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Abstract. In most multiagent systems planning on forehand can help to seriously improve the efficiency of executing actions.
The main difference between centrally creating a plan and constructing a plan for a system of agents lies in the fact that in the
latter coordination plays the main part. This introduces a number of additional difficulties. This special issue discusses some of
these difficulties in detail. To place these in a context, this introduction gives a brief overview of multiagent planning problems,
and most multiagent planning techniques.

1. Introduction

Agents can be classified into two categories according to the techniques they employ in their decision
making: reactive agents (cf. [29]) base their next decision solely on their current sensory input, while
planning agents, on the other hand, take into account anticipated future situations, possibly as a result of
their own actions, to decide on the best course of action [35].

When an agent should plan and when it should be reactive depends on the particular situation it finds
itself in. Consider the example where an agent has to plan a route from one place to another. A reactive
agent might use a compass to plot its course, whereas a planning agent would consult a map. Clearly,
the planning agent will come up with the shortest route in most cases, as it will not be confronted with
uncrossable rivers and one-way streets. On the other hand, there are also situations where a reactive
agent can be at least as effective, for instance if there are no maps to consult such as in a domain of (Mars)
exploration rovers. Nevertheless, the ability to plan ahead is invaluable in many domains. Therefore,
this special issue is dedicated to agents that are planning.

In particular the work presented here focuses on systems where a number of such planning agents
interact. Such settings where multiple agents plan, often distributedly, introduce additional difficulties
over the already hard problem of planning itself: there is the additional need for coordination, and
because communication is often limited, the result is consequently less optimal. However, there are
a number of good reasons for having multiple agents creating plans. First, the agents may represent
real-life entities which mainly have their own interests at heart. Therefore, they appreciate maintaining
their privacy and autonomy. Second, a distributed system may already exist, for which centralization
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would be too costly. Third, creating and maintaining plans locally allows for a more efficient reaction
in case of incidents, especially when communication is limited. Finally, dividing the planning problem
into smaller pieces and solving those in parallel may sometimes be more efficient, especially when the
individual planning problems are loosely coupled.

The five contributions in this special issue expand on these motivations by studying some of the
questions that arise when developing a multiagent planning approach.

1. How to place additional constraints upon the agents before planning such that their resulting plans
can easily be coordinated?

2. How to efficiently construct plans in a distributed fashion?
3. How to make collaborative decisions when there are multiple options for which each agent has its

own preferences?
4. When should a planning agent ask the user for more specific information?
5. How to measure how much privacy is lost in the process of coordinating plans?

This introduction gives some background on the multiagent planning problem, existing approaches to
this problem, and it then places these five contributions in this context. Parts of this document are based
on an earlier technical report [16].

2. Multiagent planning problems

There are many variants of what is understood as a multiagent planning problem. In general, a
multiagent planning problem can be defined as the problem of planning by and for a group of agents.
Except for more centralized (multiagent) planning problems, each agent in such a problem has in fact a
private, individual planning problem. A typical individual planning problem of an agent includes a set
of operations (with some costs attached, and a pre- and post-condition) that it can perform, a set of goals
(with reward values), and the current (initial) state of this agent. The solution to a multiagent planning
problem is a plan: a partially ordered sequence of actions that, when executed successfully, results in a
set of achieved goals for some of the agents. Most techniques can deal with problems where the actions
and goals of the agents are only weakly dependent upon each other, where the agents are cooperative, and
where communication is reliable. However, in general a multiagent planning approach may encounter a
whole variety of situations along these three axes.

– From independent to strongly related

∗ Independent: no shared resources, no dependencies
∗ Strongly related: joint actions, shared resources
∗ E.g. lift a box together, car assembly

– From cooperative to self-interested agents

∗ In some settings the participating agents are only interested in optimizing their own utility.
∗ E.g. robots in the robocup versus companies in a supply chain

– From no communication possible to reliable communication

∗ In hostile environments agents may not or cannot communicate during execution. This may
require all coordination to take place before the execution starts.
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∗ E.g. robots rescuing people in disaster scenarios, or on a planetary exploration mission versus
companies in a supply chain

There are benchmark problems with different ranges in the spectra of these properties, such as

– Robocup Rescue [40], where a team of agents of sometimes different types need to coordinate their
efforts in dealing with all kinds of disasters,

– DARPA COORDINATORS military team coordination [43,45,57,68], and
– supply chain formation in the Trading Agent Competition [72].

To deal with these problems, many different techniques have been put forward. The next section
discusses quite a number of these techniques briefly.

3. Multiagent planning techniques

Multi-agent planning techniques cover quite a range of solutions to different phases of the problem.
This section structures existing work using these steps in the process of solving a multiagent planning
problem. In general, the following phases can be distinguished (generalizing the main steps in task
sharing by Durfee [22]).

1. Allocate goals to agents.
2. Refine goals into subtasks.
3. Schedule subtasks by adding resource allocation (possibly including the agents) and timing con-

straints.
4. Communicate planning choices (of prior steps) to recognize and resolve conflicts.
5. Execute the plans.

Planning is a combination of phases 2 and 3, which are often interleaved. Any of these steps could be
performed by one agent or some subset. Not all phases of this general multi-agent planning process
need to be included. For example, if there are no common or global goals, there is no need for phase 1.
Also, some approaches combine different phases. For example, agents can coordinate their plans while
constructing their plans (combination of phase 2, 3, and 4), or postpone coordination until the execution
phase (combination of phase 4 and 5), as, e.g., robots may do when they unexpectedly encounter each
other while following their planned routes.

In general, any interleaving of the five phases may make sense, depending on the problem, indicating
a wide variety of possible problem classes. The following subsections describe some well-known
approaches to handling issues arising in each of the phases.

3.1. Goal and task allocation

Centralized methods (such as those mentioned in the next section) often take care of the assignment of
goals and tasks to agents during planning. There are, however, many other methods to assign tasks in a
more distributed way, giving the agents a higher degree of autonomy and privacy. For example, complex
task allocation protocols [55] may be used, or auctions and market simulations.

An auction is a way to assign a task to the agent that attaches the highest value or lowest cost (called
private value) to it [70,75]. A Vickrey auction [64] is an example of an auction protocol that is quite
often used in multiagent systems. In a Vickrey auction each agent can make one closed bid, and the task
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is assigned to the highest bidder for the price of the second-highest bidder. This auction protocol has
the nice property that bidding agents should simply bid their true private values (i.e., exactly what they
think it is worth to them), removing any need for additional reasoning about its worth to others.

Market simulations and economics can also be used to distribute large quantities of resources among
agents [69,73,74]. For example, in [8] it is shown how costs and money are turned into a coordination
device. These methods are not only used for task assignment (phase 2), but can also be used for
coordinating agents after plan construction (phase 5). In the context of value-oriented environments,
such game-theoretical approaches where agents reason about the cost of their decision making (or
communication) become more important. See, for example, work by Sandholm, supported by results
from a multiple dispatch center vehicle routing problem [53].

An overview of value-oriented methods to coordinate agents is given in [30]. Among these, Markov
decision processes (MDPs) can deal with settings where outcomes are uncertain, and can even be extended
to deal with partially observable worlds. Algorithms often use these representations to compute policies
that specify the optimal actions for each agent for any possible belief state. In this survey we focus on
deterministic approaches to multiagent planning, but there are surveys on the use of MDPs for multiagent
planning under uncertainty [47,54]. These multiagent approaches rely on earlier work on centralized
planning/coordination algorithms in the context of uncertainty and/or partial observability [36,50].

Value-oriented methods for self-interested agents lie within the domain of game theory [3]. On the
one hand, literature on using auctions, markets, and negotiation protocols to allocate resource or tasks is
far too extensive to cover here. On the other hand, however, work relating game theory (and mechanism
design) to multiagent planning is surprisingly scarce (see, e.g. [63]).

3.2. Goal and task refinement

In the second phase, the global tasks or goals are refined such that each remaining task can be done
by a single agent. Apart from single-agent planning techniques using non-linear planning [49,52] or
Hierarchical Task Networks, HTNs [28], special purpose techniques use the classical planning framework
to construct multi-agent plans [39,48]. A number of planners with more sophisticated models of temporal
extent can be applied in this fashion, centralizing and combining phases 2 through 4 [1,7,14,41,44]. See
for example the book on automated planning for an overview of such techniques [35].

3.3. Decentralized planning

Instead of one agent planning for the rest, the second and third phases may be implemented by local
planning by each of the agents. In principle, any planning technique can be used here, and different
agents may even use other techniques. Some approaches integrate individual planning (phases 2 and 3)
with coordination of the plans (phase 4). Early in the history of distributed AI, a distributed version of
the NOAH planner demonstrated how to integrate phases 1 through 4, each decentralized, to plan for a
single agent in parallel [12], highlighting central issues in distributed planning.

Later, all five phases are interleaved by the Partial Global Planning framework PGP [23], and its
extension, Generalized PGP GPGP [17,18], where each agent has partial knowledge of the plans of other
agents using a specialized plan representation. In this method, coordination is achieved as follows. If an
agent A informs another agent B of a part of its own plan, B merges this information into its own partial
global plan. Agent B can then try to improve the global plan by, for example, eliminating redundancy
it observes. Such an improved plan is shown to other agents, who might accept, reject, or modify it.
This process is assumed to run concurrently with the execution of the (first part of the) local plan. PGP
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has first been applied to the distributed vehicle monitoring test bed, but, later on, an improved version
has also been shown to work on a hospital patient scheduling problem. Here [19] used a framework for
Task Analysis, Environment Modeling, and Simulation (TÆMS) to model such multi-agent environments
in a more general way. Shared Activity Coordination (SHAC) extended GPGP’s concept of modeling
coordination mechanisms while separating the model and implementation from that of the planning
problem and algorithm [11]. An overview of the PGP related approaches is given by [42].

Another approach to agent coordination is through models of mental attitude. The GRATE framework
enables agents to coordinate their individual planning by reasoning about their beliefs, desires, intentions,
and joint intentions/commitments [38]. Coordination is interleaved with planning by creating and revising
commitments through an organizing agent.

3.4. Coordination after planning

A large body of research focused on how to coordinate after plans have been constructed separately
(phase 4). These so-called plan merging methods aim at the construction of a joint plan for a set of
agents given the individual (sub) plans of each of the participating agents. Georgeff [32,34] was one of
the first to actually propose a plan-synchronization process starting with individual plans. He defined a
process model to formalize the actions open to an agent. Parts of such a process model are the correctness
conditions, which are defined on the state of the world and must be valid before execution of the plan
may succeed. Two agents can help each other by changing the state of the world in such a way that the
correctness conditions of the other agent become satisfied. Of course, changing the state of the world
may help one agent, but it may also interfere with another agent’s correctness conditions [33].

Stuart [58] uses a propositional temporal logic to specify constraints on plans, such that it is guaranteed
that only feasible states of the environment can be reached. These constraints are given to a theorem
prover to generate sequences of communication actions (in fact, these implement semaphores) that
guarantee that no event will fail. To both improve efficiency and resolve conflicts, one can introduce
restrictions on individual plans (in phase 3) to ensure efficient merging. This line of action is proposed
by Yang et al. [77] and Foulser et al. [31], and can also be used to merge alternative plans to reach the
same goal (see also Section 3.5).

Another centralized plan-merging approach addresses problems arising from both conflicts and re-
dundant actions by using the search method A* and a smart cost-based heuristic: Ephrati and Rosen-
schein [24] showed that, by dividing the work of constructing sub plans over several agents, one can
reduce the overall complexity of the merging algorithm [25].

Other work on plan merging propose a distributed polynomial-time algorithm to improve social
welfare, the sum of the benefits of all agents [27,51]. Through a process of group constraint aggregation,
agents incrementally construct an improved global plan by voting about joint actions. They even propose
algorithms to deal with insincere agents, and to interleave planning, coordination, and execution [26].

The plan merging problem is also blurred with interleaved planning and coordination at multiple
levels of abstraction [9]. The idea is that the agents may have partially refined their plans at different
levels of detail and can also coordinate them at different levels. Based on a concurrent hierarchical
plan (CHiP) representation (adding durative action and consumable/replenishing resources to an HTN),
centralized algorithms are given for offline summarization of potential refinements of an abstract task
and for exploiting this summary information to more efficiently resolve conflicts in systematic and local
planning [10].

This abstract reasoning can also be used by agents to maintain autonomy while exploiting the results
of other agents to improve plan efficiency and search performance [13,15]. In [13] the idea is to add
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conditional dependencies to the plan: if an agent achieves another’s subgoal, the agent can execute a
more efficient branch of the plan; otherwise the normal course of action can still be followed. This
works builds upon a single-agent approach that uses a conditional simple temporal network (STN)
representation to merge redundant actions/subplans across subgoals [61]. In [15] all plans are modeled
as resource consuming and producing processes. Such a view allows for efficient plan merging through
resource exchanges. The effectivity of this approach is supported by an experimental analysis of applying
plan merging to planning data from a taxi company.

3.5. Coordination before planning

Another way agents can coordinate (phase 4) before they even start creating their plans (phases 2 and
3) is by using social laws. A social law is a generally accepted convention that each agent has to follow.
Such laws restrict the agents in their behavior. They can be used to reduce communication costs and
planning and coordination time. In fact, the work of Yang et al. [77] and Foulser et al. [31] about finding
restrictions that make the plan merging process easier, as discussed in the previous section, is a special
case of this type of coordination. Typical examples of social laws in the real world are traffic rules:
because everyone drives on the right side of the road (well, almost everyone), virtually no coordination
with oncoming cars is required. Generally, solutions found using social laws are not optimal, but they
may be found relatively fast. How social laws can be created in the design phase of a multi-agent system
is studied by Shoham and Tennenholtz [56]. Briggs [5] proposed more flexible laws, where agents first
try to plan using the strictest laws, but when a solution cannot be found agents are allowed to relax these
laws somewhat.

Another way to coordinate agents is to figure out the exact interdependencies between their tasks
beforehand. Prerequisite constraints can be dealt with centrally using existing planning technology (such
as partial order planning [71] or those mentioned in Section 3.2) by viewing these tasks as single-agent
tasks. The summary information discussed used in PGP has also been proposed to precompute the
interferences (such as shared resources) among the goals of one agent or a group [10]. Information
about the top level of a plan hierarchy can be exchanged among the agents to determine conflicting and
also positive relations, and even to match goals to agents [65–67]. If possible, relations are solved or
exploited at this top level. If not, a refinement of the plans is made, and the process is repeated, thus,
integrating phase 2 and 4.

Coordination before planning can also be used by competitive agents that insist on their planning
autonomy [62]. Here, the problem is that the planning agents have a set of interrelated (sub)goals
that they have to reach, and they do not want others to interfere with their planning activity. That
is, each of the agents requires full planning autonomy, but at the same time they have to be sure that
whatever (sub)plans they construct to solve their part of the problem can be coordinated seamlessly
without requiring replanning. Planning problems like these often occur in multi-modal transportation
problems: several parties have to ensure that packages are transported from their source locations to their
destinations. The planning agents are prepared to carry out their part of the job if it can be guaranteed
that they will not be interfered by the activities of other agents [6].

It is clear that most of those planning problems cannot be decomposed into independent subproblems
without changing the original planning problem. However, temporal constraints can be added to the
agents’ STNs up front so that they need not communicate at all during scheduling and execution [37].
Another preplanning coordination method adds a minimal set of additional constraints to the subgoals
to be performed in order to ensure a coordinated solution by independent planning [60].
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3.6. Plan execution

Distributed Continual Planning (DCP) problems often require agents to break and re-make commit-
ments during execution when there are unexpected events/failures or goal changes [21]. Distributed
SIPE [20] and CODA [46] explore approaches to interleaving phases 2 through 5 with a focus on mini-
mizing communication. SHAC, mentioned in Section 3.3, incorporates a simple, general algorithm, for
which coordination mechanisms are customized to the problem domain.

Recently, a variety of decentralized planning algorithms for handling uncertainty in real time have
been developed for scaling to large (100 agents and over 13000 tasks) problems based on TÆMS as part of
the DARPA COORDINATORS program [43,45,57,68,76]. Some of the challenges of these problems include
partial observability, deadlines, uncertain duration, uncertain message delay, and dynamic revision of
goals. These algorithms interleave phases 2 through 5 in different ways: by computing metrics to
communicate and identify the most critical tasks to execute, by using the timing flexibility of STNs to
maintain schedule stability while continually exploring optimizations with others, and by regenerating
local MDP policies based on changing commitments.

The STEAM collaborative execution framework [59] focuses just on phases 4 and 5 by building on the
concept of joint intention mentioned in Section 3.3. This system enables agents to work together to
discover when commitments are broken and how to recover from failures and still meet goals.

4. Contributions in this special issue

Problems associated with agent communication and interaction in planning (the fourth phase introduced
in Section 3) are at the heart of multiagent planning. The articles of this issue cover many of the different
contexts described above but focus on ways to minimize commmunication or interactions for more
efficient planning and execution.

– Steenhuisen and Witteveen extend precedence-based temporal decoupling (coordination before plan-
ning) to handle synchronization constraints.

– Cox and Durfee introduce an algorithm and problem reformulation techniques for distributed co-
ordination after planning to efficiently “merge” redundant actions and reuse the results of other
agents.

– Purrington and Durfee describe complete and approximate algorithms for finding optimal agreements
for self-interested planning agents.

– Rosenfeld, Kraus, and Ortiz demonstrate that an agent can learn when it needs feedback from others
based on its confidence in making local planning decisions.

– Van der Krogt describes how an agent can measure how much private information it is communicating
to others according to the size of the possible plan space.
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