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Abstract.
BACKGROUND: Although clinical machine learning (ML) algorithms offer promising potential in forecasting optimal
stroke rehabilitation outcomes, their specific capacity to ascertain favorable outcomes and identify responders to robotic-
assisted gait training (RAGT) in individuals with hemiparetic stroke undergoing such intervention remains unexplored.
OBJECTIVE: We aimed to determine the best predictive model based on the international classification of functioning
impairment domain features (Fugl–Meyer assessment (FMA), Modified Barthel index related-gait scale (MBI), Berg balance
scale (BBS)) and reveal their responsiveness to robotic assisted gait training (RAGT) in patients with subacute stroke.
METHODS: Data from 187 people with subacute stroke who underwent a 12-week Walkbot RAGT intervention were
obtained and analyzed. Overall, 18 potential predictors encompassed demographic characteristics and the baseline score
of functional and structural features. Five predictive ML models, including decision tree, random forest, eXtreme Gradient
Boosting, light gradient boosting machine, and categorical boosting, were used.
RESULTS: The initial and final BBS, initial BBS, final Modified Ashworth scale, and initial MBI scores were important
features, predicting functional improvements. eXtreme Gradient Boosting demonstrated superior performance compared to
other models in predicting functional recovery after RAGT in patients with subacute stroke.
CONCLUSION: eXtreme Gradient Boosting may be an invaluable prognostic tool, providing clinicians and caregivers
with a robust framework to make precise clinical decisions regarding the identification of optimal responders and effectively
pinpoint those who are most likely to derive maximum benefits from RAGT interventions.
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1. Introduction

Although clinical machine learning (ML) algo-
rithms offer promising potential in forecasting
optimal stroke rehabilitation outcomes, their spe-
cific capacity to ascertain favorable outcomes and
identify responders to robotic-assisted gait train-
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ing (RAGT) in individuals with hemiparetic stroke
undergoing such intervention remains unexplored.
Thakkar et al. (2020) used ML models to fore-
cast the prognostic sensorimotor functional recovery
based on three key predictors in 239 individuals with
chronic hemiparetic stroke who received a compre-
hensive task-oriented intervention, including RAGT.
Kuo et al. (2021) applied ML models to ascertain
the functional ambulatory category outcome based on
demographic and clinical characteristics (e.g., onset
time, side of the lesion, age, sex, diagnosis, and
initial functional ambulatory category) and RAGT
parameters (e.g., body weight support, guiding force,
and speed) in 91 individuals with stroke, spinal cord
injury, traumatic brain injury, and other neurological
disorders. These studies reported good to excel-
lent accuracy (85.42–98.23%). However, clinical ML
predicting best stroke rehabilitation responders to
exoskeletal RAGT remains unknown because the
baseline international classification of functioning
(ICF) clinical functional (e.g., Fugl–Meyer assess-
ment (FMA), Modified Barthel Index (MBI), and
Berg balance scale (BBS)) were not accounted to best
predict the model. In fact, the initial impairment level
has been used to identify subacute stroke patients
who are more likely to experience proportional recov-
ery, where the amount of recovery is proportional to
the initial impairment according to the Proportional
Recovery Rule (Kundert et al., 2019; Bowman et
al., 2021; Krakauer & Marshall, 2015). Moreover, it
remains unknown which ML algorithms are the best
to predict the best stroke rehabilitation responders
in individuals with subacute hemiparetic stroke who
received RAGT based on the ICF clinical functional
and structural impairments-related features (Thakkar
et al., 2020). Therefore, there is a need to develop
special tree-based ML algorithms to predict the best
responders for RAGT stroke rehabilitation based on
the baseline demographic and clinical impairment
features. Our aim was to develop the predictive mod-
els based on the ICF clinical functional and structural
impairment measure-related features in patients with
subacute stroke and determine their responsiveness
to RAGT.

2. Materials and methods

2.1. Study design

This was an observational cohort study that used
secondary analysis of data from our previous ongo-

ing projects. Data screening was performed by three
investigators. Two investigators determined the eli-
gibility and completeness of the data. Patients that
completed the interventions and outcome measure-
ments at pre- and post-intervention were included for
analysis during 01.01.2022∼01.01.2023.

2.2. Participants

In total, 187 patients with subacute stroke (mean
age, 64 ± 13.33 years; sex, 111 male and 76 female
individuals) were recruited from a major hospital
in masked for review. Tables 2 and 3 outline the
characteristics of patients with hemiparetic stroke.
The inclusion and exclusion criteria are presented in
Supplementary file 1. Interestingly, 51.3% (n = 91)
of the 187 patients with stroke exhibited good
improvement, while the rest demonstrated the poor
improvement. An experienced physical therapist was
consistently conducted all outcome measurements.
All participants provided their informed consent
prior to the initiation of clinical trials. This study
was conducted in accordance with the tenets of the
Declaration of Helsinki. The present study protocol
was approved by the Institutional Review Board of
Chungdam Rehabilitation Hospital Center (CDIRB-
2023-004). The study flowchart is presented in Fig. 1.

2.3. Potential predictors

We selected the 18 potential predictors based
on ICF to include “Body function” and “Activity.”
We compiled data on 12 clinical outcomes and six
demographic features, reflecting the patient’s body
function and activity domain. The six demographic
data were: (1) age, (2) sex, (3) side of the lesion, (4)
onset time, (5) height, and (6) weight. The 12 clinical
outcome data were: (1) initial FMA, (2) final FMA,
(3) initial BBS, (4) final BBS, (5) initial MBI, (6)
final MBI, (7) initial MMSE, (8) final MMSE, (9)
initial trunk impairment scale (TIS), (10) final TIS,
(11) initial modified Ashworth scale (MAS), and (12)
final MAS scores (Tamura et al., 2022; Zeltzer, 2010;
Verheyden et al., 2004; Loewen & Anderson, 1988;
Blackburn et al., 2002; Bour et al., 2010). Interest-
ingly, the MAS measurements specifically targeted
the ankle plantar flexor muscles. In both research and
clinical contexts, these features are commonly uti-
lized to gauge the rehabilitation recovery of patients
with stroke (Tamura et al., 2022; Zeltzer, 2010; Ver-
heyden et al., 2004; Loewen & Anderson, 1988;
Blackburn et al., 2002; Bour et al., 2010).
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Fig. 1. The study flowchart.

2.4. Feature importance analysis

To investigate the feature importance among the
various input features, the five ML algorithms were
used to forecast good or poor functional and struc-
tural improvement in individuals with subacute stroke
who underwent RAGT (compared to the first ses-
sion) and elucidate how certain features influence
the improvement after RAGT. Feature importance
is a valuable metric, offering a quantitative mea-
sure of the impact each predictor variable on the
target outcome, extracting the clinical insights (Kuo
et al., 2021). For a comprehensive evaluation, our
study compared among the feature importance val-
ues derived from the decision tree (DT) model and
ensemble model based on the DT model, includ-
ing random forest (RF), eXtreme Gradient Boosting
(i.e., XGBoost [XGB]), the light gradient boosting
machine (i.e., LightGBM [LGB]), and the categor-
ical boosting (i.e., Catboost [Cat]). Subsequently, a
comparative analysis was performed to ascertain the
consistency in feature importance rankings across the
different models.

We also constructed partial dependence plots
(PDP) to identify the most influential features and
characterize the contribution of each feature to the
initial ability of individuals with subacute stroke,
visualizing the relationship between these features

and the model’s predicted outcome (Kuo et al., 2021;
Zheng et al., 2022).

2.5. Machine learning algorithms and
hyperparameter tunning

In our analysis, we considered a set of 18 pre-
dictors. The primary objectives of this study were
(1) to determine the best predictive model for cat-
egorizing stroke patients into “good” and “poor”
functional and structural improvement groups based
on their response to Walkbot RAGT intervention and
(2) identify key features that significantly influence
individuals with subacute stroke recovery who under-
went RAGT. For our ML analysis, we deployed five
distinct models. These models were chosen for their
capability in handling the binary and multiple classi-
fication tasks effectively, as well as for their proven
ability to discern feature importance. Such features
are instrumental in understanding combined factors
related to the prognosis of structural recovery, balance
function, and overall independence-related ambula-
tion in patients with subacute stroke (Fujita et al.,
2020).

It is important to highlight that while RF adopts a
bagging ensemble approach, XGB, LGB, and Cat use
the boosting ensemble methodology. These ensem-
ble models have been extensively applied in various
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clinical domains, showcasing features, such as quick
training duration, minimal overfitting, and commend-
able accuracy (Al Daoud, 2019). To ensure a rigorous
evaluation and guard against model overfitting, we
adopted the 10-fold cross-validation technique. The
dataset was partitioned into 10 subsets: nine of these
were utilized for training, with the remaining one
reserved for testing (Kuo et al., 2021; Rodrı́guez et
al., 2010).

2.6. Classification of individuals with subacute
stroke improvement

To effectively examine the degree of patient’s func-
tional and structural improvement, including FMA,
BBS, and MBI after RAGT, this study introduces
two keys classification criteria: the minimal clini-
cally important difference (MCID) and the four-effect
level. MCID is defined as the minimal change in
assessment scores that patients perceive as clinically
significant in relation to their health status (Cook,
2018). In this research, ICF framework informed
our selection of three primary outcomes for evalu-
ation: the FMA, BBS, and MBI. These measures,
extensively employed in similar studies, provide a
comprehensive insight into a patient’s level of body
function and activity domain (Patel et al., 2020). The
FMA is a 226-point scale and is divided into five
domains (i.e., motor and sensory function, balance,
joint range of motion, and joint pain) developed as
an evaluation tool for overall recovery from stroke
(Pandian et al., 2016). The BBS is a 56-point bal-
ance function scale (Tamura et al., 2022). The MBI
is a 100-point scale assessing the activities of daily
living (Hsieh et al., 2007).

Another classification metric utilized is the four-
effect level, which quantifies the impact of the
Walkbot RAGT. Four-effect level ranges from 0
to 3, where each number represents the sum of
MCID achieved across the FMA, BBS, and MBI:
Effect Level 0, 1, 2, and 3 indicate poor, moderate,
good, and excellent improvement, respectively. This
grading provides a multi-faceted understanding of
post-treatment progress, adding depth to the MCID’s
binary classification.

2.7. Model evaluation metrics

The performance of ML models was evaluated
using the standard ML performance metrics includ-
ing (1) accuracy, (2) recall, (3) precision, and (4)
F1 scores (Kuo et al., 2021). The accuracy, recall,

precision, and F1 score were defined as follows:

Accuracy = TP + TN

TP + TN + FP + FN

Sensitivity = TP

TP + FN

Specificity = TN

TN + FP

Precision = TP

TP + FP

F1 − score = 2X
PrecisionXSensitivity

Precision + Sensitivity

Table 1 represents the confusion matrix. Accuracy
is an overall index of prediction performance. Sensi-
tivity is the ratio of participants who were correctly
identified as positive by the model to those who were
actually positive. Precision is the ratio of participants
who were correctly identified as positive by the model
to those who were labeled as positive by the model. F1
scores are the harmonic mean of precision and recall
and are a combination index. The F1 score, ranging
between 0 and 1, indicates the classification perfor-
mance, with a higher value approaching 1 indicating
better classification accuracy (Hsieh et al., 2007).

2.8. Statistical analysis

The categorical variables were coded, and
continuous variables were standardized. Google
Colaboratory (Google LLC, Mountain View, CA,
USA), which is a web integrated development
environment for python, was employed for model
development and statistical analysis (Sokolova et al.,
2009). For continuous variables, means and standard
deviation were calculated, and for categorical vari-
ables, frequencies and percentages were calculated.
The chi-square test and independent t-test were used
to compare the categorical and continuous variables
between the good and poor improvement groups. The
level of significance was set at p < 0.05.
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Table 1
Confusion matrix

Actual
Positive Negative

Predicted Positive True positive False positive
Negative False negative True negative

Table 2
Descriptive statistics of categorical variables for the good or poor functional and structural improvement groups in RAGT

Continuous variable Poor improvement (N = 91) Good improvement (N = 96) p-value
n % n %

Diagnosis Hemorrhagic 50 52.08 55 60.44 0.3156
Infarction 46 47.92 36 39.56

Side of the lesion Right 44 45.83 41 45.05 1.0000
Left 52 54.17 50 54.95

Sex Male 53 55.21 58 63.74 0.2994
Female 43 44.79 33 36.26

Initial MAS 0 22 22.92 29 31.87 0.0546
1 39 40.62 47 51.65
+1 25 26.04 14 15.38
2 3 3.12 0 0.0
3 5 5.21 1 1.1
4 1 1.04 0 0.0
5 1 1.04 0 0.0

Final MAS 0 23 23.96 31 34.07 0.0977
1 40 41.67 46 50.55
+1 23 23.96 11 12.09
2 3 3 2 2.2
3 4 4 1 1.1
4 2 2 0 0.0
5 1 1 0 0.0

MAS, Modified Ashworth scale. ∗p < 0.05.

3. Results

3.1. Significant differences were observed in
RAGT parameters in the two study groups

Descriptive statistical analyses of continuous and
categorical variables of the 187 patients with hemi-
paretic stroke in Tables 2 and 3, respectively. Age,
initial Mini-Mental State Examination (MMSE),
final MMSE, initial FMA, final FMA, initial BBS,
final BBS, initial MBI, final MBI, initial TIS,
and final TIS scores were significantly different
between the “good-improvement group” and the
“poor-improvement group”. The onset time, weight,
height, and all categorical variables did not signifi-
cantly differ between the two groups.

3.2. Model performance

The predictive performances of different ML algo-
rithms with 10-fold cross-validation using different
numbers of input sessions to predict the improve-

ments in FMA, BBS, and MBI’s MCID of the 12th
session are delineated in Table 4. The XGB algorithm
resulted in achieving the high performance of 0.8015,
0.7910, 0.8344, and 0.8010 in accuracy, sensitivity,
specificity, and F1 score, respectively (Table 4a). We
investigated whether there were significant differ-
ences in the means of the accuracy, sensitivity, and
specificity between the ML models. In Table 4b, the
accuracies from different ML model evaluated by 10-
fold-cross validation for four levels were ranked from
the highest to the lowest as follows: RF, 0.5192; LGB,
0.5082; XGB, 0.5020; Cat, 0.4857; and DT, 0.4216.
Comparing the results outlined in Table 4a, the exper-
imental findings revealed that employing all sessions
as input to forecast improvements in FMA, BBS,
and BMI’s MCID specifically by the 12th session
provided a more detailed estimation. This approach
aimed to discern whether an outcome variable per-
formed below a certain threshold, as opposed to a
binary classification of improvement. This enhanced
granularity in estimation was attributed to the utiliza-
tion of a greater number of classes for prediction.
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Table 3
Descriptive statistics of continuous variables for the good or poor functional and structural improvement groups in RAGT

Continuous variable Poor improvement (N = 91) Good improvement (N = 96) p-value
Mean SD Mean SD

Onset time 5.2812 7.1623 3.7582 3.8133 0.0734
Age 67.2708 11.135 61.8352 11.8455 0.0014∗
Height 163.8646 8.7439 165.7253 8.8657 0.1502
Weight 61.6167 9.3104 64.0088 11.2908 0.1149
Initial MMSE 16.2500 10.3110 21.6813 8.3983 0.0001∗∗
Final MMSE 17.3646 9.9706 24.3407 7.3200 0.0000∗∗
Initial FMA 21.6458 23.5519 30.7692 24.6008 0.0403∗
Final FMA 23.625 23.5655 37.4615 25.8665 0.0005∗∗
Initial BBS 7.2396 11.3571 10.8791 10.5555 0.0246∗
Final BBS 8.1042 8.5156 21.2418 11.7760 0.0000∗∗
Initial MBI 28.1146 19.1211 41.4066 19.4998 0.0000∗∗
Final MBI 33.0208 20.4131 53.5385 16.4630 0.0000∗∗
Initial TIS 4.4271 5.4052 7.3407 5.6080 0.0004∗∗
Final TIS 5.9271 6.0354 11.0879 6.0436 0.0000∗∗

BBS, Berg balance scale; FMA, Functional motor assessment; MMSE, Mini mental state examination; SD, standard deviation; TIS, Trunk
impairment scale. ∗p < 0.05, ∗∗p < 0.01.

Table 4
Prediction performance of models

(a) Prediction performance of model to predict three outcome changes by 10-fold cross-validation

Algorithms Accuracy Sensitivity Specificity F1 score
Decision tree 0.6994 0.7070 0.6700 0.6847
Random forest 0.7798 0.7823 0.8033 0.7830
XGBoost 0.8015 0.7910 0.8344 0.8010
LightGBM 0.7801 0.7966 0.7911 0.7754
CatBoost 0.7801 0.7735 0.8033 0.7793
(b) Prediction performance of model to predict the effect level changes by 10-fold cross-validation
Decision tree 0.4216 0.3630 0.3571 0.3507
Random forest 0.5191 0.3897 0.4083 0.3760
XGBoost 0.5020 0.4383 0.4298 0.4196
LightGBM 0.5082 0.4339 0.4304 0.4155
CatBoost 0.4857 0.3762 0.3857 0.3615

3.3. Model interpretation

The contribution of features in the five ML models
with best performance is summarized in supplemen-
tary file 2. The feature importance among the five
models was similar. The average of the feature impor-
tance is presented in Fig. 2a and 2b. The primary four
features in the MCID model, ranked by importance,
are final BBS, initial BBS, initial MBI, and final MAS
scores. In contrast, the effect level model prioritizes
the following top four features by importance: final
BBS, initial BBS, final MAS, and initial MBI scores.

As shown in Fig. 3 and supplementary file 3∼6,
in accordance with the PDP, we can see that the
initial BBS, MAS, and TIS scores were negatively
associated with ICF structural and functional domain
improvements. We demonstrated a positive correla-
tion, indicating that a higher median value of initial
FMA, initial MMSE, and initial MBI corresponds to
a greater likelihood of observing substantial improve-

ment. The effect level model’s PDP is similar to that
of the MCID model’s PDP in supplementary file 7.

4. Discussion

To our knowledge, this clinical ML study is the
first to highlight the performance of ML algorithms
on accurately predicting best responders who under-
went RAGT interventions among 187 patients with
subacute hemiparetic stroke based on the demo-
graphic and ICF clinical functional and structural
impairment-related features. Most importantly, the
XGB model out of the five ML algorithms was
capable of predicting binary classification based
on clinical functional and structural measures (i.e.,
FMA, BBS, and MBI) with good accuracy (80%).
Furthermore, we discovered the four key features
derived from the final BBS, initial BBS, final MAS,
and initial MBI scores for predicting the good or
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Fig. 2a. Feature importance of MCID (binary classification).

Fig. 2b. Feature importance of four-effect level (multiclassiffication).

poor improvement in the ICF functional and struc-
tural impairment domains. PDP analysis indicated
that lower scores in initial BBS, MAS, and TIS are
more indicative of optimal responders. Conversely,
the median scores in initial FMA, initial MMSE, and
initial MBI are more closely associated with optimal
responders.

The accuracy of the XGB had good prediction
performance on binary classification, which could
distinguish between the good and poor responders
to RAGT with 80% chances. Such a good prediction
performance may have resulted from the utilization
of the unique tree-boosting approach in the process of

XGB modeling (Kuroki, 2021). The XGB algorithm
is an ensemble model of weak learners, the DT that
updates the weights using gradient descent, during
the tree-boosting modeling process, thereby avoiding
or reducing overfitting by early stopping with XGB
at an optimal epoch (Kuroki, 2021). The ML data of
the previous study corroborate the earlier clinical ML
evidence, demonstrating 85% accuracy performance
with the application of the XGB algorithm in the good
and poor responders in neurological conditions from
acute to chronic (Thakkar et al., 2020). Although
this study’s prediction accuracy was slightly higher
than ours, the stage for patients with neurological
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Fig. 3. Partial dependence plot of initial clinical outcomes.

issues—particularly stroke— is clinically significant.
The results of clinical outcome variables are different
according to the stage of poststroke who underwent
RAGT intervention. According to the progression
of stroke, the clinical outcome variables of those
with chronic stroke were less apparent than those of
patients with acute/subacute stroke (Kundert et al.,
2019; Bowman et al., 2021; Krakauer & Marshall,
2015). Our study included cases of subacute stroke,
which is feasible and applicable for those who are
expected to the superior clinical improvement after
RAGT intervention. Future research could lead to
predictive model studies of neurologically impaired
patients with gait disorders, such as cerebral palsy,
spinal cord injury, and Parkinson’s disease.

Furthermore, we discovered four key features
obtained from final BBS, initial BBS, final MAS, and
initial MBI outcome measures for predicting the good
or poor improvements in the ICF functional and struc-
tural impairments domains. Initial baseline balance

function may be a key feature in predicting func-
tion ambulation recovery in subacute stroke with a
prediction accuracy of 74.1% (Zheng et al., 2023;
Bland et al., 2012; Tsang & Mak, 2004; Kwakkel et
al., 1996). The initial BBS score is another outcome
measure for forecasting motor and cognitive enhance-
ment in individuals with subacute stroke (Chang et
al., 2021).The initial Barthel index features, such as
dressing and bathing item-related ambulation, were
also observed to be excellent in prognosticating func-
tional independence of the individuals with stroke
with a prediction accuracy of 74.1% (De Wit et al.,
2014).The final MAS score in the plantar flexor spas-
ticity was another feature that may accurately predict
functional gait recovery in the early stage in individ-
uals with post-stroke who underwent RAGT (De Wit
et al., 2014; Lamontagne et al., 2003).

PDP analysis demonstrated that the lower score of
initial BBS, initial MAS, and initial TIS, the median
score of initial FMA, initial MMSE, and initial MBI
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is more likely to best responders. The initial BBS
(<20 points), MAS (<+1 point), and TIS (<13 points)
scores indicated that patients with subacute stroke
with a lower level of balance ability (higher risk of
falling), lower level of plantar flexor spasticity, lower
level of trunk motor ability, a median of stroke recov-
ery stage, lower level of cognitive impairment, and
MBI scores of > 44 and < 60 points tend to have more
functional and structural improvement. Certainly, our
findings showed that, in patients with subacute stroke,
the initial score of the functional measures can be
used to predict functional and structural improvement
prior to RAGT intervention. These features might
be useful indicators for helping clinicians and care-
givers identify individuals with subacute stroke who
can benefit most from RAGT interventions.

4.1. Study limitations

Our study had two main limitations. First, the focus
was primarily on body function, structure, and activ-
ity domains of the ICF framework, suggesting the
need for future research to explore “participation
restriction” and other contextual factors. Second, the
study did not explore a range of potential ML models
that could further enhance prediction of gait-related
impairments, indicating a direction for future studies
to optimize predictive analytics in rehabilitation.

5. Conclusion

Leveraging advanced ML technology, our study
highlights the XGB algorithm’s effectiveness in pre-
dicting functional and structural recovery in patients
with subacute stroke after RAGT. Demonstrating
superiority over other algorithms, it is ideal for clini-
cal implementation. Key predictive markers, such as
the initial low BBS, MAS, and TIS scores, as well
as the median scores of FMA, MMSE, and MBI, are
critical for determining patient response to RAGT.
These insights significantly enhance patient selection
for RAGT, revolutionizing stroke gait rehabilitation
and care optimization.
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