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Abstract.
BACKGROUND: Rehabilitation of stroke-related upper limb paresis is a major public health issue.
OBJECTIVE: Robotic systems have been developed to facilitate neurorehabilitation by providing key elements required to
stimulate brain plasticity and motor recovery, namely repetitive, intensive, adaptative training with feedback. Although the
positive effect of robot-assisted therapy on motor impairments has been well demonstrated, the effect on functional capacity
is less certain.
METHOD: This narrative review outlines the principles of robot-assisted therapy for the rehabilitation of post-stroke upper
limb paresis.
RESULTS: A paradigm is proposed to promote not only recovery of impairment but also function.
CONCLUSION: Further studies that would integrate some principles of the paradigm described in this paper are needed.

Keywords: Stroke, hemiparesis, rehabilitation, robot

1. Introduction

Upper limb paresis is the most common physi-
cal consequence of stroke (Sathian et al., 2011) and
more than half of patients do not recover full upper
limb function (Kong & Lee, 2013; K.B. Lee et al.,
2015). The majority of recovery occurs during the
first weeks after stroke (Wade et al., 1985) and the
prognosis is poor if moderate to severe paresis persists
three months post-stroke. Upper limb paresis consid-
erably reduces activity and participation (Geyh et al.,
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2004) as well as the quality of life (Ramos-Lima et
al., 2018) of those affected. The number of people
affected by stroke is increasing and the social and
economic impact is high, making recovery of upper
limb function a major public health issue.

Rehabilitation aims at reducing neurological
impairments in order to improve stroke survivors’
participation in activities and quality of life. That can
be achieved through the stimulation of neuronal reor-
ganization to enhance recovery beyond the natural
course of spontaneous recovery. The main factors that
affect plasticity are age at the time of stroke (younger
subjects progress more quickly after stroke) and the
training methods used (Kleim & Jones, 2008b). These
factors have been well described by Kleim and Jones
(2008) – who emphasized that training must be spe-
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cific, repetitive and intensive and that patients should
use their residual capacity with the aim to both
improve it and to integrate it in daily living activities
(Kleim & Jones, 2008b).

The benefits of specialised rehabilitation
after upper limb paresis are widely recognised
(Langhorne et al., 2011), even though no specific
approach/treatment has yet been found to be more
effective than another (Veerbeek et al., 2014).

However, robot-assisted therapy appears to pro-
mote upper limb recovery by providing the elements
necessary to stimulate neuroplasticity and reduce
motor impairment (Kwakkel et al., 2008b; Wu et al.,
2021).

The aim of this article was not to provide a further
systematic review on upper limb robotic rehabilita-
tion after stroke but rather to discuss the principles
of robot-mediated therapy as a pragmatic, evidence-
based approach based on 10 years of experience with
this therapy in subacute stroke patients.

2. The principles of robot-assisted therapy

2.1. High dose of training through a hyper
repetitive therapy

In medicine, patients are administered specific
doses of treatments according to certain criteria. In
rehabilitation, the concept of dose remains poorly
defined. In the literature, this term usually refers
to the quantity of practice, and is expressed as the
quantity of intended training time or total therapy
time (Birkenmeier et al., 2010a; Byl et al., 2008;
Lohse et al., 2014). More rarely, it is expressed as
the time spent performing active movements (Host et
al., 2014; Kaur et al., 2012), or the number of repeti-
tions performed (Dorsch & Elkins, 2020; Feys et al.,
1998; Lang et al., 2016). The latter two definitions
are more precise since active movements are rarely
performed throughout the whole therapy session.

Although it is widely accepted that a large number
of active movement repetitions are required to induce
neuronal changes, the specific dose of active move-
ment has not been defined. Studies in animal models
of stroke have shown that 400 to 600 repetitions of
a challenging functional task must be performed per
day to induce neuroplastic changes (Birkenmeier et
al., 2010a; Kleim et al., 1998). A study in humans
with stroke showed that over 100 daily repetitions
of a finger exercise induced significant cortical reor-
ganisation as well as functional improvement (Carey

et al., 2007). However, the implementation of such
quantities of practice within conventional rehabili-
tation sessions is a major challenge. Studies have
shown that during conventional rehabilitation ses-
sions, patients perform between 23 (Lang et al., 2009)
and 32 (Kimberley et al., 2010) movement repeti-
tions. A more recent study found a higher number
(mean 86 movement repetitions per session) but with
a large inter-individual variation (Vratsistas-Curto et
al., 2021). These doses are far below those required
for the cortical changes that lead to motor recovery
(Cramer et al., 2019; Gassert & Dietz, 2018). A study
of the dose-response relationship between the number
of repetitions and recovery of impairment in patients
with chronic stroke found no relationship when 100,
200 and 300 repetitions (per hourly session over a
period of 8 weeks) were compared (Lang et al., 2016).
The modest change in motor function observed in this
study, independent of treatment dose, is likely due to
the fact that more than 300 movements per session
are necessary to induce significant cortical and clini-
cal changes. However, the daily practice of hundreds
of movements within conventional rehabilitation ses-
sions is hardly feasible (Birkenmeier et al., 2010b;
Lang et al., 2016), which explains that the num-
ber of movements performed during robot-assisted
therapy sessions is far higher than the num-
ber performed during conventional therapy (Duret
& Gracies, 2014).

Unlike conventional therapy, robotic devices can
provide hyper-repetitive therapy at a reasonable cost
(Blank et al., 2014) and without excessive fatigue
reported in the literature. Furthermore, they can
objectively quantify the number of movement repe-
titions performed, thus allowing measurement of the
dose provided. Patients can perform between 280 and
1300 movements per session of robot-assisted ther-
apy (Duret et al., 2018, 2019; Duret, Courtial, et al.,
2015; Duret, Hutin, et al., 2015; Duret & Hutin, 2013;
Flynn et al., 2020; Hsieh et al., 2011, 2018; Pila et al.,
2017a, 2017b; Rodgers et al., 2017), on average over
600 movements per session (Duret et al., 2019; Duret,
Hutin, et al., 2015; Duret & Hutin, 2013; Rodgers et
al., 2019).

A pilot study compared 2 intensity-based groups
(high vs low respectively 750–1000 and 375–500
movements) that performed wrist and forearm move-
ments with a robotic device, to a control group and
found a relationship between the number of move-
ments on one hand and motor abilities and functional
performance on the other hand.(Hsieh et al., 2011).
The results showed that high intensity practice with a
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robot improved outcomes more than lower intensity
practice.

2.2. Difficulty and intensity: Non-dissociable
factors

It is now well documented and established that
the number of movements performed during robot-
assisted therapy sessions is far higher than the number
performed during conventional therapy (Duret &
Gracies, 2014). Moreover, the performance of a large
number of passive movements does not lead to motor
recovery (Lynch et al., 2005). Consequently, active
participation and the challenging nature of the exer-
cises are critical contributors to the effectiveness of
highly intensive treatment (Dromerick et al., 2006).

A therapy is often considered intensive if it
involves many repetitions. However, Page et al.
(2012) defined intensity as the “amount of physical
or mental work put forth by the client during a partic-
ular movement or series of movements, exercise, or
activity during a defined period of time” (Page et al.,
2012). The concept of intensity therefore includes
several elements: repetition, effort and challenge.
This explains why performing a large number of pas-
sive movements is not sufficient for motor recovery
(Lynch et al., 2005). Thus, an exercise can only be
considered intense if it involves effort (Connell et
al., 2018), and to ensure effort, the exercise must
also be challenging. However, adapting exercises to
ensure they are challenging whilst also being achiev-
able is complex in stroke rehabilitation. Furthermore,
according to Kukla’s theory of performance, a per-
son’s engagement in an exercise also depends on their
perception of the difficulty (Kukla, 1972). The inten-
sity of therapy is therefore not simply related to the
number of repeated movements; it refers more pre-
cisely to the level of effort produced by the person
executing the task (Connell et al., 2018).

In conventional therapy, therapists usually try to
match the difficulty of an exercise to the patient’s
ability (Krebs & Hogan, 2006). To make an exercise
easier, they may reduce the effects of gravity (by using
suspension, forearm support, etc.) or provide manual
guidance. However, “providing too much assistance
may have negative consequences for (motor) learn-
ing” (Marchal-Crespo & Reinkensmeyer, 2009). It
is important that the level of assistance is just suffi-
cient to enable the patient to achieve the task, thus
encouraging engagement and avoiding discourage-
ment (Blank et al., 2014; Shirzad & Van der Loos,
2016). If the task is too difficult for the patient to

achieve, this can have a negative effect on both per-
formance and motor learning (Gendolla, 1999; Maier,
Ballester, et al., 2019) and frustrate the patient; on
the other hand, if it is not sufficiently challenging,
this can lead to boredom (Pan et al., 2019). Moderate
challenge is beneficial to learning, while a difficulty
that is too low or too high can have a negative effect
(Hodges et al., 2014). However, in conventional ther-
apy, it is difficult to precisely measure the level of
assistance required and provided.

Some robotic systems contain integrated adaptive
algorithms specifically to ensure that the appropriate
level of movement assistance is provided (Krebs et
al., 2003). These assist-as-needed algorithms detect
movement intention and provide only the amount of
assistance required to perform the task (Emken et al.,
2005; Krebs & Hogan, 2006). The precise control of
the level of support and assistance, which is adjusted
according to the patient’s motor output, ensures that
the patient remains active (Wickens et al., 2013). This
is important since many studies have shown a strong
relationship between providing exercises of appropri-
ate difficulty and active participation by the patient
(Grosmaire & Duret, 2017; Krishnan et al., 2013;
Shirzad & Van der Loos, 2016). Furthermore, train-
ing at an appropriate level encourages engagement
and motivation (Levin, 2020). Guadagnoli et al. sug-
gested that learning is optimal when the challenge
point has been reached (Guadagnoli & Lee, 2004).
It has also been shown that the learning of simple
tasks can be improved by increasing their difficulty
(van Vliet & Wulf, 2006). Engagement and effort are
automatically measured by some robots (Blank et al.,
2014), which is useful for the therapist to determine
when and how exercises need to be progressed.

Nonetheless, the use of assistance algorithms to
optimise patient participation remains questioned,
particularly for those with milder impairments. Some
patients rely on the assistance and become passive, a
phenomenon known as “slacking” (Washabaugh et
al., 2018). However, one of our studies highlighted
that assistance did not systematically lead to slack-
ing, even when patients performed a large number of
movements (Duret et al., 2018).

Assist-as-needed robot training (Emken et al.,
2005; Krebs & Hogan, 2006) seems particularly use-
ful for patients with moderate to severe paresis who
have difficulty generating movement and for whom it
is challenging to provide exercises at an appropriate
level. In one of our studies on seventeen subacute
inpatients (age 53 ± 18; 49 ± 26 days post-stroke)
who had received 16 robot-assisted sessions, we
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have shown that the increase in the Motricity index
between the first and the last session was negatively
correlated with the baseline Motricity index (r = –0.5,
p = 0.0053). Furthermore, the increase in the number
of repeated movements was also negatively corre-
lated with the number of movements performed at
the second session (r = –0.47, p = 0.0083). In addi-
tion, we found a 10% decrease in the assistance
provided by the robot (Duret, Hutin, et al., 2015).
Studies conducted by our group on human-robot
interactions have confirmed that robotic assistance
promotes active participation and corresponds to the
therapy needs of patients with moderate to severe
motor impairment (Duret, Courtial, et al., 2015; Gros-
maire & Duret, 2017).

2.3. The effect of contextual interference

Active participation can be encouraged and slack-
ing prevented by limiting the possibility to anticipate
the next movement. Some robotic systems present
targets randomly (although the randomisation is
organised so that each target appears the same num-
ber of times). It may be beneficial in the initial stage
of stroke to practice repeated movements in a defined,
blocked order; however, in later stages random prac-
tice promotes learning to a greater extent (Cauraugh
& Kim, 2003). Furthermore, random learning has a
longer-term effect (Smith et al., 2006). Performing
tasks in a defined order promotes retention of infor-
mation, while practicing in a random order promotes
transfer, a phenomenon that is commonly referred
to as the “contextual interference effect” (Shea &
Morgan, 1979). Indeed, in everyday life, situations
that are repeated in a defined order are rare. The use
of contextual interference to train a task has been
shown to promote transfer in stroke patients (Jo et
al., 2020). Random practice forces the patient to
pay more attention to the task. This type of practice
thus makes training more intensive as it generates
greater cognitive activity and effort than exercises
provided in a defined order (Merbah & Meulemans,
2011). Engagement is thus increased and slacking is
reduced.

2.4. Other robotic algorithms and
challenge-based controllers: Resistive
exercises, error augmentation and
constrained exercises

Although robotic therapy uses assistive algorithms
(Basteris et al., 2014) which allow it to be used

with a wide range of disabilities (Colombo & San-
guineti, 2018), other work modes are available.
Some robotic systems include challenge-based con-
trollers that allow the difficulty of the exercises to
be modulated, for example, by varying the forces
applied to the paretic upper limb, decreasing the
level of assistance, or increasing the resistance or
the range of movement (Mehrholz et al., 2018).
Exercises can thus be progressed along a contin-
uum, allowing the patient to be optimally challenged
throughout the course of their rehabilitation (Guadag-
noli & Lee, 2004; Marchal-Crespo & Reinkensmeyer,
2009). Three broad categories of challenge-based
controllers have been developed to provide either
counter-resistance, movement constraints or error
augmentation (Marchal-Crespo & Reinkensmeyer,
2009). Exercises involving isometric and dynamic
resistance can also be practiced, depending on the
patient’s needs. For example, isometric exercises can
be used to retrain shoulder stability in patients with
severe impairment (with proximal robot modules)
while dynamic resistance exercises aim to challenge
patients with more movement capacity. These exer-
cises are based on the results of studies (Morris
et al., 2004; Weiss et al., 2000) that showed that
strengthening the paretic upper limb improves motor
function (Marchal-Crespo & Reinkensmeyer, 2009).
However, dynamic resistance exercises may not be
appropriate for more severely impaired patients as
they require a minimal level of residual motor func-
tion (Stein et al., 2004). While assisted exercises
are interesting for severe to moderate patients to
promote active movements, constrained exercises
can be proposed in moderate to mild patients since
they allow to work on the quality of the move-
ment. In these exercises the patient’s movement is
constrained by a velocity-dependent clockwise curl
force field (Rezazadeh & Berniker, 2019). Error aug-
mentation modes have been designed to challenge
patients with higher levels of motor ability, based
on the rationale that errors are an essential compo-
nent of neuroplasticity and motor learning (Abdollahi
et al., 2011; Kawato, 1990). This type of algorithm
increases trajectory errors made by the patient to
encourage them to increase their efforts to produce
a straight movement. Error augmentation increases
intrinsic feedback, which is usually disrupted after
a stroke (Israely & Carmeli, 2015). Several studies
have shown that error-increasing therapy increases
motor control compared to standard or error-reducing
therapy (Israely & Carmeli, 2015; Liu et al., 2018).
The amplification of errors is also thought to pro-
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mote patient attention and motivation (Abdollahi et
al., 2011; Wei et al., 2005).

Although these training modalities have obvious
theoretical value to reduce motor impairment, few
studies have evaluated their use in clinical practice
since assistive modes of robot-assisted therapy are
more commonly used (Basteris et al., 2014).

2.5. Impairment-reducing rather than
function-improving therapy

The main purpose of robot-assisted therapy is to
deliver a high number of movement repetitions in a
session of a similar duration to standard rehabilitation
(45 min on average). A commonly reported limitation
of robot-assisted therapy is that the exercises are not
functional. Indeed, studies have shown poor transfer
of improvements at the impairment level to activi-
ties of daily living (ADL) (Kwakkel et al., 2008a;
Mehrholz et al., 2015; Veerbeek et al., 2017). How-
ever, ADL performance is not always improved by
more functional training methods, as shown in a study
of an 8-week, task-specific intervention (Waddell et
al., 2017). Impairment-based rehabilitation has been
superseded by the emergence of task-oriented thera-
pies that are currently considered the gold standard
(Krakauer & Cortés, 2018). Task-oriented therapy
improves the functional performance of the upper
limb (Langhorne et al., 2011; Thant et al., 2019);
however in usual care, this approach may not be
appropriate or possible for patients with minimal
motor command unlike robot therapy that can target
the more severely impaired stroke patients.

Several recent studies suggested that robotics
can be integrated in clinical practice by translating
impairment gains drawn from robotic training into
function through combined therapy (Conroy et al.,
2019; Hung et al., 2016). For example, Conroy et al.
trained 45 chronic stroke patients stratified by Fugl-
Meyer (FMA) impairment (mean 21 ± 1.36) to 60
minutes of robot therapy (RT; n = 22) or 45 minutes
of RT combined with 15 minutes therapist-assisted
transition-to-task training for 12 weeks and found
that the replacement of part of the robotic training
with nonrobotic tasks did not reduce treatment effect
and may benefit stroke-affected hand use and motor
task performance (Conroy et al., 2019). Their results
highlight the boosting effect of the transition-to-task
sessions.

The RATULS study, conducted in 770 stroke
patients, comparing 3 treatment modalities (robot-
assisted training, an enhanced upper limb therapy

program and usual care) over a period of 12 weeks,
found no difference in upper limb function at
3 months (Rodgers et al., 2019). This confirms
that the practice of non-functional exercises itself
does not hinder functional recovery (Conroy et
al., 2019; Hsieh et al., 2014; Hung et al., 2016).
However, in order to improve function, authors advo-
cated further research to find ways to translate the
improvements in upper limb impairment seen with
robot-assisted training into improvements in upper
limb function and ADL by combining robot-assisted
training with more functionally oriented therapy
strategies.

2.6. Interaction and provision of feedback to
enhance motor learning

Intrinsic feedback is inherent to the task, gen-
erated by the movement and its consequences on
the environment. Extrinsic feedback involves the
use of an external artifice to increase a subject’s
sensitivity to sensory events that accompany perfor-
mance (Magill, 1993). The intrinsic feedback systems
may be compromised due to impairment of sensory
pathways after a stroke. (van Vliet & Wulf, 2006).
Extrinsic feedback is commonly used by therapists
to give patients additional information about their
performance or method of goal attainment. Extrin-
sic feedback is useful only if it provides additional
information to the intrinsic feedback. Verbal feed-
back from therapists about the outcome is useless
when the information is inherent to the task (van
Vliet & Wulf, 2006). Feedback can be provided
as knowledge of performance (KP), which gives
information about the quality of the movement, and
knowledge of results (KR), which gives informa-
tion about the error between the response produced
and the goal (magnitude of error, direction of error).
Cirstea et al. (2006, 2007) compared the effects of
KP and KR in two studies and showed that during
repeated practice, KP resulted in greater improve-
ments in motor function (Cirstea et al., 2006; Cirstea
& Levin, 2007). Rosati et al. (2011) demonstrated that
during robot-assisted movement, appropriate audi-
tory feedback promotes engagement, performance
and learning of the exercise (Rosati et al., 2011).
Several authors have used sensory feedback in com-
bination with visual feedback and all have reported
beneficial effects on motor function (Broeren et al.,
2006; Coote et al., 2008; Sim et al., 2015). Feed-
back is an important factor in motor learning because
it increases active participation by helping to main-
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tain patient motivation (Balasubramanian et al., 2012;
Stefan, 2000). Robotic devices provide both visual
and auditory continuously throughout the exercise
and also performance feedback that includes the mag-
nitude of directional or target errors provided at a
defined frequency and summarised at the end of
the exercise.

2.7. Segmental training in 2D or 3D

A major issue related to robot-assisted therapy
is the transfer of improvements at the impairment
level to activities of daily living and use of the arm
in the real world (Mehrholz et al., 2018; Rodgers
et al., 2019; Veerbeek et al., 2017). Most rehabili-
tation robots do not train the arm as a whole, but
focus on one or two joints. Proximal robots offer tar-
geted rehabilitation of the shoulder and elbow, while
distal robots train forearm, wrist or finger move-
ments. However, exoskeletons were developed with
the intention of providing more functional therapy
by training a greater number of degrees of freedom
together in a larger, 3D workspace. However, stud-
ies have shown that they do not appear to provide
any additional benefit in terms of functional recovery
compared to impairment-based single-joint robots
(Krebs, 2001; Krebs et al., 2008, 2015; Mehrholz
et al., 2020; Milot et al., 2013; Veerbeek et al.,
2017; Wu et al., 2021). This could be due to the
fact that 2D robots are easier to use (S.H. Lee et
al., 2020) and the exercises are easier to under-
stand (Lledó et al., 2016), or could be explained
by Bernstein’s theory that humans begin by reduc-
ing the number of degrees of freedom when learning
a new motor task (Bernstein, 1967). Krebs et al.
(2015) highlighted the paradox robotic devices with
a small number of degrees of freedom actually
reduce impairment and increase motor control across
a larger number degrees of freedom (Krebs et al.,
2015).

3. A paradigm for the integration of
robot-assisted therapy into rehabilitation

Based on current evidence in the literature and our
10 years of experience, we propose a plan for the
optimal use of robotic devices as part of an upper
limb rehabilitation program in patients with moderate
to severe post-stroke upper limb paresis.

3.1. Robotic assistance: As needed but not too
much or too long!

Assist-as-needed robot therapy allows patients
with severe motor impairment to actively participate
in rehabilitation (Duret et al., 2014). This contrasts
with other therapies developed over the last 20 years,
such as constraint-induced therapy, which is lim-
ited to a small group of patients (10% eligibility)
(Kwakkel et al., 2015) with moderate to mild upper
limb motor impairment (Brunner et al., 2011; Duret,
Hutin, et al., 2015; Wolf et al., 2002). The patient’s
movement intention matches their execution thanks
to the assistance provided by the robot (Brunner et
al., 2011; Duret, Hutin, et al., 2015; Wolf et al.,
2002). This form of positive reinforcement stimu-
lates motivation and plays an important role in the
early stages of motor learning (Sidarta et al., 2016).
Robot-assisted therapy allows a large number of
movements to be performed, and encourages active
participation, despite the assistance (Grosmaire &
Duret, 2017). Furthermore, the effort generated by the
patient (major intensity parameter) is a key element
that drives brain plasticity.

As the difficulty of the training has an important
influence on its effectiveness (Pan et al., 2019), it
seems obvious to us that even if our practice of robotic
rehabilitation starts with the use of programs with
assistance as needed, our goal is to propose exercises
of appropriate difficulty, thus avoiding patients’ being
bored or frustrated and losing motivation.

3.2. Visual feedback (graphic interface) of
results (active participation and motor
performance) to increase motivation

One of the major advantages of robotic systems is
the amount of information provided (i.e. feedback)
on the patient’s performance during the exercises
as well as throughout the training process. Change-
sensitive kinematic indicators (Duret et al., 2016) that
are complementary to clinical measures are widely
used in research, but to our knowledge, no recommen-
dations have been developed on the use of kinematic
parameters to guide rehabilitation. However, unlike
feedback given by the therapist during usual care,
feedback generated by robotic systems is objective
and provides information that cannot be provided
in conventional rehabilitation; for example they can
indicate the level of active participation (number of
times the robot has initiated the movement in the
patient’s place, time of initiation of the assistance,
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stiffness and power delivered by the robot) as well
as performance (deviation of the trajectory from the
ideal trajectory, distance to the target, movement
performance time, maximum speed, average speed,
smoothness). These indicators encourage the patient
to improve their performance and can also be used by
the therapist to determine when and how to progress
the therapy.

Our approach is progressive. Initially, the therapist
focuses the patient’s attention on the level of active
participation by indicating the number of times the
robot initiated the movement for them, or the power
the robot used to assist the movement. The thera-
pist then sets specific objectives relating to active
participation to challenge the patient and increase
their motivation. Once the patient is reassured that
they can generate movement, the therapist contin-
ues to encourage active practice while changing the
focus of the objectives to the quality of the move-
ment, using accuracy feedback (such as deviation of
the trajectory from the ideal trajectory, distance to
the target, etc.) provided by the robot. The aim is
to implement principles of motor skill learning by
proposing a pattern of trade-offs between speed and
accuracy that means that the patient must first gen-
erate a movement to the target, then increase speed
execution before focusing on accuracy (by decreasing
speed as a physical law) (Grosmaire & Duret, 2017;
Lefebvre et al., 2015).

3.3. Varying the exercises

Providing a variety of exercises within a session
is important to limit boredom and disengagement.
Furthermore, skill retention is improved by var-
ied practice (Brewer et al., 2007). The exercises
should involve both explicit (i.e. conscious practice)
and implicit learning (i.e. the performance of motor
tasks is done less consciously, more automatically).
Implicit learning can be achieved through the use of
games in a virtual environment (Brewer et al., 2007),
in which the patient can use the motor skills already
acquired in less pre-programmed, freer movements.
Exercises involving implicit learning, which is gen-
erally spared after stroke (Pohl et al., 2006) seem
to be just as effective as exercises based on explicit
motor learning (Kal et al., 2016) but should therefore
be used to diversify exercise conditions and stimu-
late the learning process. They have the advantage
of minimising the involvement of cognitive functions
and being robust over time (Steenbergen et al., 2010).

3.4. Begin with a standard target order then
randomize

During the first sessions, it is useful to choose
exercises where the movements are performed in a
predefined order to help the patient understand the
task. Once this has been achieved, it may be prefer-
able to present exercises which involve movements in
a random order, to reduce automatization, maintain
the patient’s attention and limit slacking. Presenting
the targets in a random order also optimises the effect
of contextual interference, increases the cognitive
load intrinsic to the task and is therefore a means of
intensifying practice (Hodges et al., 2014). However,
for some patients with significant cognitive impair-
ment it will be necessary to maintain the presentation
of targets in a predefined order.

3.5. Adaptation of target distance: Shorter,
challenging movements rather than longer,
assisted movements

It is more beneficial for patients to practice move-
ments of smaller amplitude, but with a greater active
participation, than the larger amplitude movements
that require assistance to complete. We therefore
remove the assistance as soon as the patient can pro-
duce even small amplitude movements. The aim is to
challenge the patient to generate effort but avoid fail-
ure. We therefore reduce the movement amplitude so
that the patient practices unassisted exercises within
an achievable range. As the patient progresses, we
increase the range of motion. based on the princi-
ple of Fitts’ law which indicates that the difficulty of
the task performed is the direct relationship between
the time to perform the task and the properties of
the targets, i.e. their size and the distance between
them (Paul M. Fitts, 1954; Zimmerli et al., 2012).
In other words, increasing the distance to the target
and/or decreasing the size of the targets increases the
difficulty of the task.

3.6. Alternating assisted and free movement and
progressing to free movement

A useful strategy to gradually progress the patient
while avoiding exercises that may be too difficult or
that require too much energy and would demotivate
the patient, is to alternate assist-as-needed exercises
with exercises that require a significant amount of
effort within the same session. We usually begin with
one or two assisted exercises as a warm-up, then
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switch to free exercises before returning to assisted
exercises as the patient tires. This dual modality
period can be continued until the patient has suffi-
cient endurance and capacity to complete an entire
training session without assistance.

3.7. Different modalities

As well as providing movement assistance, some
robotic systems can generate force fields to coun-
teract the trajectory or increase errors. While
assist-as-needed modes compensate for a lack of
motor ability, the aim of these modes is to stimu-
late adaptive plasticity, a process that complements
assisted learning. Such methods are very difficult to
implement in conventional therapy. After the initial
phase, which involves quantitative rehabilitation, i.e.
the practice of a large quantity of movements, of
increasing amplitude, the aim in the next phase is
to improve movement quality. Error-enhancing pro-
grammes amplify the visual presentation of lateral
deviations from the ideal trajectory, thus encourag-
ing movement accuracy by stimulating brain adaptive
processes. Once this has been achieved, the patient
can be progressed to modes in which force fields
attempt to deviate their trajectory from the straight
line. The perturbations thus force the patient to con-
tinually readapt their trajectory to the constraints
produced by the machine. These exercises involve
implicit learning.

The main characteristic of paresis is muscle weak-
ness. Therefore, once the patient can perform a
quality movement, it is important to increase their
strength. Although robots were generally not specif-
ically designed for strengthening, they often can
provide exercises with progressive, dynamic resis-
tance. The aim at this stage is to promote the patient’s
ability to perform movements against gravity, which
are necessary for activities of daily living.

3.8. How long should sessions be?

As with conventional rehabilitation, there is no
consensus on the duration of robot-assisted rehabil-
itation sessions. Although it is generally considered
that “more is better” (Langhorne et al., 1996; Lohse
et al., 2014), the optimal daily duration of an upper
limb rehabilitation session has not been determined.
In the literature, session durations relate to exper-
imental protocols and vary greatly from one study
to another, ranging from 20 minutes to 180 minutes
per day (Yozbatiran & Francisco, 2019). In reality,

the duration of rehabilitation sessions depends very
much on the organisation within the specific centre.
While specific sessions may be organised for robot-
assisted therapy in clinical trials, in routine care it is
uncommon for a specific session to be dedicated to
robot-assisted therapy. Conventional therapy (phys-
iotherapy and/or occupational therapy) sessions are
often shortened to fit in robot-assisted therapy.

A retrospective study by our team that compared
outcomes (Fugl-Meyer score) in patients in routine
care who received 45 minutes of robotic rehabilitation
with patients from a research protocol who received
30 minutes of robotic rehabilitation found no dif-
ference: patients in both groups performed over 600
movements per day with the robotic device (Pila et
al., 2022). This result seems to be consistent with the
work of Burgar et al. (2011), who compared 15 hours
of robot-assisted rehabilitation to 30 hours of robot-
assisted rehabilitation and 15 hours of additional
routine care, and found no significant difference in
change in Fugl-Meyer score between the groups both
at post-treatment and the 6-month follow-up (Burgar
et al., 2011). These results suggest that rather than
defining a set duration of robot-assisted therapy, it
is more relevant to set a number of movements of
appropriate difficulty to achieve.

3.9. Duration of the program: When to stop?

It is now widely accepted that early rehabilita-
tion leads to better recovery (Paolucci et al., 2000).
However, there are no recommendations on how long
robot-assisted therapy should be performed for. The
durations of robot-assisted therapy used in studies
is very heterogenous, ranging from 2 to 12 weeks
(Mehrholz et al., 2018). A program of 36 hours
of robot-assisted therapy provided over 12 weeks
to patients with chronic stroke found only mod-
est improvement in motor impairments (A.C. Lo et
al., 2010), suggesting that at least 36 sessions were
needed to achieve motor improvements. A study by
Pila et al. (2017) found that over 3 months of robot-
assisted therapy was necessary to improve motor
outcomes in the most severe subacute stroke patients
(Pila et al., 2017b). These results were confirmed
by a recent study by Daly et al. who evaluated the
needed of long dose of treatment (5 hours of daily
rehabilitation including 1.5 hours of robotics, 5 days
a week since 12 weeks, i.e. 300 h) for chronic stroke
with moderate/severe impairment, have shown a ben-
efit of continuing rehabilitation up to 300 hours with
greater functional gains in the second part of the treat-
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ment than in the first 150 hours (Daly et al., 2019).
These results refute the notion of a motor recovery
plateau that would occur as early as 3 to 6 months
depending on the initial level of severity of motor defi-
ciencies (Duncan & Sue Min Lai, 1997). We suggest
therefore, that robot-assisted therapy should be con-
tinued for as long as necessary (adjusting the training
to keep it challenging for the patient), until clini-
cal and kinematic (robot-measured) outcomes reach
a plateau.

4. Discussion: A review of 10 years of clinical
trials

Despite the continuing debate around the effective-
ness of upper limb robot-assisted therapy (Chien et
al., 2020; Rodgers et al., 2019), this treatment appears
as an appropriate treatment dose to be administered
in terms of the quantity of movements performed and
the intensity of the exercises. Although many ran-
domised studies and systematic reviews have been
conducted on robot-assisted therapy (Bertani et al.,
2017; Chien et al., 2020; K. Lo et al., 2017; Mehrholz
et al., 2020; Zhang et al., 2017), an issue often raised
is the heterogeneity of practices and poorly described
interventions (Burgar et al., 2011).

Robot-assisted therapy as defined above corre-
sponds fully to the current concepts of neuro-
rehabilitation, based on the principles of motor
learning (Maier, Rubio Ballester, et al., 2019) and
has been shown to effectively improve motor recov-
ery (Kleim & Jones, 2008a). It also improves patient
motivation and participation (Morone et al., 2020).
Despite the fact that robot-assisted therapy appears to
be an appropriate treatment for motor recovery after
stroke, after more than 20 years of use, the results are
still questioned, and skepticism regarding the ben-
efits and utility of robot-assisted therapy remains
widespread among clinicians. Moreover, current
guidelines for robotic rehabilitation after stroke did
not provide clear clinical practice recommendations
(Calabrò et al., 2021; Morone et al., 2021).

4.1. What does the literature say?

Therapists’ fears that robot-assisted therapy might
increase spasticity or shoulder pain seem to have been
allayed. Indeed, this therapy is considered safe in
subacute and chronic stroke patients, i.e. not dele-
terious to muscle tone and shoulder pain (Mehrholz
et al., 2020). However, its effects on the reduction of

spasticity remain controversial (Bertani et al., 2017;
Veerbeek et al., 2017).

Overall, studies have shown that robot-assisted
therapy in addition to usual care reduces upper
limb motor impairment significantly more than con-
ventional therapies, however, this improvement is
minimal on functional capacity (Veerbeek et al.,
2017; Wu et al., 2021). The results appear to differ
according to the phase of stroke. A Cochrane review
in 2015 found improvements of activities of daily liv-
ing in patients with acute and subacute stroke but not
in the chronic phase (Mehrholz et al., 2015) while
three recent systematic reviews found that robot-
assisted therapy was more effective than standard care
in the chronic phase (Bertani et al., 2017; Wu et al.,
2021; Zhang et al., 2017).

The application of additional care, i.e. conven-
tional therapy plus supplementary therapy such as
robotic therapy, is not always easy to achieve due to
budget constraints, and we believe the clinical reality
of robotic therapy is rather a partial substitution of
conventional therapy time.

The partial substitution of usual care by robotic
therapy in the acute (40 minutes out of 120 min-
utes conventional therapy per day were substituted
by robot therapy) (Masiero et al., 2014) and sub-
acute (conventional therapy was substituted by robot
therapy for 25% of the total weekly rehabilitation
time) (Dehem et al., 2019) phases also seems interest-
ing as these combined programmes show comparable
results.

The functional benefits of robot-assisted therapy
are still controversial. The 2018 Cochrane review
appeared to have closed the debate since it reported
a high level of evidence that this therapy improved
the ability to perform ADLs: however, the results of
the RATULS study published just after the Cochrane
review re-opened the debate (Mehrholz et al., 2018).
This large multicentre study of 770 stroke patients
with severe upper limb paresis in the subacute and
chronic phase found no difference in upper limb
functional abilities (assessed by the Action Research
Action Test (Lyle, 1981)) at 3 months between a pro-
gramme using robot-assisted therapy compared to a
programme of intensive manual therapy of the upper
limb and standard care (Rodgers et al., 2019). The
improvements observed in upper limb motor function
(impairment, assessed by the Fugl-Meyer assessment
scale (Fugl-Meyer et al., 1975)) in patients who
received robot-assisted therapy were not transferred
to activities of daily living. However, the main objec-
tive of robot-assisted therapy is not the improvement
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of functional capacities but the use of motor learning
principles to reduce impairment at the joints trained.
Furthermore, the robotic device used in the RAUTLS
study did not include distal rehabilitation or grip
training (Hung et al., 2016). The authors therefore
concluded that robotic therapy must be coupled with
functional exercises in order to ensure a functional
benefit (Rodgers et al., 2019).

Few studies have attempted to determine the
patient groups who most benefit from robot-assisted
therapy. However, it seems that it may be particularly
effective in patients with more severe impairment.
This was suggested in earlier studies (Conroy et al.,
2011; Finley et al., 2005; MacClellan et al., 2005) and
more recently in a retrospective study by our team
(Duret, Hutin, et al., 2015). A recent meta-analysis
also showed that the functional benefits of the ther-
apy were more significant in patients with moderate
to severe motor deficits (Wu et al., 2021).

Finally, a large variety of robotic devices has
become available, further complicating the issue of
effectiveness. Furthermore, not only are designs dif-
ferent (e.g. exoskeletons versus end-effectors, distal
versus proximal robots), but also the methods of
control vary, thus confounding the effects. A com-
parison of an end-effector robot and an exoskeleton
in patients with chronic, moderate-to-severe stroke
found that outcomes relating to activity and partici-
pation improved more in the group who trained with
the end-effector (S.H. Lee et al., 2020). A systematic
review also showed that only end-effectors reduced
impairment more than conventional therapy (Wu et
al., 2021).

4.2. Combination is the key

As suggested by Bernhardt et al. (2019), it is
time to accelerate the development of effective
rehabilitation practices by designing evidence-based
protocols, identifying target populations, providing
precise descriptions of the content of interventions
so that protocols can be reproduced using appropriate
standardised clinical scales and objective movement
analyses (Bernhardt & Mehrholz, 2019).

Rehabilitation robots should be part of the bat-
tery of tools available to clinicians to intensify the
treatment of patients with the most severe motor defi-
ciencies, as a synergistic complement to therapies
based on the functional integration of the paretic
upper limb in manual activities. This is the sense
of the studies that showed positive results of com-
bined treatments (Conroy et al., 2019; Hung et al.,

2016). Brokaw et al. in a pilot cross-over design
study compared the effects of equal doses of robotic
and conventional therapy in chronic stroke patients
with moderate to severe impairments (Brokaw et
al., 2014). Patients were randomized to 12 hours of
robotic or conventional therapy and then crossed over
to the other therapy type after a 1-month washout
period. They found that robot therapy improved
motor coordination and range of movement, and that
the results were enhanced when followed by con-
ventional therapy to apply the improvements in a
free environment. These findings suggest that robotic
therapy may be a starter to prime motor recovery
before functional integration. Conroy et al. confirmed
this outcome more recently in 45 chronic stroke
patients (Conroy et al., 2019).

4.3. How to implement robot-assisted therapy
for upper limb rehabilitation

Although there is no consensus on the content of
an optimal programme using a robotic device (Burgar
et al., 2011; Gassert & Dietz, 2018), it seems logi-
cal to imagine a challenging programme depending
on the patient’s motor deficits. This programme of
increasing difficulty implemented during a 30 min-
utes session could be as follows:

• Practice of 500 large-amplitude movements with
assistance-as-needed with a standardised (pre-
dictable) order of target presentation

• Isometric resistance exercises to improve shoul-
der stability

• Varied exercises (targeting both explicit and
implicit learning)

• Combination of assisted and unassisted short-
amplitude exercises

• Exercises with assistance-as-needed with targets
presented randomly

• Unassisted exercise with random targets and a
progressive increase in amplitude

• Exercises increasing errors to constrain at better
movement quality

• Force fields exercises to promote motor control
• Dynamic resistance exercises

4.4. Future of robotic rehabilitation?

The supporters of robotic therapy are trying to opti-
mize the use of these devices to get the best out of
them with a combination of robot-mediated training
focused on disabilities in adjunct to more functional
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conventional therapies in order to transfer the benefits
of one to the others which is our point of view.

Another way is to create different tools integrating
the two treatment modalities, impairment reduction
and ability enhancement, which seems to be the direc-
tion taken by the engineers.

The variety of devices on the market suggests
future developments in robotics for improving func-
tional capabilities in activities of daily living. Some
research teams have added haptic feedback to robots
in order to integrate more sensory input to approx-
imate the sensations perceived during functional
interactions in the real world (Aiple & Schiele, 2013;
Elangovan et al., 2019; Mazzoleni et al., 2018). Oth-
ers have integrated connected objects (Dı́ez et al.,
2016; Mizanoor Rahman, 2019). Some are devel-
oping versions that can be used at home so that
rehabilitation can be continued in telecare or in auton-
omy at home (Alamdari & Krovi, 2015; Housley
et al., 2018; Sivan et al., 2014). Other teams are
seeking to add artificial intelligence to the robots in
order to constantly evaluate the patient’s participation
and propose a rehabilitation programme accordingly
(Fazekas & Tavaszi, 2019). Finally, immersive vir-
tual reality is another solution under development.
All these concepts need clinical studies to see their
impact on the recovery of patients after stroke, but it
seems that robotics still has a bright future ahead.

5. Conclusion

Rehabilitation using robotic devices is still a
promising field of exploration in 2021; indeed,
despite the sometimes disappointing results of well-
conducted clinical studies, its optimal implementa-
tion is still ahead of us because the evidence-based
use of all the potentialities of these toolboxes has not
yet been really realised. Further studies that would
integrate some principles of the paradigm described
in this paper are needed.
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