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Abstract.

BACKGROUND: Despite the promising effects of robot-assisted gait training (RAGT) on balance and gait in post-stroke
rehabilitation, the optimal predictors of fall-related balance and effective RAGT attributes remain unclear in post-stroke
patients at a high risk of fall.

OBJECTIVE: We aimed to determine the most accurate clinical machine learning (ML) algorithm for predicting fall-related
balance factors and identifying RAGT attributes.

METHODS: We applied five ML algorithms—Ilogistic regression, random forest, decision tree, support vector machine
(SVM), and extreme gradient boosting (XGboost)—to a dataset of 105 post-stroke patients undergoing RAGT. The variables
included the Berg Balance Scale score, walking speed, steps, hip and knee active torques, functional ambulation categories,
Fugl-Meyer assessment (FMA), the Korean version of the Modified Barthel Index, and fall history.

RESULTS: The random forest algorithm excelled (receiver operating characteristic area under the curve; AUC=0.91)
in predicting balance improvement, outperforming the SVM (AUC =0.76) and XGboost (AUC=0.71). Key determinants
identified were knee active torque, age, step count, number of RAGT sessions, FMA, and hip torque.

CONCLUSION: The random forest algorithm was the best prediction model for identifying fall-related balance and RAGT
determinants, highlighting the importance of key factors for successful RAGT outcome performance in fall-related balance
improvement.
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1. Introduction

Post-stroke falls are a leading cause of long-term
disability and are implicated in hip and knee mus-
cle weakness, dynamic balance, and sensorimotor
impairment (Kligyte et al., 2003; Marigold et al.,
2004; Nobile et al., 2014). The absence of appro-
priate management of post-stroke falls can result in
serious secondary problems (Batchelor et al., 2012;
Dockery & Sommerville, 2015). Additionally, age,
sex, sensorimotor recovery, dynamic balance, gait
speed, and a history of falls have been identified as
important demographic and clinical attributes of post-
stroke falls (Campbell & Matthews, 2010; Foster et
al., 2018).

To mitigate post-stroke falls, we developed a novel
robot-assisted gait training (RAGT) system, which is
designed to provide dynamic balance and gait train-
ing using impedance force and assist-as-needed mode
in individuals at a high risk of fall after stroke (Seo
et al., 2018; Aprile et al., 2022; Calafiore et al.,
2022). Current RAGT systemic evidence suggests
that RAGT is effective and promising for improving
balance and gait function in post-stroke rehabilita-
tion; however, fall-related and RAGT attributes have
not been identified in individuals with post-stroke at
a high risk of fall (Tedla et al., 2019; Kuo et al.,,
2021; Loro et al., 2023). Moreover, the exact deter-
minant factors associated with fall-related balance
clinical outcome measures and RAGT parameters
that potentially best contribute to recovery outcomes
in post-stroke patients at a high risk of fall remain
unknown (Luetal.,2021; Yangetal., 2021; Jonsdottir
et al., 2023).

Fall-related balance clinical outcome measures
include the Berg Balance Scale (BBS), Functional
Ambulation Categories (FAC), Fugl-Meyer assess-
ment (FMA), Korean version of the Modified Barthel
Index (KBMI), and fall history (Maeda et al., 2009;
Hiengkaew etal., 2012; Shin et al., 2013). The RAGT
parameters encompass walking speed, steps, hip and
knee active torques, and number of RAGT sessions
(Tanaka et al., 2019; Park et al., 2022). Hence, accu-
rately predicting and identifying fall-related balance
and gait factors, as well as determining the most effec-
tive RAGT attributes for post-stroke falls is needed
(Lee & Jung, 2017; Jonsdottir et al., 2023; Abdollahi
etal., 2024).

Contemporary machine learning (ML) studies
have demonstrated an outstanding precision in
predicting and identifying important determinants
associated with the effectiveness of RAGT properties

on gait recovery, which has helped improve clini-
cal decision-making for robotic stroke rehabilitation
(Kuo et al., 2021; Wardhana et al., 2023). Neverthe-
less, the accurate prediction of fall-related balance
and gait attributes and the identification of RAGT
attributes in post-stroke patients at a high risk of
fall warrant further investigation. We aimed to ascer-
tain five clinical ML algorithms, including logistic
regression, random forest, decision tree, support vec-
tor machine (SVM), and extreme gradient boosting
(XGboost), to best predict fall-related balance factors
accurately and to identify the most effective RAGT
attributes in individuals with post-stroke at high risk
of fall.

2. Materials and methods
2.1. Data collection

This retrospective analysis involved data col-
lected from 163 patients with subacute stroke who
underwent Walkbot training at Myongji Choonhey
Rehabilitation Hospital between March 2018 and
December 2023. After ensuring data completeness
and integrity, the sample was narrowed to 105
adult patients diagnosed with subacute or chronic
stroke. The inclusion criteria were as follows: (1)
first occurrence of ischemic or hemorrhagic stroke;
(2) completion of at least 10 sessions of stroke
rehabilitation intervention; (3) an initial BBS score
of<21; (4) an initial FAC score of<4; and (5)
no other complicating neurological conditions such
as dementia or brain tumors. The exclusion crite-
ria were as follows: (1) participation in any other
medical or rehabilitation study within the past 6
months; (2) receipt of botulinum toxin injections
within the last 3 months; (3) presence of severe
verbal, cognitive, or visual deficits, as identified by
the National Institutes of Health Stroke Subscale;
and (4) any prior surgical interventions that could
influence balance or gait. Figure 1 illustrates the
methodological flowchart used in this study. This
study was approved by the Institutional Review
Board of Myongji Choonhey Rehabilitation Hospital
(MJCHIRB-2023-02) on October 04, 2023.

The stroke rehabilitation intervention combined
conventional stroke neurorehabilitation (CSN) and
RAGT, each lasting for 30 min per session, total-
ing 60 min daily, 5 d a week. CSN incorporates
proprioceptive neuromuscular facilitation (PNF) and
neurodevelopmental treatment (NDT) techniques
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Fig. 1. Flowchart of model development for predicting the effectiveness of robot-assisted gait training for patients with stroke.

to improve sensorimotor recovery and function
(Krukowska et al., 2016; Smedes et al., 2016; Smedes
& da Silva, 2019).

2.2. Classification of balance improvement

Balance improvement was assessed using the BBS,
which included 14 items rated on a scale of O (unable
to perform) to 4 (performed with ease) (Wang et al.,
2021; Alshahrani & Reddy, 2024). A high risk of
fall in post-stroke patients is operationally defined
as a BBS score<20 (Berg, 1992; Eichler et al,,
2022). Patients were categorized into high or low
improvement groups based on the minimal clini-
cally important difference, defined as a 12.5-point
change in the BBS (Song et al., 2018). The distri-
bution of changes in BBS scores was analyzed, with
changes > 12.5 points categorized as high improve-
ment (55 patients, 52.4%) and changes of <12.5
points as low improvement (50 patients, 47.6%).

2.3. Prediction model selection and training

This phase aimed to predict balance improvement
by selecting the optimal number of input sessions
based on the highest area under the receiver operat-
ing characteristic (ROC) curve (AUC) in the test set.
A ten-fold cross-validation was used to develop and
validate Model 1 using five ML algorithms: logistic
regression, random forest, decision tree, SVM, and
XGboost. These models underwent a 10-fold cross-
validation process on the training dataset to ensure
a robust and unbiased evaluation. These predictive
models were developed and evaluated using Python
(version 3.11.0; Python Software Foundation) lever-
aging the latest computational techniques to enhance
the analytical rigor of the study.

2.4. Model evaluation

The model performance was evaluated based on
accuracy, recall, precision, F1 score, and AUC curve
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Table 1
Descriptive statistics of continuous variables of the improvement and no-improvement groups in RAGT
Continuous variables High improvement Low improvement t p-value
(n=55) (n=50)
Mean SD Mean SD

Age (years) 55.7 12.2 62.8 13 291 0.004*
RAGT sessions, n 28.6 15.5 24.6 14.6 -1.34 0.18
Pre-FMA 14.2 11.0 19.1 15.1 1.92 0.06
Post-FMA 21.8 12.6 233 16.3 0.53 0.59
KBMI 34.1 17.9 39.4 21.9 1.35 0.18
Fall history 0.27 0.6 0.62 0.8 2.44 0.01*
15 step 383.2 156.4 402.6 137.9 0.67 0.5
1% speed 1.08 0.1 1.06 0.1 -0.91 0.36
1%t Lt Hip torque 1.6 7.6 1.9 74 0.21 0.83
1% Lt Knee torque 6.6 1.8 4.3 4.2 4.04 0.00*
1% Rt Hip torque 2.4 7.7 39 8.2 0.99 0.32
15t Rt Knee torque 2.8 4.5 -3.1 52 -0.33 0.74
Last step 688.2 162.1 619.9 190.9 -1.98 0.05
Last speed 1.1 0.1 1.07 0.1 0.17 0.86
Last Lt Hip torque 2.8 8.6 1.6 8.6 -0.71 0.48
Last Lt Knee torque -2.6 5.1 -1.2 5.4 1.41 0.16
Last Rt Hip torque 4.8 9.9 34 8.8 -0.74 0.45
Last Rt Knee torque —4.2 5.6 -1.8 4.6 242 0.01*

*p <0.05; RAGT, robot-assisted gait training; FMA, Fugl-Meyer assessment; KBMI, Korean version of the Modified Barthel

Index; LT, left; Rt, right; SD, standard deviation.

(Wardhani et al., 2019). The accuracy was calcu-
lated as the sum of true positives and negatives
divided by the total number of predictions (Ali
et al.,, 2023). Recall assesses the proportion of
correctly identified true positives, whereas preci-
sion measures the accuracy of positive predictions
(Rostampour, 2023). The F1 score, which rep-
resents the harmonic mean of the precision and
recall, was used for a balanced assessment of the
model’s performance (Liao et al., 2022). The AUC-
ROC demonstrates the discriminatory power of
the model across all classification thresholds (Ros-
tampour, 2023). Together, these metrics provide a
comprehensive assessment of the model’s predictive
performance, from its overall accuracy to its bal-
ance between precision and recall to its discriminative
power, as illustrated by the AUC-ROC (Xiong et al.,
2024).

2.5. Statistical analysis

We employed a descriptive statistical analysis to
differentiate patients based on their level of improve-
ment following RAGT, incorporating clinical data
and parameters derived from the RAGT sessions,
employing the BBS as a comparative measure of
patient progress from the initial session to the final
session before discharge. The dataset included a mix
of continuous variables such as age, number of RAGT

sessions, FAC, FMA, KBM]I, fall history, and categor-
ical variables such as the affected brain side, sex, and
diagnosis. Means and standard deviations were cal-
culated for continuous variables, and frequencies and
percentages were used for categorical variables. The
independent t-test and chi-square test were applied
for continuous and categorical variables, respectively,
to compare the baseline characteristics between the
improved and nonimproved groups. Statistical signif-
icance was set at p < 0.05. All statistical analyses were
performed using the SPSS software (version 27, IBM,
Chicago, IL) to ensure a robust and comprehensive
evaluation of the data.

3. Results
3.1. RAGT parameters

Descriptive statistical analyses of the continuous
and categorical variables of the 105 patients, and the
means and standard deviations of all variables are pro-
vided in Tables 1 and 2. Significant differences were
observed between the low- and high-improvement
groups regarding patient age and history of falls.
Regarding the RAGT parameters, significant differ-
ences were noted between the two groups in first left
knee torque and last right knee torque.
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Table 2
Descriptive statistics of categorical variables of the improvement and no-improvement groups in RAGT
Categorical High improvement Low improvement x? p-value
variables (n=55) (n=50)
n % n %
Sex 0.02 0.89
Male 37 35.2 33 314
Female 18 17.1 17 16.2
Initial FAC 5.36 0.15
0 33 314 21 20.0
1 18 17.1 20 19.0
2 4 3.8 7 6.7
3 2 1.9
Diagnosis 0.56 0.45
Ischemic CVA 29 27.6 30 28.6
Hemorrhagic CVA 26 24.8 20 19.0
Affected side 1.08 0.58
Left 24 229 19 18.1
Right 29 27.6 27 25.7
Both 2 3.6 4 3.8

*p <0.05; RAGT, robot-assisted gait training; FAC, functional ambulation category; CVA, cerebral vascular accident.

Table 3
Machine learning model predictive accuracy for BBS improvements
Algorithm AUC Accuracy Sensitivity Specificity
Logistic regression 0.701 4 0.001 0.678 £0.002 0.705 4+ 0.003 0.633 £0.002
Random forest 0.803 +0.011 0.689 +0.024 0.805 +0.044 0.544 +0.047
Decision tree 0.656 4 0.009 0.653 +0.008 0.655+0.015 0.691 +0.017
Support vector machine 0.762 +0.002 0.709 + 0.045 0.758 +0.003 0.606 +£0.014
Extreme gradient boosting 0.708 4 0.003 0.642 +0.002 0.708 +0.003 0.571+0.017

Prediction performance of the model using clinical data and RAGT parameters for improvement by ten-fold cross-validation. BBS, Borg

Balance Scale; AUC, area under the curve; RAGT, robot-assisted

gait training.

Table 4 10
Machine learning model predictive accuracy of test set for BBS P
improvements ’/'
- — 08 e
Algorithm AUC Accuracy Precision F1 @ ’/’
Random Forest 0.91 0.79 0.74 0.77 % 06 1 T
BBS, Borg Balance Scale; AUC, area under the curve. g /—"
v 04 -
H
02 e
3.2. ML model to predict accuracy for BBS ’,/' —— ROC Curve (area = 0.91)
} 00 = : : . ,
improvements 0.0 0.2 04 0.6 08 10
False Positive Rate

We assessed five ML models—logistic regres-
sion, random forest, decision tree, SVM, and
XGboost—using patient data to predict balance
improvement after Walkbot training. The models
were evaluated using performance metrics including
AUC, accuracy, sensitivity, and specificity (Table 3).
Random forest was the best method, achieving an
AUC of 0.803 and an accuracy of 68.9% during train-
ing; the evaluation of the test set demonstrated an
accuracy of 79%, precision of 0.74, F1 score of 0.77,
and a notable ROC AUC of 0.91 (Table 4 and Fig. 2).

Fig. 2. Retrained machine learning model results. The receiver
operator characteristic curve is used to evaluate the merit of the

classification model.

3.3. Classification efficacy to predict balance

improvement

As shown in Table 5, the precision to predict

patients who would show low improvement (Class 0)
was calculated at 0.80. The recall for this class was
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Classification efficacy in predicting balance improvement

Precision Recall F1-score Support
Low improvement (Class 0) 0.80 0.89 0.84 18
High improvement (Class 1) 0.83 0.71 0.77 14
Accuracy 0.81 32
Macro average 0.82 0.80 0.81 32
Weighted average 0.81 0.81 0.81 32
Last Knee Torque
First Knee Torque
Age
Last Step
Number of RAGT Sessions
PostFMA
First Hip Torque
Last Hip Torque
KBMI
Pre FMA
000 0.02 004 006 0.08 010
Importance

Fig. 3. The 10 important features in random forest. RAGT, robot-assisted gait training; FMA, Fugl-Meyer assessment; KBMI, Korean

version of the Modified Barthel Index.

0.89. For the prediction of high patient improvement
(Class 1), the model achieved a marginally superior
precision of 0.83. Conversely, recall was lower at
0.71. The resulting F1 score for this category stood
at 0.77. The overall accuracy of the model was 0.81,
indicating that it correctly predicted 81% of the test
set outcomes. The macro-average precision was 0.82,
with an almost parallel average recall of 0.80, yield-
ing a macro-average F1 score of 0.81.

3.4. Feature importance

Figure 3 shows that the last session knee torque is
the attribute considered the most important within the
random forest model, followed by the first-session
knee torque, age, last step rate, number of RAGT
sessions, post-FMA, first hip torque, last hip torque,
KBMLI, and pre-FMA.

4. Discussion
The random forest algorithm was excellent in the

prediction of fall-related balance improvement. Most
importantly, knee active torque or strength, followed

by age, steps, number of RAGT sessions, FMA, and
hip torque, were identified as major determinants.
The present investigation is the first clinical ML study
to highlight the importance of key factors for suc-
cessful RAGT outcome performance in fall-related
balance and gait improvement.

The five outstanding ML algorithms were imple-
mented to accurately predict and identify fall-related
balance factors and RAGT determinants in 105
hemiparetic stroke datasets. The fall-related balance
factors, including BBS score and RAGT determi-
nants encompassing speed, steps, and hip and knee
active torques recorded during RAGT sessions, were
used along with the clinical variables (FAC, FMA) to
identify key predictors of RAGT neurorehabilitation.
This finding is consistent with earlier clinical ML
evidence that demonstrated that the random forest
algorithm (AUC=0.91) was excellent in predicting
fall-related balance improvement, followed by
SVM (AUC=0.762) and XGboost (AUC=0.708)
(Kuo et al., 2021; Campagnini et al., 2022). Kuo
et al. (2021) demonstrated that the random forest
algorithm (AUC=0.879) was excellent in pre-
dicting the performance of the model for FAC
improvement, followed by XGboost (AUC =0.854)
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and logistic regression (AUC=0.853) (Kuo et al,,
2021). Campagnini et al. (2022) confirmed that
the forest algorithm had the best overall results in
terms of accuracy (76.2%) of predicting models
for the functional prognosis of post-stroke patients,
followed by SVM (72.6%) and logistic regression
(64.1%) (Campagnini et al., 2022). Contemporary
ML evidence suggested that, with AUC values of
>0.80 representing excellent discrimination and
values between 0.70 and 0.79 considered acceptable,
these metrics are particularly valuable in situations
that require greater precision (Mar et al., 2020).
Moreover, the random forest algorithm demonstrated
superior performance compared with the four other
ML models in this study. This advantage is primarily
attributed to the ensemble method, which effectively
manages complex datasets and data irregularities,
including overfitting, outliers, and incomplete data
(Liu et al., 2012; Schonlau & Zou, 2020).

The random forest model identified five major
determinants of balance, including knee active torque
from the last and first sessions, followed by age, step
rate, and number of RAGT sessions. Knee active
torque or strength was the most important attribute,
which was potentially enhanced by the application of
RAGT. Similar to our findings, Marques et al. (2017)
suggested that increased active knee torque improves
balance performance (Marques et al., 2017). Age is
another determining factor, as evidenced by older
post-stroke patients with lower BBS balance scores at
admission (Maeda et al., 2009). Additionally, Meyer
etal. suggested that older age and greater stroke sever-
ity negatively affect functional and motor recovery
(Meyer et al., 2015). The last step rate and number of
RAGT sessions were also important determinants of
fall-related balance. The last step rate variable might
be indicative of the degree of recovery of the patient’s
gait asymmetry. Gait asymmetry is correlated with
stride length and balance measures (r=0.39 to 0.54),
suggesting an association between gait asymmetry
and falls after stroke (Lewek et al., 2014). Moreover,
our results are consistent with those of previous stud-
ies showing a relationship between balance ability
and step variables, including gait speed, step width,
and symmetry, in patients with hemiplegic stroke (r=-
0.36t00.63) (Lewek et al., 2014; Liu et al., 2016; An
et al., 2017).

The number of RAGT sessions was identified
as an important determinant. Earlier RAGT studies
suggest that an increased number of RAGT ses-
sions is positively associated with fall-related balance
improvements (Swinnen et al., 2014; Chung, 2017).

Straudi et al. found that stroke patients who achieved
higher functional recovery spent more time in the hos-
pital and received more RAGT sessions than those
who did not (Straudi et al., 2020). This finding sup-
ports the idea that the RAGT stroke rehabilitation
strategy enhances hip and knee muscle strength (as
evidenced by hip and knee torque) in the paretic limb,
leading to improvements in fall-related balance con-
trol, gait symmetry, and speed determinant factors.

4.1. Study limitations

The limitations of this study should be consid-
ered in future research. One major limitation is that
our study included a heterogeneous sample size and
number of RAGT intervention sessions. Another lim-
itation is that we focused on changes in fall-related
balance in response to RAGT parameters and clini-
cal outcome measures. Careful interpretation should
be applied when generalizing our RAGT parameters
for subacute post-stroke neurorehabilitation. Never-
theless, this is the first clinical evidence highlighting
an important predictive model and identifying the
cardinal determinants of RAGT intervention.

5. Conclusion

Our clinical machine model data demonstrated that
the random forest algorithm was the best prediction
model for identifying fall-related balance factors and
RAGT determinants, highlighting the importance of
key factors for successful RAGT outcome perfor-
mance in fall-related balance and gait improvement.
Our results provide important clinical insights into
how clinical ML can help accurately identify fall-
related balance factors and important attributes of
RAGT protocols when designing effective and sus-
tainable RAGT strategies in post-stroke individuals
at a higher risk of falls.
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