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Abstract.
BACKGROUND: Intermittent theta burst stimulation (iTBS) has demonstrated efficacy in patients with cognitive impair-
ment. However, activation patterns and mechanisms of iTBS for post-stroke cognitive impairment (PSCI) remain insufficiently
understood.
OBJECTIVE: To investigate the activation patterns and potential benefits of using iTBS in patients with PSCI.
METHODS: A total of forty-four patients with PSCI were enrolled and divided into an iTBS group (iTBS and cognitive
training) or a control group (cognitive training alone). Outcomes were assessed based on the activation in functional near-
infrared spectroscopy (fNIRS), as well as Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and the
modified Barthel Index (MBI).
RESULTS: Thirty-eight patients completed the interventions and assessments. Increased cortical activation was observed in
the iTBS group after the interventions, including the right superior temporal gyrus (STG), left frontopolar cortex (FPC) and
left orbitofrontal cortex (OFC). Both groups showed significant improvements in LOTCA and MBI after the interventions
(p < 0.05). Furthermore, the iTBS group augmented superior improvement in the total score of MBI and LOTCA compared
to the control group, especially in visuomotor organization and thinking operations (p < 0.05).
CONCLUSION: iTBS altered activation patterns and improved cognitive function in patients with PSCI. The activation
induced by iTBS may contribute to the improvement of cognitive function.
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1. Introduction

With the increasing prevalence of cerebrovascu-
lar disease, stroke has become the leading cause of
disability in the elderly, significantly impacting their
quality of life and increasing the burden on their
families and society (Bordet et al., 2017). It has
been reported that approximately two-third of stroke
survivors experienced varying degrees of functional
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limitation (Jiang et al., 2019). Cognitive dysfunc-
tions commonly manifest in stroke patients within
three to six months post-stroke, a condition identi-
fied as post-stroke cognitive impairment (PSCI) (Rost
et al., 2022). The onset time of PSCI is defined
differently, with cognition declining either imme-
diately or within six months (Cogo et al., 2021).
Despite spontaneous cognitive recovery in the first
three months, 24-75% patients experience persis-
tent cognitive impairment, resulting in a two- to
ninefold increase in the risk of progression towards
dementia (Wang et al., 2022; Ihara & Kalaria, 2014;
Nijsse et al., 2017). PSCI is characterized by cogni-
tive decline in various domains, including attention,
memory, language, learning and executive function.
It is closely associated with disability, dependency,
a poor quality of life, and deterioration of long-term
stroke prognoses (Rost et al., 2022; Nie et al., 2022).
The substantial burdens on patients, their caregivers,
society underscore the need for the development of
interventions for PSCI.

There is a lack of FDA-approved treatments for
PSCI aimed at preventing or slowing progression
towards dementia after a stroke, as well as a dearth
of understanding regarding the exact mechanisms of
PSCI (Farooq & Gorelick, 2013; Peng et al., 2016).
Pharmacological treatments lack consensus on the
generalizability of effects, including cholinesterase
inhibitors and memantine nootropics (Brainin et
al., 2015; Quinn et al., 2021). Meanwhile, drugs
may have short-term benefits but come with and
drug-related side effects (Tomassoni et al., 2008).
Consequently, non-pharmacological treatments have
rapidly evolved as a significant aspect of alterna-
tive interventions for PSCI. Cognitive training has
shown the potential to improve cognitive function to
some extent, although there is insufficient evidence
to make a recommendation (Quinn et al., 2021). Lim-
itations of cognitive training include the requirement
for patient active participation, long course treatment
and slow onset of effect.

Repetitive transcranial magnetic stimulation
(rTMS), a non-invasive brain stimulation (NIBS),
utilizes electromagnetic fields to modulate the
excitability of brain regions (Murphy et al., 2023),
leading to alterations in cortical excitability and
synaptic plasticity (Huerta & Volpe, 2009). Intermit-
tent theta burst stimulation (iTBS) is a specialized
patterned form of rTMS that mimics neural oscil-
latory patterns contributing to effective cognitive
process (Grossheinrich et al., 2009; Wischnewski &
Schutter, 2015). iTBS involves applying bursts of

high-frequency rTMS repeated at intervals of 200 ms
in an intermittent fashion (Chung et al., 2015).
Previous studies have indicated that iTBS had some
advantages compared to high-frequency rTMS,
yielding more facilitatory effects that outlasted
the stimulation time for 60 minutes (Wischnewski
& Schutter, 2015; Huang et al., 2005). Moreover,
iTBS is applied with low stimulation intensity and
short duration of a stimulation session, resulting
in long-term efficacy (Nowak et al., 2010). iTBS
generates N-methyl-D-aspartate receptor-dependent
synaptic plasticity of long-term potentiation (LTP)
(Lefaucheur et al., 2014), modulates the release of
several neurotransmitters, such as dopamine (Cho
& Strafella, 2009), and improves microglial and
astrocyte functions to exert a protective impact on
neurodegenerative and neuroinflammatory diseases
(Stanojevic et al., 2022). Chu et al. (2022) found that
iTBS applied to patients with PSCI improved cogni-
tive function and changed cortical activation in the
dorsolateral prefrontal cortex (DLPFC), frontopolar
cortex and Broca area. Two meta-analysis studies
revealed that iTBS was a beneficial intervention
for improving cognitive function in both healthy
individual and patients with cognitive dysfunction
(Pabst et al., 2022; Zheng et al., 2024). These
studies indicated that iTBS showed a trend toward
improvement of cognitive function.

Although iTBS has been recommended for mild to
moderate cognitive impairment due to better neuro-
plasticity of the DLPFC in these patients (Wu et al.,
2022), there is a lack of established efficacy. He et
al. (2021) demonstrated discernible effects of iTBS
on cognition in patients with Parkinson’s disease and
cognitive impairment, which were not observed in
the study by Lang et al. (2020). Therefore, this study
aims to further investigated the effects of iTBS on
mild to moderate PSCI.

Functional near-infrared spectroscopy (fNIRS) is
an optical imaging technique based on neurovascu-
lar coupling, where alterations in the concentrations
of oxygenated (HbO2) and deoxygenated (HbR)
hemoglobin serve as surrogates for neural activa-
tion (Menant et al., 2020; Hramov et al., 2020). In
comparison to established neuroimaging techniques
(such as functional magnetic resonance imaging and
electroencephalography), fNIRS offers advantages in
terms of portability, cost-effectiveness, and reduced
motion-related artifacts, making it a feasible alterna-
tive in research applications (Ehlis et al., 2014).

Neuronal activity necessitates oxygen consump-
tion for glucose metabolism to provide energy. In
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the absence of an energy reserve in the brain, oxy-
gen must be stably transported to neurons in the
form of HbO2. This process leads to a decrease
in HbO2 concentration and an increase in HbR
concentration. The feedback mechanism involving
increased metabolites (such as CO2 and lactic acid)
and the feedforward mechanism of vasoactive prod-
uct release from synaptic activity result in the local
expansion of small arteries and microvessels, leading
to local increase in blood flow increase (functional
hyperaemic response). The augmented blood flow
supplies oxygen and glucose to active neurons. This
neuronal activity, accompanied by vasodilation, is
identified as neurovascular coupling, reflecting brain
metabolism (Zhu et al., 2022; Rahman et al., 2020;
Segarra et al., 2019).

The increased blood flow and oxygen transporting
capacity surpass the metabolic requirements at the
site of brain activation, along with oxygen consump-
tion. This leads to an increase in HbO2 concentration
and a decrease in HbR concentration (Kisler et al.,
2017). Pirondini et al. (2022) reported that the acti-
vation pattern of neural networks could indicate the
recovery of cognitive function, representing func-
tional reorganization of neural networks. Chu et al.
(2022) demonstrated that iTBS result in better activa-
tion of the left DLPFC, frontopolar cortex (FPC) and
Broca area compared to transcranial direct current
stimulation.

This study aims to investigate the effects of iTBS
combining with cognitive training on PSCI compared
to cognitive training alone, utilizing fNIRS. The pri-
mary objective was to investigate the impact of iTBS
on patients with PSCI. The secondary objective was
to investigate the neural activation patterns associ-
ated with iTBS to unearth potential underlying neural
mechanisms.

2. Methods

2.1. Study design

The study was a prospective, monocentric and
randomized trial. The study was approved by the
local institutional review board (Zhejiang Reha-
bilitation Medical Center; ZKLL22072503) and
registered in the Chinese Clinical Trial Registry
(ChiCTR2400079447). Written informed consent
was obtained from all patients or their legal rep-
resentatives. The study took place at Zhejiang
Rehabilitation Medical Center and adhered to the

Consolidated Standards of Reporting Trials (CON-
SORT) reporting guideline for clinical trials (Schulz
et al., 2010).

2.2. Participants

Patients were eligible if they had a confirmed
diagnosis of stroke according to Chinese Guidelines
for Diagnosis and Treatment of Acute Intracerebral
Hemorrhage 2019 and Chinese Guidelines for Diag-
nosis and Treatment of Acute Ischemic Stroke 2018.
Additional inclusion criteria include: patients who:
(1) were aged between 18 and 75 years; (2) had a first-
ever stroke; (3) were 1-6 months after stroke onset;
(4) had a Mini-Mental State Examination (MMSE)
score of 11-26, indicating mild-to-moderate cog-
nitive impairment; (5) were right-handedness; and
(6) provided informed written consent to participate
in the study. Exclusion criteria encompassed a his-
tory of stroke, cerebral aneurysm or traumatic brain
injury; personal or close family history of a seizure
disorder; neurodegenerative disorders; psychotic dis-
orders; presence of metal in the head; or the presence
of implanted cranial or thoracic devices.

2.3. Sample size calculation

A sample size of 22 per intervention group was
based on the predicted effect size of the intervention
on cognitive changes (Chu et al., 2022) and the for-
mula (Hickey et al., 2018) with a type I error of 5%
and 90% power.

2.4. Randomization

There were two parallel groups: the iTBS group
(iTBS and cognitive training) and the control group
(cognitive training alone). These patients were ran-
domly allocated in 1 : 1 ratio to the iTBS group or the
control group through a randomized numbers table.
Patients in the iTBS group received a 5-session iTBS
over left DLPFC following cognitive training each
week for a period of 6-weeks, while patients in the
control group received cognitive training only.

2.5. Intervention

2.5.1. iTBS
iTBS was administered using a CCYI–type stim-

ulator equipped with an 80-mm figure-of-eight coil
(Yiruide Co., Wuhan, China). The left DLPFC was
the stimulation site, aligned with the placement of
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F3 in the 10-20 international EEG system (Klem et
al., 1999). The coil was rotated at 45◦ relative to
the midline and positioned with the handle back-
ward. Patients were seated in a comfortable chair and
remained static. We measured the rest motor thresh-
old (RMT) of the contralesional M1 to determine a
hot spot, where the contraction of the abductor polli-
cis brevis muscle was induced. Once the hot spot was
located, we adjust the TMS intensity down in steps of
5% to determine RMT. RMT was defined as the mini-
mum stimulation intensity needed to produces motor
evoked potentials (MEPs) with peak-to-peak ampli-
tude of ≥ 50 � V in 50% trials when ten consecutive
single pulses are applied with the TMS coil fixed on
the hot spot of the abductor pollicis brevis muscle
(Rotenberg et al., 2014). Intensity was set at 70%
RMT. During the iTBS session, patients remained
static. iTBS consisted of bursts of 3 pulses at 50 Hz
repeated at 200 msec intervals (5 Hz) for 2 seconds
(10 bursts), with a total of 600 pulses and 200 seconds
per session. The intervention was given once daily,
over a course of thirty consecutive working days.

The rationale for choosing the intervention was
based on two main considerations: (1) a desire to
use evidence-based iTBS intervention for individu-
als with PSCI, and (2) the role of the left DLPFC
as a critical brain region for integrating information
relevant to the cognitive and executive (Xia et al.,
2021).

2.5.2. Cognitive training
Cognitive training was conducted using the

cognitive rehabilitation and evaluation system
(Jizhi, Hangzhou, China), which is referred to
computer-assisted cognitive rehabilitation. The train-
ing included the following content with a focus
on attention, executive function, memory, calcula-
tion and reasoning ability, lasting for 30 minutes.
Cognitive training comprised a total of 30 sessions,
conducted over six weeks with five consecutive daily
sessions.

2.6. Outcome measures

The primary and secondary outcomes were
assessed by trained therapists at baseline (T0) and
6 weeks (T1), while remaining blinded to the group
allocation of participants.

2.6.1. fNIRS data acquisition and analysis
fNIRS data was acquired using an ETG-4000 Opti-

cal Topography System (Hitachi Medical Co., Tokyo,

Fig. 1. The placement of 52 channels following the Montreal Neu-
rological Institute (MNI) coordinates.

Japan) at two wavelengths of infrared light (695 and
830 mm) to measure changes in brain tissue con-
centration of oxygenated (HbO2) and deoxygenated
(HbR) hemoglobin following neural activation based
on the modified Beer-Lambert Law (Almajidy et al.,
2020). The system consisted of seventeen sources
and sixteen detectors, with a three-centimeter dis-
tance between a pair of sources and detectors. The
area between a pair of source and detector probes
was defined as a channel. A 33-probe set arranged
in a 3 × 11 configuration with 52 channels was used
for the prefrontal cortex (PFC) and superior temporal
cortex (Fig. 1). The data sampling rate is 10 Hz, pro-
viding a better track of the shape of the hemodynamic
response function (HRF) (Pinti et al., 2020). Accord-
ing to the 10-20 international EEG system, the lowest
probes were positioned along the Fp1-Fp2 line.

Due to the comparative nature of the fNIRS tech-
nique (Menant et al., 2020), the verbal fluency task
(VFT) was designed to detect the hemodynamic alter-
ations. Accumulating evidence suggested that VFT
can elicit hemodynamic responses in cognitive brain
regions (e.g. prefrontal cortex), rapidly evolving into
a significant fNIRS task to detect changes in brain
function in the realm of cognition (Luo et al., 2018;
Wei et al., 2022; Yang et al., 2023). The fNIRS
data were acquired when patients performed VFT at
baseline (T0) and 6 weeks (T1). VFT comprised a 30-
second pre-task period, a 60-second task period and a
70-second post-task period. Patients were instructed
to repeat one to five during the pre-task period and
the post-task period. These periods were performed
to correct the data during the fluency task for acti-
vation due to vocalization. During the task period,
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patients generated as many words as possible based
on three given Chinese characters (‘tian’, ‘xiao’ and
‘bai’, indicating sky, small and white), with each
character phase lasting for 20 seconds. fNIRS mea-
surements were conducted by trained researchers.
The experiments were conducted in a room where the
environmental conditions were kept stable to ensure
that patients did not experience any discomfort and
that the electronic devices performed optimally. To
maintain patient attention and minimize movement,
patients were instructed to look at the red asterisk on
the screen, which was kept at approximately 1 meter
in front of them.

fNIRS data were analyzed using a toolbox (NIRS-
SPM) running on MATLAB R2020b (Mathworks
Inc., Natick, MA, USA). The data processing was as
follows: (1) All raw data was first converted to MAT-
LAB compatible format (.mat) using NIRS-SPM.
(2) The wavelet-MDL detrending algorithm was
employed to attenuate low-frequency noise caused
by physiological artifacts (e.g. heart rate, respira-
tion, blood pressure) and environmental conditions
of laboratory settings (e.g. sound, light), which may
confound the fNIRS signal and increase the risk of
‘false positive’ findings (Menant et al., 2020). High
frequency noise was reduced using a low pass fil-
ter based on HRF. (3) Pervious evidence suggested
that changes in HbO2 reflected the positive corre-
lation with the blood oxygenation level-dependent
(BOLD) response (Pinti et al., 2020; Strangman et
al., 2002; Cui et al., 2011), indicating that HbO2 is
the most sensitive index to detect cerebral activa-
tion regarding changes in fNIRS measurement values
(Yamaya et al., 2021; Mihara et al., 2021). There-
fore, time series and HbO2 signals related to VFT
task served as independent and dependent variables,
respectively. Further, HRF was estimated through a
general linear deconvolutionmodel (GLM). (4) We
calculated the beta value of each independent vari-
able using the GLM model. (5) The beta values of all
52 channels under each condition were obtained. In
the present study, regions of interest (ROIs) based on
Brodmann area included the left DLPFC (channels
6, 7, 8, 9, 17, 18, 28, 29, 39, 49, 50), right DLPFC
(channels 2, 3, 4, 5, 14, 25, 35, 45, 46), frontopolar
area (channels 5, 6, 16, 17, 25, 26, 27, 28, 36, 37, 38,
39, 46, 49), right superior temporal gyrus (channels
32, 33, 43), left superior temporal gyrus (channels
42), left orbitofrontal cortex (channels 38, 48, 49),
right orbitofrontal cortex (channels 36, 46, 47).

Within-groups factors and between-groups factors
were served as different time (pre-treatment and post-

treatment) and groups (the iTBS group and the control
group), respectively. A 2*2 mixed Two-way ANOVA
was performed to obtain the simple effect, main effect
and interaction effect of the groups. To control for
alpha errors induced by multiple comparisons of 52
channels, a false discovery rate (FDR) correction
was utilized with p < 0.05 considered significant. The
channels with statistical significance underwent post-
hoc analysis to identify the source of the statistical
significance.

2.6.2. Secondary outcomes
The secondary outcome included the Loewen-

stein Occupational Therapy Cognitive Assessment
(LOTCA) and the modified Barthel Index (MBI).

Compared with MMSE, LOTCA showed superior-
ity in detection for insidious cognitive and functional
decline (Wang et al., 2014), exhibiting satisfactory
construct validity and internal consistency reliability
(Almomani et al., 2018). LOTCA comprised 22 sub-
items in five areas: orientation (2 subtests), perception
(6 subtests), visuomotor organization (7 subtests),
thinking operations (6 subtests) and attention and
concentration. A 4- or 5-point rating scale is used
to score each subtest, with a total score of 91.

MBI is a measure of independence in activities of
daily living (ADL) (Ohura et al., 2017). Proposed by
Canadian scholars in 1989, MBI divides each item
into five levels based on the Barthel Index (BI). The
modified version shows superiority in assessing the
degrees of the need for help and the changes of rating
(Shah et al., 1989). MBI measures an individual’s per-
formance on 10 ADL functions as follows: personal
hygiene, bathing self (5 points each); feeding, toi-
let use, stair climbing, dressing, bowel management,
bladder management (10 points each); ambulation
and chair or bed transfers (15 points each). The
highest score is 100, with higher scores indicating
increased independence in ADL.

2.7. Statistical analysis

Statistical analyses were conducted using SPSS
software version 25.0 (IBM Corp., Armonk, NY,
USA). Descriptive statistics summarized patient
characteristics using mean (SD) and number (per-
centage) as appropriate. Demographic and clinical
variables were compared between groups using the
two-sample t-test and chi-square test. The Shapiro-
Wilk test and visual inspection of plots were used
to assess skewness of continuous data. The paired
t-test was conducted to compare the baseline and
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post-treatment results. The two-sample t-test was
employed for between-group comparisons. All tests
were two-sided, and a statistical significance was set
at p < 0.05.

3. Results

3.1. Demographic and clinical characterization

Forty-four patients were initially enrolled, but two
patients withdrew from the study due to protocol vio-
lations and four patients withdrew from the study
for discharging. Finally, both groups consisted of
nineteen patients (Fig. 2). No statistically significant
differences were observed between the two groups in
any of the demographics and clinical data (Table 1).
The mean (SD) baseline MMSE score of 16.21 (3.90)
and 16.00 (3.90) indicated that the patients had mild
to moderate cognitive impairment.

3.2. fNIRS data

After FDR correction, there were group ×
time interaction effects in channel 32 (F = 10.24,
p = 0.04937, η p2 = 0.221), 37 (F = 13.30, p = 0.043,
η p2 = 0.269) and 38 (F = 10.92, p = 0.049,
η p2 = 0.233), indicating that the beta values in
the iTBS group changed over time, and that the beta
values of channel 32, 37 and 38 (Figs. 3, 4) were
significantly increased after the intervention in the
iTBS group compared to the control group (p < 0.05).
This gain was not observed in other channels.

3.3. Secondary outcomes

3.3.1. LOTCA
Regarding the total score and the sub-items of

LOTCA, both the iTBS group and the control group
conferred significant improvements from the base-
line to 6 weeks (p < 0.05). Furthermore, the iTBS
group demonstrated better improvements in the total
score (F = 0.274, p = 0.012), visuomotor organiza-
tion (F = 0.433, p = 0.013) and thinking operations
(F = 0.041, p = 0.028) compared to the control group
after interventions. Figure 5. showed the graphs of
the results.

3.3.2. MBI
Regarding MBI (Fig. 6), both groups exhib-

ited significant improvements after intervention
(p < 0.05). Furthermore, the iTBS group showed

greater improvements in MBI compared to the control
group after interventions (F = 0.003, p = 0.043).

4. Discussion

This trial compared the effects of iTBS applied
over the left DLPFC with cognitive training against
cognitive training alone in patients with PSCI.
There were three cortical regions with significantly
increased activation in the iTBS group compared
to the baseline, including the right superior tem-
poral gyrus (STG, channel 32), left frontopolar
cortex (FPC, channel 37, 38) and left orbitofrontal
cortex (OFC, channel 38). Both groups showed
improvements in cognitive performance and ADL,
as indicated by LOTCA and MBI. Additionally, the
iTBS group showed better enhancement in the total
score of MBI and LOTCA compared to the control
group, particularly in visuomotor organization and
thinking operations. The present study indicates that
iTBS has a therapeutic effect on PSCI, as evidenced
by improvements in performance and neural mecha-
nisms.

After a stroke, impairment in neurovascular units
result in neurovascular uncoupling (Lourenço et al.,
2017), altering the reactivity of the cerebral circula-
tion to vasomotor stimuli, and reducing the increased
cerebral blood flow produced by functional activa-
tion (Girouard & Iadecola, 2006). In the early stage
following a stroke, new pathways are activated to
compensate for the impacted regions. This activa-
tion, as revealed by BOLD signals, may mimic the
learning process typically observed during develop-
ment (Crofts et al., 2020). A previous study reported
decreased activation in PSCI patients in the bilateral
superior temporal cortex, right DLPFC and bilateral
ventrolateral prefrontal cortex compared to healthy
individuals (Yang et al., 2022). Furthermore, Keser
et al. (2021) reported that patients with post-stroke
aphasia experienced the secondary degeneration of
the thalamic nuclei and pathways of the left hemi-
sphere, necessitating NIBS to prevent this secondary
degeneration and improve prognosis.

Compared with the previous similar studies (Chu
et al., 2022; Zhang et al., 2023), this study pro-
vided more robust fNIRS evidence contributing to
cortical activation induced by iTBS, indicating that
iTBS could restore of brain network plasticity. The
activation of the left FPC aligns with the findings
of Chu et al. (2022) and Zhang et al. (2023), sug-
gesting its significance in executive function. The
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Fig. 2. Flow diagram of the study.

Table 1
Baseline patients’ demographics and clinical characteristics

iTBS group Control group p value

Age, years 62.84 (12.67) 62.58 (12.65) 0.949
Sex, female 4 (21%) 3 (16%) 0.676
Education, years 8.84 (4.71) 7.26 (2.31) 0.197
Time since stroke, months 2.84 (1.86) 3.26 (1.73) 0.475
Type of stroke
Hemorrhagic/Ischemic 3 (16%)/16 (84%) 5 (26%)/14 (74%) 0.426
Injury site, left 12 (63%) 16 (84%) 0.276
MMSE 16.21 (3.90) 16.00 (3.90) 0.869
LOTCA 57.32 (11.20) 56.53 (11.67) 0.833
Orientation 5.53 (1.78) 4.89 (1.79) 0.282
Perception 20.68 (3.00) 20.05 (3.36) 0.545
Visuomotor organization 15.21 (5.23) 15.42 (5.41) 0.904
Thinking operations 13.16 (4.32) 13.32 (3.72) 0.905
Attention and concentration 2.74 (0.81) 2.84 (0.76) 0.682
MBI 57.00 (20.68) 52.84 (22.79) 0.560

Data are mean (SD) or number of patients in each group (% of total). MMSE: Mini-mental
State Examination; LOTCA: Loewenstein Occupational Therapy Cognitive Assessment; MBI:
Modified Barthel Index.

interaction among the FPC, the posterior cingulate
gyrus and the ventrolateral prefrontal cortex sup-
ports goal-directed behavior, provides a working
memory system, responsible for activating and select-
ing task-related information stored in the posterior
cortex, and is involved in making a plan (Domic-
Siede et al., 2021; Costa et al., 2013). The OFC
receives contextual information to maintain accu-

rate self-perception and is also involved in executive
function (Rudebeck & Rich, 2018). A previous study
showed that the atrophy of selective regional pyrami-
dal neurons in DLPFC was associated with executive
dysfunction in PSCI (Foster et al., 2014). rTMS has
the potential to reduce the inhibitory control, pro-
mote morphological plasticity of pyramidal cells, and
increase excitatory output (Han et al., 2023; Cam-
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Fig. 3. Violin plots of the interaction effects (*p < 0.05). (a) channel 32. (b) channel 37. (c) channel 38.

biaghi et al., 2021). Moreover, patients with PSCI
may experience reduced frontal oxygenation changes
(Mk & As, 2020). TMS induced a compensatory
mechanism of autonomic control over the prefrontal
haemoglobin levels (Struckmann et al., 2021). In
addition, our study also observed the activation of
right STG, which was associated with working mem-
ory (Wei et al., 2022). The VFT requires the retrieval
of items from long-term memory storage and the
working memory capacity to hold generated words
(Henry & Crawford, 2004). Therefore, the activa-
tion of the right STG may contribute to cognitive
amelioration.

Supporting evidence for improvement in visuomo-
tor organization and thinking operations can be found
in the fNIRS data. Our results showed the activa-
tion of the left FPC and OFC in patients receiving
iTBS. FPC, as proved, is involved in higher cogni-
tive functions, including problem-solving, reasoning
and episodic memory retrieval (Braver & Bongiolatti,
2002). The OFC, responsible for making decisions,

receives highly processed sensory information and
outputs information to the medial striatum mediodor-
sal thalamus and other parts of the prefrontal cortex
(Rudebeck & Rich, 2018). The OFC is one of the
prefrontal circuits that control specific aspects of
executive function (Foster et al., 2014). Moreover,
both domains of cognitive improvement are crucial
to higher cognitive processes. Visuomotor organi-
zation, supporting thinking operations, is involved
in perceptual-motor integration with spatial compo-
nents, referred to as high-order perception (Katz et al.,
1989). Thinking operations include higher cognitive
processes (e.g. problem solving, abstraction and logi-
cal operation) (Almomani et al., 2018). Both domains
are associated with executive function. Therefore, our
results may be interpreted as suggesting that iTBS
could enhance cognitive performance mediated by
the FPC and OFC.

However, the prefrontal cortex contains a large
number of networks, responsible for connecting
motor, perceptual, and limbic regions of the brain.
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Fig. 4. Cortical activation map based on beta values during VFT in different groups. (a) T0 of the control group. (b) T1 of the control group.
(c) T0 of the iTBS group. (d) T1 of the iTBS group.

Almost all cortical and subcortical regions affect
the prefrontal cortex through direct projection or
indirectly through several prominent relays. Due to
the channel limitation of the fNIRS equipment, the
activation effect of remote brain regions failed to

be obtained in this study. Liu et al. reported that
patients with post-ischemic stroke executive impair-
ment exhibited activation in the left DLPFC, right
PMC and right SM1 when they received a single
session of rTMS (Liu et al., 2023).
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Fig. 5. Results of Loewenstein Occupational Therapy Cognitive Assessment (LOTCA). Estimated changes and effects of within-groups and
between-groups (*p < 0.05, **p < 0.01, ***p < 0.001).

Fig. 6. Results of modified Barthel Index (MBI). Estimated
changes and effects of within-groups and between-groups
(*p < 0.05, ***p < 0.001).

Both groups showed significant improvement in
MBI, but the iTBS group augmented better gains
compared to the control group. Our result was consis-
tent with a meta-analysis study where high-frequency
rTMS could improve ADL in patients with PSCI
(Chen et al., 2023). In addition, previous studies
demonstrated that a higher cognitive score was asso-
ciated with better performance on ADL (Chu et al.,
2022; Yin et al., 2020). Visuomotor organization and
thinking operations may contribute to the transfer
of gains to ADL. Better cognitive function could
enhance their ability to learn and perform the daily
living task.

This study has limitations. Firstly, our study may
overlook the effects of iTBS on memory. The pattern

of iTBS resembles the brain’s natural theta rhythm
in the hippocampus (Klomjai et al., 2015), which,
along with the left DLPFC, is engaged in working
memory (Chu et al., 2021; Marshall & Binder, 2013;
Zhang et al., 2019). However, LOTCA fails to pro-
vide the information of memory. Secondly, due to
the lack of follow-up, our study failed to observe the
long-term effects of iTBS. The effects of rTMS may
take time to fully develop and translate into clinical
benefits (Sabbagh et al., 2020), necessitating further
studies to explore the duration of effects and deter-
mine whether repeating iTBS is needed, setting a
long-term intervention protocol. Thirdly, the lack of a
sham or placebo design may introduce bias of effects
(Broadbent et al., 2011).

There is a lack of consensus regarding the
rTMS protocol for PSCI. Regarding the stimulation
target, previous studies revealed that the applica-
tion of high-frequency rTMS on the ipsilesional
DLPFC exerted ameliorative roles in cognition of
PSCI and provided evidence of the anti-inflammtory
response and changes in brain networks (Cha et
al., 2022). It remains questionable whether bilateral
iTBS could lead to cognitive control potentiation.
Although iTBS remains underutilized in the field
of PSCI, we anticipate that, in the near future,
advancements will offer a more profound under-
standing of the mechanisms and the optimal dosage
of iTBS.
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5. Conclusions

iTBS generated activation patterns supporting
the restoration of brain network plasticity and the
cognitive processes. iTBS could improve cogni-
tive function and ADL, validating iTBS was an
alternative and complementary approach to cogni-
tive rehabilitation. fNIRS contributes to describe the
neurophysiological mechanism relevant to cognitive
control. Further studies are warranted to explore the
activation of brain regions induced by iTBS associ-
ated with the neurophysiological underpinnings and
mechanism.
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