily complicate the

computational perspective taken in this paper by leading further to infinite interpretations.
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2.4. Modern NSI systems

In the field of NSI, the issue with relational expressiveness, not present in the propositional setting, has alterna-
tively been viewed as the problem of variable binding [23]. Indeed, it is actually the relational logic variables that
effectively represent the unbound sets of objects, enabling to make general statements about different individuals,
and facilitating the unbound variability in symbolic AI computing structures. This is in contrast to the bounded
processing of fixed-size vector (tensor)3 representations characteristic to modern DL compute.

In recent years, a large number of new NSI systems building directly on top of popular deep learning frameworks
emerged [26]. Many of these systems are designed to operate with some level of first-order expressiveness, seem-
ingly resolving the old issue of propositional fixation [37] with the efficient, modern-day, static tensor-based deep
learning [12]. However, following the aforementioned computational perspective, this is in principle impossible to
do. Consequently, in one way or another, these efficient, modern neural-symbolic systems are necessarily dropping
parts of the symbolic (relational-level) capabilities, often somewhat inconspicuously.4 This is because building upon
the modern, GPU-accelerated, DL foundation always requires some mapping into the fixed-size tensor computation
of the existing frameworks [1,40], inherently insufficient to capture the unbound structures of relational inference.

3. Relational machine learning

Mapping problems to fixed-size numeric vectors (tensors) has a long history in machine learning. This represen-
tation is highly appealing since treating each sample as an independent point in an n-dimensional space allows to
directly adopt classic results from multivariate statistics [25] and the efficient computing machinery of basic linear
algebra subprograms [13]. However, real-world problems are not stored in numeric vectors, but in the interlinked
structures of the Internet pages, knowledge graphs, and databases, which are inherently relational representations.

3.1. Propositionalization

This representation dichotomy leads to a natural urge to turn these structures into the familiar form of the vectors,
and continue with our standard ML pipelines [25], following the common cognitive bias of “If all you have is a
hammer, everything looks like a nail”. In relational ML, this approach is generally referred to as “propositional-
ization” [32] which, similarly to the “tensorization” [10,19] in modern NSI systems (Section 2.4), is an effective
strategy that often works well in practice. However, it is conceptually limited.

Firstly, it is clear that one cannot map from unbound relational structures into the fixed-size vectors or tensors
without (unwanted) loss of information. This obvious limitation is commonly addressed by bounding the number
of domain elements, seemingly restricting the maximum size of the resulting (neural) computation [53]. However,
even if we restrict ourselves to such bounded structures, designing a suitable learning representation in the form of a
numeric vector or tensor is still deeply problematic. For example, let us take even just graph structures – a restricted
form of relational data. If there was a definite way to map a graph into the standard learning form of a (fixed-size)
numeric vector (or tensor), it would trivially solve the graph isomorphism problem, since to test if two graphs are
isomorphic or not, it would suffice to turn them into such vectors and compare these for equality instead. Of course,
one can simply decide to ignore this problem and choose one of the plethora of the (NSI) approximations [16].
However, any such vector (tensor) mapping that ignores the isomorphism symmetry will naturally break the under-
lying logical semantics that is inherently invariant to it. Therefore, to address this problem properly, it is necessary
to leave the space of fixed-size vector (tensor) transformations and revisit the original space of symbolic logic.

3We do not make much differences between vectors and tensors since, from the representation expressiveness point of view, they are the same.
4or opting for merely compositional (unintegrated) approaches, such as those explained in Section 3.3 and Section 5.2.
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Fig. 2. An example learned ILP model of a path (left), being unfolded on a labeled graph sample encoded in relational logic (middle), resulting
into two different computation graphs for the same target query “path(d, a)” (right).

3.2. Inductive logic programming

Much out of the lights of the ML mainstream, there has been a community of Inductive Logic Programming
(ILP) [9], concerned with proper ways of learning (interpretable) models from exactly such relational representa-
tions. For illustration, let us see how the graph-structured learning problems can be approached with the relational
logic representations of ILP. To represent a graph, we simply define a binary “edge” relation, with a set of instan-
tiations edge(x, y) for all the adjacent nodes x, y. Additionally, we may also use other (unary) relations to assign
attributes to the sets of nodes, such as red(x), etc.

The models then take the form of relational logic rules, enabling to capture an unbound variety of structures, from
characteristic motifs in molecules to paths in a network (Fig. 2). For instance, a (learned) relational model correctly
capturing paths in a graph, can be easily learned with a basic ILP system from but a few examples. The simplicity
of this problem within the relational representation formalism of ILP is then in direct contrast to the neural models
operating on the propositional foundation of fixed-size vectors (tensors). There, in order to properly embed the
same problem into the hypothesis space of a classic, fixed neural architecture, we would generally need to restrict
ourselves to fixed-size graphs, design an exponentially large network to capture all the possible (inference) paths,
in which it would be close to impossible for gradient descent to find the correct solution, and we would still not be
able to properly generalize to different (larger) graphs. Moreover, the learning difficulties remain even if we move
to theoretically expressive (Turing-complete) neural architectures, such as the (DeepMind’s) “Differentiable Neural
Computer” [22], which required an extreme number of examples and additional hacking (e.g., pruning out invalid
path predictions) to approximate the very same path-finding task through the (propositional) tensor representation,
emulating a “differentiable memory” [21].

While ILP is able to correctly capture the expressiveness of relational logic, it is not well suited for dealing with
noise and uncertainty, commonly present in real-world learning tasks. To address that issue, a number of meth-
ods arose to merge ILP with statistical learning under the notion of Statistical Relational Learning (SRL) [20],
such as the “graphicalization”5 approach of [17], transforming the relational domains into graphs on top of which
kernel methods were utilized. Generally, there have been two major streams of approaches in SRL – (i) proba-
bilistic logic programs [11] and (ii) lifted graphical models [31]. While the former builds heavily on the classic,
symbolic ILP formalism, the latter is much closer to standard statistical models, the expressiveness of which it
“lifts” from the propositional into the relational setting, while retaining proper logical semantics. Naturally, this is
highly relevant to the aforementioned problem of propositional fixation of neural networks and relational-level NSI
(Section 2.3).

5which can be seen as a lossless alternative to the discussed propositionalization.
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Fig. 3. Illustration of two forms of relational expressiveness, with CNNs (right) capturing a spatial pattern of a 3-neighborhood, and an MLN
(left) capturing a social pattern of smoking habits amongst friends, both reflected by the symmetries in the respective ground model computations.

3.3. Lifted graphical models

As opposed to standard (“ground”) machine learning models, such as neural networks, lifted models do not
specify a particular computation structure, but rather a logical “template” from which the standard models are being
unfolded as part of the inference (evaluation) process, given the varying context of the relational input data. For
instance, the (arguably) most popular lifted model – a Markov Logic Network (MLN) [42] may be seen as such a
template for the classic Markov networks. For example, such an MLN template may express a general prior that
“friends of smokers tend to be smokers” and “smoking may lead to cancer”. The learning data may then describe
a social network of people with a subset of smokers labeled as such. The lifted modeling paradigm of MLNs
then allows to induce the smoking probabilities of all the other people based on their social relationships, as if
modeled by a regular Markov network, yet correctly generalizing over social networks of diverse structures and
sizes, overcoming the propositional fixation of the base Markov model (Fig. 3).

The crucial ability to capture the unbound variability of the relational computation structures with a bounded
computation template necessarily induces some form of repeated regularities, i.e. symmetries, within any such un-
folded computation. In relational logic, these symmetries stem from the use of logical variables within the relations,
i.e. subsets of the Cartesian products defined over the respective sets of objects. That is, unless the computation is
effectively propositional as a corner case, one should be able to observe these repeated computational substructures,
including shared parameterization, in the unfolded computation of the (ground) model. And while the, relational
logic-based, lifted graphical models make this observation very explicit, we can actually observe the same princi-
ple being effectively exploited in many successful DL architectures, too, such as the popular CNNs, exploiting the
symmetry of translational equivariance.6 From this computational view, the CNNs can thus be seen as a particular
instance of an (implicit) relational modeling template (Fig. 3).

The proper logical semantics of the lifted graphical models is, however, redeemed by computational difficulties.
Due to the explicit treatment of the logic variable binding, these models are commonly viewed as computationally
expensive. Nevertheless, from the perspective of a general NSI system, this view is somewhat misleading since the
computation is exactly as complex as necessary to properly capture the respective relational (logic) expressiveness.7

However, the problematic factor is the structure of the resulting computation.

4. Structured computation graphs

For the sake of delving deeper into the (relational) computing structures in NSI, let us now define, a bit more
formally, the common DL abstraction of a computation graph. A computation graph G = (N , E,F ,W), composed

6or invariance with the use of the pooling operator.
7For instance, there are many useful relational templates (patterns) the computational complexity of which is simply linear, such as the CNNs

and almost all other weight-sharing neural models.



G. Šír / A computational perspective on neural-symbolic integration 7

Fig. 4. The symmetric weight-sharing patterns in the structured computation graphs of recurrent (left) and recursive (right) neural models.

of nodes N , edges E , activation functions F , and parameters W , is a general way to represent nested parameter-
ized functions using the language of graph theory. The neural networks are then commonly conveyed by the means
of directed, differentiable, data-flow graphs where the data, commonly represented as the numeric vectors (or ten-
sors) xk , “flow” through the directed edges e ∈ E while being successively transformed by the W-parameterized,
differentiable activation functions f ∈ F associated with the nodes N ∈ N , commonly referred to as “neurons”.

4.1. Basic deep learning

By far the most common computation paradigm in deep learning is to structure the computation graphs regularly
into homogeneous “layers”, which are used to refer to the sets of neurons {N |depthG(N) = k} residing at the same
depth k in G. An input layer k = 0 is then commonly used to represent the feature values x of the input data
samples (xi , yi ) themselves. An output layer k = depth(G) then corresponds to the target values y. The arguably
most popular computation structure is then a “fully-connected” design pattern, where the interconnections between
nodes in subsequent layers k and k + 1 follow Nk,Nk+1 : (Nk,Nk+1) ∈ E , forming a complete bipartite graph.

Moreover, each edge here is associated with a unique weight as E 1:1−→ W . Consequently, assuming the common
vector form of the input data samples xi , the computation can be efficiently reduced to a linear series of full (dense)
matrix Wk+1

k multiplications, each followed by an element-wise application of some non-linear function f k+1.

4.2. Relational neural models

The regular, dense, and homogeneous structure of the computation graph G, mapping to the basic matrix (tensor)
operations, is a salient feature of the basic neural models. Note that from the aforementioned perspective of the
lifted (graphical) models from SRL (Section 3.3) such computation, lacking any symmetries, is effectively propo-
sitional. However, there are also neural models designed to operate with some forms of relational data structures,
such as sequences, trees, and graphs, which necessarily need to reflect some level of relational expressiveness. As a
consequence, following the SRL reasoning from Section 3.3, their computations will, in contrast to the basic neu-
ral models, need to reflect some type of sparsity, heterogeneity, or irregularity, within the scope of the necessary
symmetries reflected by some form of regular weight-sharing patterns within their computation graphs. Let us now
inspect some common representatives of these neural models.

A Recursive Neural Network (RecNN) [41,46] is a neural architecture the computation graphs Gi of which di-
rectly follow the structure of each input example xi , which takes the form of a k-regular tree. This enables to learn
neural networks directly from differently-structured regular tree examples xi , as opposed to using some transforma-
tion into the fixed-size tensors x (Section 3.1).8 Here, the (vector) representations of every c leaf nodes xj , . . . , xj+c

with the same parent node N1
j in the respective computation tree Gi are consequently combined by a given c-

parameterized operation c, such as a c-weighted dot-product, to compute the representation of the parent N1
j . This

combining operation c then continues recursively for all the interior nodes, until the representation for the root node

8which can also be seen as graphs with completely regular grid topologies.
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Fig. 5. Compressing a typical GNN model computation (up) based on the contained computation graph symmetries, resulting into a much smaller
yet functionally equivalent computation (down), in the spirit of (symbolic) lifted inference [49], as implemented in LRNNs (Section 4.3).

Nk=d is computed, which forms the output of the model for xi . Similarly to the convolution in CNNs, this parame-
terized combining operation c over the children nodes is shared across the tree [45] however, differently from CNNs,
the resulting computation graph can be highly and irregularly sparse (Fig. 4).

Note that the basic form of the more common Recurrent Neural Networks (RNNs) [34] can then be seen as a
restriction of the RecNN computation to sequential structures xi (Fig. 4). There, the computation graph G in the
form of a linear binary tree is successively unfolded along the input sequence to compute the hidden representation
for each node Ni based on the previous node’s Ni−1 representation, and the current input features xi .

The most popular recent addition in this category are then Graph Neural Networks (GNN) [5,43] which, in
contrast to the RNNs, can be seen as an extension of RecNNs to completely irregular graph data xi = {Ni , Ei}. For
that purpose, they unfold the computation graph Gi structure from each input structure xi , similarly to the RecNNs.
However, a GNN still follows the standard layered approach (Section 4.1), where the structure of each layer k

exactly follows the structure of the whole input graph xi . For computation of the next layer k + 1 representations
of the nodes in Gi , each node N calculates its own value h(N) by aggregating A (“pooling”) the (vector) values of
the nodes M : (N,M) ∈ Ei adjacent in the input graph xi (“message passing”), transformed by some parametric
function CW1 (“convolution”), which is again being reused with the same parameterization Wk

1 within each layer k

(Fig. 5). However, in contrast to RecNNs, a different parameterization is typically used at each layer.

4.3. Lifted relational neural networks

Lifted Relational Neural Networks [47] can be seen as a further generalization of the GNNs to arbitrary rela-
tional structures, covering all the previous models as special cases [48]. For that, they transfer the strategy of lifted
modeling (Section 3.3) into a deep learning setting, effectively extrapolating the original, direct neuro-symbolic
correspondence between deep learning and propositional logic (Section 2.2) straight into fully expressive relational
setting.

Similarly to the lifted graphical models (Section 3.3), they adopt the language of weighted relational logic as their
foundation, endowing them with explicit variable binding and symbolic reasoning capabilities, as found in the ILP
systems (Section 3.2). This covers the sought-after ability to manipulate unbound structures xi , such as correctly
resolving various path-finding (planning) problems (Fig. 2). However, differently from ILP and SRL, they introduce
a differentiable semantics to the language, endowing them with ability to also directly model various deep learning
architectures. Particularly, all the introduced CNN, RNN, RecNN, and GNN examples come directly from trivial
differentiable logic programs in the LRNN framework [48]. This is in contrast to the modern (tensorization) NSI
systems (Section 2.4) that build on top of the existing static DL compute stack, forcing them to map the logical
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semantics into fixed-size tensors, losing the relational expressiveness in the process (Section 3.1). Nevertheless, this
also means that LRNNs necessarily share the computational difficulties associated with the relational expressive-
ness, particularly the dynamically structured computation graphs Gi , notoriously incompatible with the GPUs [39].

5. Hardware and software lottery

It is instructive to note again the RecNNs architecture, which can be seen as a strict generalization of the common
RNNs, adding significant flexibility by exploiting also the sentence structure in NLP, while retaining comparable
computation complexity.9 Moreover, in contrast to the RNNs, the RecNNs can, in principle, be parallelized, thanks
to the recursive decomposition. Nevertheless, they have never reached anywhere near the popularity of the simpler
RNNs, as they were notoriously difficult to effectively implement in the mainstream, fixed-size tensor-based deep
learning frameworks.10 A similar story then followed with the subsequent replacement of the RNNs with Trans-
formers [52], the core “attention” concept of which can be seen simply as a restriction of the GNN computation to
fixed-size, fully connected graphs. This hardwired restriction removes the relational flexibility w.r.t. the GNNs and
restricts the length of the input sequence w.r.t. the RNNs, while also substantially increasing the computation com-
plexity from linear to quadratic. Nevertheless, it is exactly these apparent drawbacks that provide the architecture
one crucial advantage – it is perfectly aligned with the current HW stack, particularly the GPUs.

The GPU architecture is inherently based on the “single instruction, multiple data” (SIMD)11 concept [15], en-
abling for high-throughput data-parallel processing of dynamic values through static operations. With neural net-
works, this generally means static, regular, and dense structure of the computation graph, which maps perfectly to the
homogeneous, fixed-size tensor processing underlying the mainstream deep learning architectures and frameworks.
On the contrary, the dynamic, sparse, irregular, and heterogeneous nature of the discussed (lifted) neural models,
reflecting some level of relational expressiveness, is highly problematic to this mainstream regime of compute. And
the situation is further considerably worse with the symbolic (logic) computation (Section 3.2), commonly relying
on conditional branching and looping (recursion).

5.1. Accelerating symbolic computation

The maturity of the existing HW&SW DL ecosystem naturally incentivizes NSI researchers away from the ex-
pressive symbolic computation towards further “tensorization” of their systems [19], even in cases where such a
choice would otherwise be conceptually inappropriate, which has a self-reinforcing side-effect of regressing to the
same models [27]. This is becoming noticeable with more and more NSI methods operating simply as modules on
top of existing tensor-based frameworks [2]. However, the symbolic computation, as exploited in the classic (rela-
tional) AI tasks, is often inherently sequential, stateful, and conditional, leading to dynamically sized and structured
computation graphs, the forms of which are just impossible to properly embed into the common fixed-size tensor
processing on GPUs.

For instance, the computation of a relational (lifted) model (Section 3.3) may completely change from sample to
sample, making it principally incompatible with the SIMD philosophy of the GPU architecture. Importantly, this
does not mean that the relational (symbolic) compute strategy would itself be somehow inferior or impossible to
accelerate. On the contrary, akin to batching in DL, one can always naively parallelize in the data dimension across
multiple CPU threads, utilizing its “multiple instructions, multiple data” (MIMD) capabilities. Consequently, should
the evolution of CPU parallelism have reflected its GPU counterpart, i.e. chips with (hundreds of) thousands of CPU
threads be readily available, there would be no need to sacrifice the symbolic capabilities in NSI systems. Moreover,
the symbolic model representation also offers a much broader range of interesting acceleration strategies, such as
lifted inference [51], in contrast to the comparatively brute-force approach of the GPU-based DL.

9depending on the specific parse/dependency tree representation, but generally O(n · log(n)) at worst.
10A notable, yet largely unsuccessful, attempt to improve this situation was, e.g., Tensorflow Fold [35].
11A bit more precise term with modern GPUs is SIMT, combining SIMD with multi-threading which, however, shares the same limitation as

all the threads effectively execute the same logic.
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5.2. Accelerating graph neural networks

An interesting borderline example between these two, largely separate, worlds of symbolic and neural compute
are the aforementioned GNN models, which can be seen as an instance of deep learning evolving in the direc-
tion of relational learning. Since the GNNs are able to (partially) capture graph-structured data, they necessarily
reflect some level of (symbolic) relational logic expressiveness. Particularly, their expressive power corresponds
to a guarded fragment of C2 logic [24,48].12 Similarly to the other relational models, this increased, albeit still
relatively limited (e.g., compared to the LRNNs [48]), expressiveness already takes its toll in their compute struc-
ture. Particularly, the variability of the input graph data, reflected in the irregularly sparse interconnection patterns
within the GNN layers requiring random access to the underlying tensor indices (through respective gather/scatter
operations [14]), is highly detrimental to the classic GPU acceleration.

However, the significant rise in popularity of the GNN-like architectures, driven by the omnipresence of the
graph data structures in real-world problems, has come with an interesting paradigm shift in which the SW and
HW developers started to actively reflect back on these alternative computing concepts in AI, too. Consequently,
there have been new SW frameworks emerging [14,29], and most of the latest GPU cards support some levels of
sparsity [8]. This is an interesting step in a direction beneficial for NSI [33], however, it is still far from a proper
foundation for the full NSI compute, which can never fully fit the SIMD design of the GPUs. The corresponding
low-level optimizations here are still largely incremental, building heavily on the legacy of the matrix-multiplication-
based architectural design. Moreover, they tend to be increasingly specific, e.g., enforcing particular, fixed sparsity
patterns [8], or even containing hardwired acceleration for particular models, such as the Transformers [7].

In contrast, the high-level, HW-independent, symbolic acceleration techniques are much more principled and
reusable. For instance, in the spirit of NSI, the symbolic techniques of lifted inference (Section 3.3) can be trans-
ferred into deep learning to effectively accelerate relational neural models, such as the GNNs, by exploiting the
inherent symmetries contained in their computation graphs. This results into explicitly smaller neural computation
that effectively performs the exact same function (Fig. 5), which was unprecedented in deep learning [49]. Conse-
quently, using this symbolic technique, even a naive CPU implementation of a GNN model can become faster than a
specialized GPU-accelerated implementation [49].13 However, should we completely fixate on the GPU-based deep
learning as the foundation for NSI, our possibilities for such a beneficial transfer of symbolic techniques into deep
learning (and vice-versa) might gradually become extinct.

6. Conclusion – a call for neuro-symbolic HW

In the past, AI researchers used to design their algorithms independently of the underlying HW, relying on the
universal capabilities of the CPU architecture, and its all-encompassing acceleration through the Moore’s law [44].
However, in this new era of AI compute, an inadequate alignment with the existing specialized HW can easily
turn conceptually strong ideas upside down. The prospect of the GPU acceleration, together with the mature DL
SW ecosystem built upon that foundation, naturally incentivizes researchers to adjust their ideas to this mainstream
regime of compute in order to reap its benefits. However, as argued throughout this paper, this choice has important
consequences, especially for NSI.

While the SIMD architecture of the GPUs is a perfect fit for the current, tensor-based neural models, the principles
of the symbolic methods are closely connected to the universal flexibility of the CPUs. The vision of a proper, fully
expressive and efficient NSI computation thus calls for a much tighter integration between the CPU and GPU
features than currently present. Instead of incremental improvements of the, principally limited, SIMD approach,
for NSI it would be much more meaningful to transfer the MIMD principles from CPUs onto a significantly more
parallel, high-throughput, low-latency foundation.

While the AI industry is currently dominated by the GPU-based applications of DL with largely predictable
business potential, it is highly unlikely that we will see the same amount of interest in acceleration of the, more

12Relational logic with neighbor “guards”, counting quantifiers, and at most 2 variables [24].
13Particularly in relational domains with highly symmetric graph structures, such as molecular chemistry.
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demanding, symbolic computing. The NSI community is just too small of a niche to attract the astronomical invest-
ments needed for development of such a new HW architecture. However, with the rapid growth in popularity of the
GNN models, reflecting some of the computing demands of the symbolic methods, we start to see first signs of the
needed HW convergence with newly emerging architectures, such as the Intelligence Processing Unit (IPU) [30], fi-
nally breaking beyond the SIMD legacy of the GPUs, and currently leading the GNN performance benchmarks [28].
While still far from meeting all the compute demands of a general NSI system, it might be very interesting for re-
searchers to watch this emerging stream of novel computing architectures, bearing promise to enable exploring truly
novel and expressive neural-symbolic systems.
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J. Agapiou et al., Hybrid computing using a neural network with dynamic external memory, Nature 538(7626) (2016), 471–476. doi:10.
1038/nature20101.

https://doi.org/10.1561/2200000006
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MM.2021.3061394
http://arxiv.org/abs/2002.11002
http://arxiv.org/abs/2002.11002
http://arxiv.org/abs/2003.08316
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1007/s10994-015-5494-z
http://arxiv.org/abs/1705.08968
http://arxiv.org/abs/1705.08968
https://doi.org/10.1145/77626.79170
http://arxiv.org/abs/1903.02428
https://doi.org/10.1109/PROC.1966.5273
https://doi.org/10.1007/s10994-013-5392-1
https://doi.org/10.1016/j.artint.2014.08.003
http://arxiv.org/abs/1410.5401
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101


12 G. Šír / A computational perspective on neural-symbolic integration

[23] K. Greff, S. Van Steenkiste and J. Schmidhuber, On the binding problem in artificial neural networks, 2020, arXiv preprint arXiv:2012.
05208.

[24] M. Grohe, The logic of graph neural networks, in: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE,
2021, pp. 1–17.

[25] D. Haussler and M. Warmuth, The Probably Approximately Correct (PAC) and Other Learning Models, Springer, 1993.
[26] P. Hitzler and M.K. Sarker, Neuro-Symbolic Artificial Intelligence: The State of the Art, 2022.
[27] S. Hooker, The hardware lottery, Communications of the ACM 64(12) (2021), 58–65. doi:10.1145/3467017.
[28] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong and J. Leskovec, Ogb-lsc: A large-scale challenge for machine learning on graphs, 2021, arXiv

preprint arXiv:2103.09430.
[29] M. Innes, Flux: Elegant machine learning with Julia, Journal of Open Source Software (2018). doi:10.21105/joss.00602.
[30] Z. Jia, B. Tillman, M. Maggioni and D.P. Scarpazza, Dissecting the graphcore ipu architecture via microbenchmarking, 2019, arXiv preprint

arXiv:1912.03413.
[31] A. Kimmig, L. Mihalkova and L. Getoor, Lifted graphical models: A survey, Machine Learning 99(1) (2015), 1–45. doi:10.1007/s10994-

014-5443-2.
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