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Abstract. We analyze overall mortality in the U.S. as a whole and several states in particular in order to make conclusions
regarding timing and strength of COVID pandemic effect from an actuarial risk analysis perspective. No effort is made to analyze
biological or medical characteristics of the pandemic. We use open data provided by CDC, U.S. state governments and Johns
Hopkins University. In the first part of the paper, we suggest time series analysis (ARIMA) for weekly excess U.S. mortality in
2020 as compared to several previous years’ experience in order to build a statistical model and provide short-term forecast based
exclusively on historical mortality data. In the second half of the paper, we also analyze weekly COVID cases, hospitalizations
and deaths in 2020 and 2021. Two midwestern states, Minnesota and Wisconsin, along with geographically diverse Colorado and
Georgia, are used to illustrate global and local patterns in the COVID pandemic data. We suggest vector autoregression (VAR)
as a method of simultaneous explanatory and predictive analysis of several variables. VAR is a popular tool in econometrics
and financial analysis, but it is less common in problems of risk management related to mortality analysis in epidemiology and
actuarial practice. Efficiency of short-term forecast is illustrated by observing the effect of vaccination on COVID development
in the state of Minnesota in 2021.

Keywords: COVID 19, excess mortality, vector autoregression, predictive modeling

1. Introduction

COVID-19 was first detected in China in late 2019, and by early 2020 there were infections in most countries
around the world, leading to one of the largest pandemics in a hundred years, comparable with H2N2 in 1957–
1958, H3N2 in 1968 and H1N1pdm09 in 2009. The first manifestation of the pandemic was the increased mortality
detected in many countries and not necessarily attributed to known diseases. As infection and death rates rose, this
unprecedented global public health event led to nation-wide lockdowns and other imposed measures as countries
hoped to stem the tide. As more data came out on infections, data scientists needed to use a variety of methods to
monitor the pandemic development and to find effective measures to control it. Even now, more than two years later,
new ways of looking at existing data are useful for policy and decision making. The present paper seeks to make a
statistical and mathematical attempt to quantify several aspects of the COVID-19 pandemic. Using existing state-
level and nation-wide data and relatively simple actuarial and econometric methods, such as vector autoregression
(VAR) and ARIMA, we look to produce a reasonable approach to data interpretation and short-term predictions for
new cases, hospitalizations and deaths.

In problems of estimating the effects of epidemiological factors on human mortality, it is often difficult to make
a definitive conclusion on the cause of death in any particular case. Deaths directly attributed to an epidemic can
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be either underreported (for instance, in the onset of an epidemic when the causes may be unknown) or overre-
ported (determining the cause of death in presence of several contribution factors). Therefore, one of the possible
approaches is to ignore the causes of deaths and compare mortality patterns for the period in study with those for
appropriate reference periods (previous years) (Weinberger et al., 2020). This approach does not attribute mortality
to specific factors thus avoiding underreporting or overreporting biases. It also allows one to address the effects of
an epidemic accounting for the reasons associated with an epidemic indirectly: general stress, changes of lifestyle,
lack or delay of regular healthcare procedures, etc.

The main drawbacks of the excess mortality approach include our inability to address the cause of death. Various
mortality factors can develop during a pandemic: for instance, we are likely to see a higher number of deaths among
patients with chronic illnesses and a higher number of suicides; on the other hand, with the lifestyle changes caused
by a pandemic, we may expect lower number of traffic accidents and lower number of deaths due to diseases similar
to the pandemic cause (in case of COVID, we can suggest common flu), which is associated with the preventive
measures (social distancing, hand washing and mask wearing). Therefore, for the later period of the pandemic, we
also analyze mortality attributed to COVID, along with COVID cases and hospitalizations, at the specific state level
(Minnesota, Wisconsin, Colorado and Georgia). Our goal is to develop parametric models allowing for a short-term
prediction of mortality based on available public information.

There exist many mathematical and statistical models of COVID-19 pandemic development. A good compre-
hensive review of early COVID models including SIR-type, structured metapopulation and agent-based network
models developed by the Imperial College in London, Northeastern University and Swedish institutions is presented
in (Adiga et al., 2020). More models have been recently suggested by CDC and IHME to address the effects of
new variants, vaccination, and other preventive measures as well as other health policy decisions. Another broad
review of epidemic modeling with emphasis on forecasting is presented by the Carnegie-Mellon Delphi group in
(Rosenfeld & Tibshirani, 2021). Bayesian evidence synthesis was used to reconstruct the course of COVID-19 in
the U.S. in (Chitwood et al., 2020). These models can be effective and powerful, but they also depend on rigorous
data collection from multiple sources and thus may be susceptible to such data issues as underreporting, overreport-
ing, and misinterpretation. Problems related to the performance of SIR-like models under uncertainty and model
identifiability are summarized in (Piazzola et al., 2021).

Time series analysis has been widely used in econometrics and finance, but also finds its ways into epidemiology
and actuarial research. Since at least 1980-s, ARIMA methods have been applied to model interest rates in life con-
tingencies (Bellhouse & Panjer, 1981) and to reserving (Kremer, 2005). ARIMA approach to mortality modeling
was suggested in (Lee & Carter, 1992). Threshold ARIMA or SETAR, a more advanced modification, was used in
(Watier & Richardson, 1995) to analyze epidemiological time series. In the COVID-19 context, there is a number
of recent publications suggesting the use of time series analysis. Robust forecasting techniques using flexible trend
extraction were considered in (Doornik et al., 2022). Hybrid high-dimensional time series were applied in (Bhat-
tacharyya et al., 2022) and hierarchical models in (Oliveira & Moral, 2021) to daily case forecasting. Traditional
ARIMA models were used to forecast daily cases in the top five affected countries of the world in (Sahai et al., 2020).
Autoregressive neural networks (Conde-Gutierrez et al., 2021) and model-free Euler methods (Antulov-Fantulin &
Böttcher, 2022) were also suggested to forecast fatalities. Problems arising with this forecast are discussed in (Bilin-
ski & Salomon, 2021).

Unfortunately, forecast quality is not perfect for even the best and the most complicated models. (CDC COVID-
19 Forecasts, 2022) use ensemble approach incorporating results of multiple models developed by different groups,
providing a one-week to four-week forecasts of COVID mortality based on a large number of variables. Two stan-
dard measures of forecast quality are mean absolute error (MAE) and mean absolute percentage error (MAPE). It
is also common to measure the forecast quality by the percentage coverage of actual future values with 95% pre-
diction intervals. To give an idea of the confidence interval range, as of May 2022 the four-week 95% prediction
intervals spanned from 1,700 to 6,700 for the U.S. nationally, and from 10 to 110 for Minnesota. (Johansson et al.,
2020) analyzed 2,512 ensemble forecasts made April 27 to July 20 with outcomes observed in the weeks ending
May 23 through July 25, 2020. Forecast accuracy was adequate but deteriorated at longer prediction horizons of up
to four weeks. The MAE of four-week ahead point predictions was more than three times the MAE of one-week
ahead predictions. For example, the national-scale one-week ahead MAE indicated an average difference of 760
deaths from the eventually observed values, while the four-week ahead forecasts had a MAE of about 2,400 deaths.
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The original 95% prediction intervals captured only 87–90% of observations. After rounding, the 95% prediction
intervals were better calibrated, with coverage rates of 92–96%. Similar reports of (Imperial College COVID Re-
sponse Team, 2022) using ensemble transmissibility model provide a 7-day (1 week) COVID death forecast for 41
countries provide median MAPE of 21% with 83% coverage by 95% confidence intervals. Both MAE and MAPE
do not guarantee a good basis of comparison when we consider populations of different sizes. For instance, MAPE
can assume large values for smaller populations where death is a relatively rare event. Confidence interval coverage
provides a more reasonable means to judge model practicality.

Our approach is different from most of these sources in two ways: we use publicly available weekly data, and
restrict the number of variables to the bare minimum. First, we build time series excess mortality models using
weekly data without attribution to particular causes of death. When more public data become available, we analyze
weekly reported cases, hospitalizations, and deaths attributed to COVID for a given population. This approach will
not allow us to effectively forecast the peaks and troughs in the mortaility patterns due to new variants or public
health decisions. However, it may be a fast and efficient tool for a short-term prediction of mortality patterns. These
data are also subject to underreporting, but to a lesser extent. They are also available on timely basis and can be
easily updated. Section 2 contains the description of the methods we use: Box-Jenkins methodology (ARIMA) and
vector autoregression (VAR).

This choice of methodology provides a good way to obtain short-term forecasts based on the past behavior of
the variables of interest without a wider study of the demographic and epidemiological environment. Our focus
is on the construction of simple models using public data obtainable in real time and subject to quick updates.
On the other hand, VAR provides an opportunity to study several time series simultaneously and get short-term
mortailty predictions based on some related data such as cases and hospitalizations when they are available. In
actuarial literature, VAR applications can be found in the field of asset allocation efficiency and pension fund analysis
(Musawa & Mwangaa, 2017; Park et al., 2022), but seem to be relatively new for mortality studies. Some recent
papers, following (Guibert et al., 2019), address high-dimensional VAR for multi-population mortality, see also (Li
& Shi, 2021).

In the present paper, we will analyze open source data related to COVID-19 provided by CDC, state governments
of Minnesota, Wisconsin, Colorado, and Georgia, and Johns Hopkins University. Our goal is to build explanatory
and short-term predictive mortality models using the time series approach. We will use available weekly data on
overall mortality, COVID-related mortality, COVID cases and hospitalizations. Section 3 contains a more detailed
description of the data and some background terms and definitions.

Section 4 deals with U.S.-wide excess mortality modeling. While it is evident that mortality in 2020 increased
dramatically due to COVID-19, we might suggest some evidence of positive excess mortality as early as late 2019.
In our analysis, we are looking for a strutural break in excess mortality time series, which would indicate the onset
of COVID epidemic in the U.S. Then we perform similar analysis separately for the state of Minnesota.

Section 5 considers COVID-related mortality modeling at the state level, with an emphasis on methodology: low-
dimensional VAR model selection, parametric estimation, diagnostics and model validation. Section 6 compares
COVID-related mortality models in the midwestern states of Minnesota and Wisconsin, followed by inclusion of
Colorado (western state representative) and Georgia (south-eastern state representative) as geographically diverse
examples.

Section 7 illustrates the pros and cons of short-term forecasting with VAR using vaccination data from Minnesota
in Spring 2021. We will see that the predictions are reliable in pre-vaccination and post-vaccination periods, while
their accuracy is reduced during the peak of vaccination.

Section 8 summarizes the principal conclusions.

2. ARIMA and VAR

2.1. ARIMA (Box-Jenkins models)

ARIMA (autoregressive integrated moving averages) methodology, also known as Box-Jenkins models (Box &
Jenkins, 1970), also (Box, 2015) is a combination of stationary autoregressive models with lag (order) p = 1, 2, . . .
for the single variable time series Yt, t = 1, . . . , T
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Zt = a0 + a1Zt−1 + . . . apZt−p + εt, εt ∼ N(0, σ2), (1)

and moving average models with lag q = 1, 2, . . .

Zt = εt + b1εt−1 + . . . bqεt−p, εt ∼ N(0, σ2), (2)

applied to differences Zt order d = 0, 1, 2, . . . in the initial time series Yt,

Zt = DdYt, DYt = Yt − Yt−1, D
dYt = DDd−1Yt. (3)

The final model ARIMA (p, d, q) which is stationary for d = 0 and non-stationary for d > 0 (Hamilton, 1994)
can be represented with the help of backhift (lag) operator LYt = Yt−1 such that D = 1 − L, as(

1 −
p∑

i=1

aiL
i

)
(1 − L)dYt = δ +

(
1 −

q∑
i=1

biL
i

)
εi. (4)

Identification of ARIMA models usually involves determination of lags p, d, q. Both ACF (auto-regressive func-
tion) and PACF (partial auto-regressive functiuon) are the primary identification tools for non-stationarity and auto-
correlation. Unit root tests such as augmented Dickey-Fuller test (ADF) and more general stationarity tests such as
Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) are run to determine the differencing order d. Then it is common to
use information criteria to determine the optimal number of lags: autoregressive order p and moving average order
q. The most popular information criteria are Akaike Information Criterion (AIC) (Akaike, 1974), Schwarz Informa-
tion Criterion (SIC) (Schwarz, 1978), Hannan-Quinn Criterion (HQC) (Hannan & Ouinn, 2019) and final prediction
error (FPE), see also (Luetkepoh, 2006). All information criteria are based on likelihood or sum of squared errors
and include penalties for the size of the model (expressed as lag depth). The lower the criterion value, the better is
the model.

Estimation in ARIMA, after the lags p, q, d are set, is typically carried out parametrically via the method of
maximum likelihood for p+ q+ 1 parameters (â0, . . . , âp, b̂1, . . . , b̂q) and provides fitted values Ŷt for t = 1, . . . , T
and forecasts Ŷt for t > T , calculated recursively using residuals ε̂t = Ŷt − Yt.

Further diagnostic tools are related to residual analysis: performing Box-Pierce and Ljung-Box tests for residual
autocorrelation along with graphical analysis of residual ACF and PACF.

2.2. VAR (vector autoregression)

VAR (vector autoregression) is an extension of autoregressive models ARIMA (p, d, 0) to several variables (vector
time series), suggested by (Sims, 1980 and nowadays widely used in disciplines such as econometrics and finance.
It is less common in epidemiology and actuarial practices, therefore we will provide some details on the model
formulation for a simpler case of stationarity d = 0 since it wil be sufficient for the coverage of examples considered
in the paper. It is important to notice that before we concentrate on the case d = 0, we need to perform preliminary
stationarity analysis. In absence of stationarity, one may apply differencing similar to ARIMA.

Suppose we are interested in simultaneous modeling of k > 1 dependent variables forming at each time point
t = 1, . . . T a vector Yt = (Y

(1)
t , . . . , Y

(k)
t )′. Then the basic reduced-form VAR model lag (order) p = 1, 2, . . . for

d = 0 can be presented as

Yt = ct +A1Yt−1 + · · · +ApYt−p + εt, (5)

where ct is a k-dimensional vector of constants, Ai, i = 1, . . . p are k × k matrices and the k-dimensional error
vectors εt satisfy the following conditions:

– E(εt) = 0,
– E(εtε

′
t) = Ω – a positive-semidefinite contemporaneous covariance matrix,

– E(εtε
′
t−i) = 0 for any i > 0 – no correlations across time.

Identification of a specific VAR model to use, which includes selection of differencing order d and the number
of lags p, is a of a primary significance. Stationarity of the underlying process which suggests the use of d = 0,
can be checked via unit root tests (e.g., ADF and/or KPSS). One of the most popular approaches to determination
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of the autoregressive order p involves using information criteria: AIC, SIC, HQC, or FPE. Information criteria are
defined for VAR in the following way: the sum of squared errors SSE(p) is defined through the vectors of residuals
ε̂t = Ŷt − Yt, obtained for model with lag p

SSE(p) = det

(
T−1

T∑
t=1

ε̂tε̂
′
t

)
, (6)

and then

AIC(p) = log SSE(p) + 2T−1pk2, (7)

SIC(p) = log SSE(p) + log(T )T−1pk2, (8)

HQC(p) = log SSE(p) + 2 log (log T )T−1pk2, (9)

FPE(p) = exp

(
log SSE(p) + k log

(
T + p+ 1

T − p− 1

))
. (10)

The smaller criteria values correspond to better models. Usually the model selection suggests the choice of p
mimizing certain information criterion.

Further diagnostics of VAR model via residual analysis is usually performed to test the absence of serial correla-
tion (Portmanteau tests), absence of heteroscedascticity (ARCH Lagrange multiplier test) and absence of structural
breaks (CUSUM). All these techniques are built in R package ‘vars’ (Pfaff & Stiegler, 2018; Kotze, 2020).

If VAR models addressing autoregressive effects do not provide a reasonable fit, it might be worthwhile adding
more variables to the picture or considering VARIMA models which incorporate both autoregressive and moving
average effects for several variables (Mukhaiyar et al., 2021). However with either increasing dimensionality of
VAR or introducing moving average terms in VARIMA, there is a danger of models becoming overparameterized
and non-identifiable (Guibert et al., 2019). Therefore, in this paper we restrict ourselves to VAR as long as it provides
sufficient fit for the data in question.

3. Data description

3.1. Excess mortality data

In order to perform ARIMA analysis of excess mortality, we needed total number of U.S. deaths and mortality
rates per week, as well as yearly population counts. Total population counts were required as it is customary to
express deaths as a rate per every 100,000 members of the specified population. These counts for 364 consecutive
weeks in the years from 2014 to 2020 were taken from the CDC WONDER – a wide-ranging online public-use
database for epidemiologic research (CDC Wonder, 2021) which contains data on U.S. births, deaths, population es-
timates and other outcomes of interest for public health. In actuarial circles, it is now very prevalent to look at things
from various angles, but most specifically, the metric of excess deaths is a useful device. By taking excess deaths
and then associating with these the “Actual-to-Expected Analysis”, actuaries and data scientists can most usefully
perform comparisons of the baseline period to the current COVID period and draw conclusions. See Subsection
3.3 for more detail on concepts, such as “Actual-to-Expected Analysis”, and to shed light on this topic, as well as
providing background information, regarding definitions, et al. The CDC has their own definition of determining
the expected mortality/deaths in their database, just as any actuarial endeavour will, so it is important to understand
each respective approach. Other factors, such as seasonality, the lag in reported deaths, delays in reporting patterns,
and other idiosyncrasies are often critical to explaining overall usefulness of the results.

In this paper, our focus is on the reported data, the incidence by count, albeit with the associated lag deficiencies.
Our purpose is the development of the statistical predictive models, using ARIMA and VAR methodology, under-
standing that the next phase would be to incorporate such adjustments as lag factors (with IBNR, see definition in
Subsection 3.3), and estimated mix by age, sex and time of year (seasonality). Description of the modeling process
with reported data is important to demonstrate the general modeling approach. Future updates will include these
adjustments.
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3.2. VAR modeling data

To introduce VAR modeling, three statistics needed to be obtained. These three statistics were COVID-19 cases,
hospitalizations and deaths. In addition, these three measurements needed to be broken down by week and state.
Observing weekly data for 67 weeks from March 2020 to June 2021 made it possible to perform time series analysis
and use the model for forecasting. Splitting by state allowed for the comparison of COVID-19 development in
Minnesota, Wisconsin, Colorado, and Georgia. A continuation of this study would incorporate additional states. The
data for weekly cases and deaths came from the CDC’s COVID Data Tracker. Data for hospitalizations has been
taken from the governments of each corresponding state (Minnesota, Wisconsin, Colorado, and Georgia), (MN Dept
of Health, 2021; WI Dept of Health Services, 2021; CO Dept of Public Health and Environment, 2021; GA Dept of
Public Health and Environment, 2021). Future work will make additional adjustments, as needed, with explanation
of reasons for such changes, if any are deemed necessary.

3.3. Background terms and definitions

Actual-to-Expected Mortality
This ratio is used to make valid comparisons of what an actuary expects for actual mortality experience over a

given time period, For example, expected deaths can be determined from a credible database for use in premium
calculations, and then compared to actual deaths in recent period(s).

Excess Deaths
Those deaths in excess of the actuarial expectation for a given period – here defined by comparison to average

incidence rates over the baseline period; COVID-19 pandemic is an outlier, and there are many excess deaths over
average periods.

Excess Mortality
The additional mortality that is experienced in a defined period, that is above the expected level is the excess mor-

tality. Why do we use this excess mortality as a measure for the study? It is a traditional method to do comparisons
and make coherent statements as to what the mortality results show.

Expected Mortality
The most appropriate level of mortality for a given group or individual, given the risk class; it is measured as a

function of the SOA industry mortality table. Use of the 2016 SOA Basic Mortality Table for Group Business is an
industry standard.

IBNR
Incurred but not reported deaths (by count or amount). There is a significant difference, in CDC data (or Johns

Hopkins, etc.), between the incurred date and reported date. One date is the date of death, meaning the incurred date;
the other is the notified date, (i.e., reported to CDC). So the IBNR correction is used to complete the reported data,
giving the final incurred deaths results. This is a critical concept for getting to the valid and complete story that the
data unfolds.

4. Excess mortality modeling

Figure 1 shows mortality rates per 100,000 in the U.S. week by week, taken separately for years from 2014 to
2019. We see strong similarity of the annual patterns with clear increase in the winter months. Year 2017 was known
for especially deadly flu season, which is reflected in the curve of 2017 ending up high and the curve of 2018 starting
up very high on the graph.

To better illustrate our point, consistently with (Leavitt, 2021), we will adjust the numbers to the growing U.S.
population using mortality rates rather than counts, and defining weekly excess mortality rate for week t = 1, . . . , 52
of the year s = 2014, 2015, . . . 2020 as the ratio
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Fig. 1. U.S. weekly mortality in 2014–2019 (rate per 100,000).

EMR(t, s) =
R(t, s) − 1

5

∑2018
u=2014R(t, u)

1
5

∑2018
u=2014R(t, u)

(11)

where mortality rate is defined as R(t, s) = D(t, s)/P (s), where D(t, s) is the death count, and P (s) is adjusted
mid-year population. The baseline mortality rate

∑2018
u=2014R(t, u) is calculated as the average for non-perturbed

(pre-COVID years).
Figure 2 shows the values of EMR(t, 2019) in blue and EMR(t, 2020) in red. It is clear that while the graphs for

2019 and 2020 look very similar from January to March, year 2020 has seen dramatic increase of mortality for the
remaining nine months. However, excess mortality in 2019 also stays above the average for most of the year. It is
also interesting to observe higher variability of weekly data towards the end of 2019.

In order to analyze this effect further, we will look at the combined time series of excess mortality for 364 con-
secutive weeks EMR(t, 2014), . . . ,EMR(t, 2020) in Fig. 3. Applying ADF test for unit root and KPSS stationarity
test, we observe evident lack of stationarity. It looks like there may exist a structural break between pre-COVID and
COVID periods. We will try to identify the timing of this break and then further analyze pre-COVID and COVID
time series separately.

4.1. ARIMA model for U.S. excess mortality rate

As it is suggested by Fig. 3, we will apply Zivot-Andrews structural break unit root test (Zivot & Andrews, 1992),
and then suggest two possibly different time series models describing two periods: before and after the break. Zivot-
Andrews test suggests a potential break at week 324 corresponding to the end of March 2020. It confirms the general
timing of the pandemic onset in the U.S.

The next step is to build ARIMA models for the first 324 weeks starting in 2014 (pre-COVID period) and the
last 40 weeks of 2020 (COVID period). As demonstrated by ADF unit root test rejected with p < 0.01 and KPSS
stationarity test not rejected with p > 0.1, the pre-COVID time series may be considered stationary. Analysis of
residual ACF, PACF and Box-Ljung-Pierce tests suggest the model ARIMA (2, 0, 0).

On the contrary, COVID time series (it is much shorter, so statistical conclusions may be less decisive) may
be considered stationary by KPSS test with p > 0.1, but ADF with p = 0.557 test suggests existence of a unit



20 T. Britt et al. / Short-term forecast of U.S. COVID mortality using excess deaths and vector autoregression

Fig. 2. U.S. weekly EMR, 2019 (blue) and 2020 (red).

Fig. 3. U.S. weekly EMR, from 2014 through 2020.

Fig. 4. Zivot-Andrews test results for weekly EMR, 2014-2020.
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Table 1
Model comparison for the U.S. excess mortality pre-COVID and COVID

a0 a1 a2 AIC Box-Ljung
(st.error) (st.error) (st.error) p-value

pre-COVID
(324 weeks)
ARIMA(1, 0, 0) 0.003 0.918) −1965 0.002

(0.007) (0.024)
ARIMA(2, 0, 0) 0.003 0.708 0.235 −1981 0.210

(0.010) (0.055) (0.055)
COVID
(40 weeks)
ARIMA(1, 0, 0) 0.267 0.908 −124 0.23

(0.066) (0.069)
ARIMA(1, 1, 0) 0 0.638 −136 0.80

(0.156)

Table 2
Excess mortality forecast in the 2020 after the stuctural break using ARIMA (1, 1, 0)

Week Lower bound Forecast Upper bound Actual actual MAE MAPE
21 0.17 0.25 0.33 0.26
22 0.07 0.24 0.41 0.25
23 0 0.23 0.50 0.21
24 0 0.23 0.60 0.19 0.02 10%
25 0.09 0.17 0.24 0.17
26 0 0.15 0.31 0.16
27 0 0.14 0.39 0.18
28 0 0.13 0.47 0.14 0.02 11%
29 0.03 0.11 0.18 0.18
30 0 0.08 0.23 0.15
31 0 0.06 0.30 0.18
32 0 0.04 0.37 0.19 0.10 59%
33 0.12 0.20 0.28 0.26
34 0.05 0.21 0.37 0.27
35 0 0.22 0.45 0.31
36 0 0.22 0.53 0.33 0.08 27%
37 0.26 0.34 0.42 0.38
38 0.20 0.35 0.51 0.45
39 0.13 0.36 0.58 0.44
40 0.06 0.36 0.66 0.45 0.08 18%

root. Comparing ARIMA (1, 0, 0) and ARIMA (1, 1, 0) models from residual analysis point of view, we can
make conclusion in favor of ARIMA (1, 1, 0). Higher p-values of Box-Ljung test suggest the absence of residual
correlation.

Statistically significant results in parametric estimation are boldfaced in Table 1.
The following Table 2 shows the one-week to four-week ahead forecast of U.S. excess mortality using the first 20

weeks after the structural break in the end of March 2020 and further accumulated data: we use 20 weeks to forecast
weeks 21–24, then 24 weeks to forecast weeks 25–28, etc.

It is difficult to compare the forecast quality with other sources since our use of excess mortality rather than the
number of deaths is not standard. However, prediction interval coverage for the period is 100% and MAPE values
are reasonable with the exclusion of Summer weeks 29–32, when new COVID growth occured but was not predicted
by the model. It is not unusual for ARIMA models to fall behind with prediction in presence of new effects though
the models eventually adjust to incorporate these effects in future forecasts.

4.2. ARIMA model for Minnesota excess mortality rate

Performing similar analysis for the state of Minnesota, we consider excess mortality rates obtained by the same
methodology as we applied to the entire U.S. Analyzing the weekly time series for 364 weeks from the beginning of
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Fig. 5. Minnesota weekly EMR, from 2014 through 2020.

2014 to the end of 2020, we observe clear loss of stationarity in the last year of observations. Applying the structural
break test, we detect a break at week 328 (early April) with a second possible structural break at week 345 (October),
corresponding to the second wave of COVID in the Midwest.

ADF and KPSS tests show that the first 328 weeks do not expose non-stationarity, and by information criteria
and residual analysis we can suggest ARIMA (3, 0, 0) to describe the behavior of the time series. COVID time
series containing 36 weeks of 2020 is much harder to model with the existing data, and we end up with a highly
non-stationary model. This is the result of building an ARIMA model by the data from the early period of pandemic,
when the growth in mortality is highly non-stationary and non-linear. That is why in the next section we consider a
longer period of time, establishing more reliable mortality patterns for the epidemic. While we will not be able to
effectively predict further peaks, parametric model for a longer observation period will incorporate more patterns
from the past and will be able to provide reasonable short-term forecasts.

Our analysis of overall mortality data from 2014–2020 shows in Fig. 5 the expected large rise in mortality in
2020 compared to other years. Less expected, the data also shows some positive excess mortality in 2019, even
when accounting for the seasonality of deaths using ARIMA. Higher excess deaths are seen in the US generally
and in Minnesota specifically starting as early as the fall of 2019, while structural breaks suggesting a significant
increase in mortality can be detected in March 2020 in the U.S. and in April 2020 in Minnesota. A study from
the Centers for Disease Control and Prevention tested U.S. blood donor samples from December 2019–January
2020 and found samples positive for COVID-19 antibodies in every one of the nine states surveyed (Basavaraju
et al., 2020). A follow-up study from the National Institute of Health “All of Us” study also found COVID-19
antibodies in a number of stored blood samples from early 2020, suggesting the presence of COVID-19 prior to
first reports (Althoff et al., 2021). These studies align with other international studies which suggest that COVID-
19 was spreading around the world before the first reports of spread in winter of 2020 (Du et al., 2020; Apolone
et al., 2020). (Lopreite et al., 2021) analyzed twitter mentions of pneumonia throughout Europe in late 2019/early
2020. Increased number of tweets concerned about pneumonia were noticed, especially in areas that later turned out
to be major COVID hot-spots. As suggested in (Roberts et al., 2021), first case of COVID-19 in China may have
been circulating as early as October 2019. Data from other nations, including France and Russia, have shown an
abnormally high number of cases of and deaths from non-specific pneumonia in the fall of 2019 (Deslandes et al.,
2020). It is possible that this rise in excess deaths in fall 2019 may suggest that COVID was affecting U.S. mortality
earlier than currently believed.

This analysis in Table 3 demonstrates that at the state level, the excess mortality at the pandemic stage is sub-
stantially non-stationary and exposes one or two structural breaks. Since early 2020, it became possible to address
the causes of death and analyze the total number of COVID cases. Therefore the further analysis introduces new
variables for more extensive period of time. After a rapid rise in early 2020, the pandemic developed in rising and
falling waves which suggests a possibility to use the tools fit for stationary time series.

5. VAR model for Minnesota

Using entire dataset available from the onset of COVID-19 up to the summer of 2021 on weekly observations of
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Table 3
Model comparison for Minnesota excess mortality pre-COVID and COVID

a0 a1 a2 a3 AIC Box-Ljung
(st.error) (st.error) (st.error) (st.error) p-value

pre-COVID
(328 weeks)
ARIMA(3, 0, 0) 0.007 0.265 0.124 0.239 −1177 0.60

(0.006) (0.054) (0.056) (0.055)
COVID
(36 weeks)
ARIMA(2, 2, 0) 0 −0.746 −0.272 −65 0.17

0 (0.162) (0.163)

Table 4
VAR (1) coefficients in Deathst equation

Estimate St. error t-value p-value
Deathst−1 0.710 0.065 10.899 < 0.001
Casest−1 0.002 0.002 1.031 0.307
Hospt−1 0.035 0.051 0.673 0.504
Const 0.307 7.80 0.039 0.969

Table 5
VAR (1) coefficients in Casest equation

Estimate St. error t-value p-value
Deathst−1 −27.146 7.844 −3.461 < 0.001
Casest−1 0.794 0.203 3.918 < 0.001
Hospt−1 9.103 6.206 1.467 0.147
Const 472.714 939.721 0.503 0.617

new COVID cases, hospitalizations, and deaths in the state of Minnesota (total of 67 weeks), we build VAR models
(5) with k = 3 and different lag depth. Since we analyze new weekly cases, hospitalizations, and deaths, stationarity
of the time series is more feasible than for total (accumulated) cases deaths as analyzed in (Sahai et al., 2020).

First, we apply the KPSS test to check stationarity of the time series, which is not rejected for any of the three
individual series with high p-value (> 0.1), since the hypothesis of stationarity, the choice of d = 0 and model
VAR(p) appear reasonable. Then we proceed with the model selection, which in our case suggests the choice of lag
p. When we apply ’vars’ package in R (Pfaff & Stiegler, 2018), the lags from 1 to 4 are recommended by different
information criteria: SIC is the most conservative with p = 1, HQC and TPE concur on p = 2, while AIC suggests
p = 4, which is almost prohibitive in terms of model size. If we start with p = 1, we obtain the following results of
parametric estimation and diagnostic tests.

When we analyze the variable Y (3) = Death, we do not see any significance of the lagged values of Y (1) = Cases
and of Y (2) = Hosp.

In Table 3, the adjusted R2 = 0.9247. Boldface indicates significance of the coefficient. However, when we
analyze the other two variables as dependent, they demonstrate a more complicated association pattern.

In Table 4, the adjusted R2 = 0.8876. Boldface indicates significance of the coefficients, and we see that new
cases along with a stable association with the last week’s cases, acquire a negative dependence on last week’s deaths.

In Table 5, the adjusted R2 = 0.9121. We can see that new hospitalizations along with the last week’s data are
also negatively associated with the last week’s deaths. This negative association may be a result of a mis-specified
model. However, the size of this effect is relatively minor if we take into account the overall number of new cases
vs deaths. It can be attributed to changes of the relative share of the vulnerable population in the course of pandemic
development. These tables support our hypothesis that three variables we are studying are closely associated, and
data on all three of them might be helpful while predicting the short-term future behavior of any of the variables.

Multivariate ARCH Lagrange multiplier test does not detect any heteroscedascticity in the model and CUSUM
test does not detect significant structural breaks. However, Jarque-Bera test as well as skewness and curtosis tests
suggest the absence of normality which indicates that VAR (1) model might be too small and there are some factors
which it does not address. Also, a portmanteau test built into ‘vars’ package, yields p-value of 0.026 for the null
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Table 6
VAR (1) coefficients in Hospt equation

Estimate St. error t-value p-value
Deathst−1 −0.760 0.264 −2.875 0.006
Casest−1 0.008 0.007 1.181 0.242
Hospt−1 0.899 0.209 4.300 < 0.001
Const 62.954 31.661 1.988 0.051

Table 7
VAR (2) coefficients in Deathst equation

Estimate St. error t-value p-value
Deathst−1 0.871 0.145 6.007 < 0.001
Casest−1 0.002 0.002 0.021 0.512
Hospt−1 0.002 0.069 0.660 0.984
Deathst−2 −0.197 0.135 −1.462 0.149
Casest−2 0.000 0.002 −0.142 0.888
Hospt−2 0.051 0.069 0.747 0.458
Const 0.656 8.71 0.075 0.940

hypothesis of no serial residual correlation and hints at possible autocorrelations in the residuals, which suggests
possibly a higher number of lags. The graphs of PACF for all three variables support this suggestion.

However, running VAR model with higher number of lags (e.g., p = 2, as suggested by HQC and TPE) does
not provide a better overall result and more accurate forecasts. Jarque-Bera test confirms normality of residuals and
portmanteau test confirms the absence of residual correlation, which suggests that depth p = 1 is sufficient (see
Table 7).

The adjusted R2 = 0.9225. Boldface indicates significance of the coefficient. However, most of the coefficients
of lag 2 in Table 6 are not statistically significant, which might be an indication of multicollinearity. It allows us to
suspect overparameterization and, agreeing with SIC, recommend the more parsimonious choice of p = 1, which
we will adopt in the sequel. It would be more intuitive to establish statistical relationships of Deaths time series with
lagged values of hospitalizations and cases, however the model shows that a more reliable association is established
with lagged Deaths, which is an evidence of strong autocorrelation in this series.

6. Comparison of VAR models for states

Minnesota and Wisconsin are two adjacent midwestern states sharing the border on the St. Croix river. Geograph-
ical and demograhic situation of the states is similar: both states have substantial rural populations along with some
high-populated metro areas.

In summer of 2020, the state of Minnesota introduced a comprehensive program of social distancing measures
including mandatory use of masks indoors, restriction of social gatherings both indoors and outdoors, closing and
restricting activity of government public services, fitness facilities, bars and restaurants. In the meantime, restrictions
in Wisconsin were much weaker, with fitness clubs and bars open without restrictions for most of the summer.

We will use the daily and weekly counts of COVID cases, hospitalizations and deaths obtained from state public
health databases (MN Dept of Health, 2021; WI Dept of Health Services, 2021) to model the COVID development
in Minnesota and Wisconsin, and also, for the sake of comparison, in such geographically distant states as Colrado
(CO Dept of Public Health and Environment, 2021) and Georgia (GA Dept of Hublic Health and Environment,
2021). We will look for similarities and differences of COVID epidemic development in these four states.

The objective is to build VAR models for COVID-19 development in different states and compare the parametric
values, analyzing possible sources of discrepancies. Colorado and Georgia were included for comparison to repre-
sent differing COVID measures and actions in different regions of the country. Colorado has high tourism and travel
rates, which potentially augmented COVID spread and COVID cases and deaths. Georgia and the US South had
lower vaccination rates as well as higher COVID transmission likely due to lack of comprehensive measures.

Minnesota, Wisconsin, Georgia, Colorado state differences in COVID rates could reflect differences in population
density (MN: 70.5 residents per square mile, WI: 107.3 residents per square mile, GA: 149 residents per square mile,
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Fig. 6. Weekly COVID mortality in Minnesota.

Fig. 7. Weekly COVID mortality in Colorado.

CO: 59 residents per square mile), timing and severity of stay-at-home orders and closures, mask mandates, extent
of school distance learning, travel in and out of state, etc.

We will concentrate on the mortality with Deathst being the principal dependent variable. First, let us look at
the weekly mortality data for four states in question. It looks like both Minnesota and Colorado demonstrate two
distinct mortality peaks coresponding to two waves of the disease corresponding to the first and the second half of
2020. From Table 8 we see In case of Wisconsin, the first peak is less expressed and the second is wider, beginning
earlier and ending up later. Georgia demonstrates a more complicated pattern, with additionasl peaks in Summer
2020 and delayed rise of mortality in early 2021. One should also pay attention to the difference in the vertical scale
for Georgia graph, exposing a higher overall mortality or relative populations of states.

The next step of analysis will allow us to see how the patterns visualized on the graphs reveal themselves in VAR
(1) models suggested for different states. Similar to the case of Minnesota discussed in Scetion 5, model selection
for the other states also suggests restricting our attention to lag p = 1. We will be able to provide some pairwise
comparisons. For that purpose, let us list in one table the coefficients for all three lag 1 variables with two-standard
error intervals. The boldfaced values correspond to non-overlapping intervals or coefficients for other states, which
are statistically significantly different from those for Minnesota.
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Table 8
VAR (1) coefficients in Deathst equations

State Variable Estimate Interval
Minnesota Deathst−1 0.710 (0.579, 0.840)

Casest−1 0.002 (−0.002, 0.005)
Hospt−1 0.035 (−0.069, 0.138)

Colorado Deathst−1 0.710 (0.567, 0.854)
Casest−1 0.002 (0.000, 0.005)
Hospt−1 0.021 (−0.040, 0.085)

Wisconsin Deathst−1 0.430 (0.255, 0.604)
Casest−1 0.002 (0.010, 0.258)
Hospt−1 0.134 (−0.069, 0.138)

Georgia Deathst−1 0.585 (0.422, 0.748)
Casest−1 0.005 (0.001, 0.008)
Hospt−1 0.026 (−0.079, 0.130)

Fig. 8. Weekly COVID mortality in Wisconsin.

Fig. 9. Weekly COVID mortality in Georgia.
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Table 9
Four-week VAR (1) forecast of COVID-19 deaths in Minnesota February–June 2021

Week Lower bound Forecast Upper bound Actual MAE MAPE
52 0 55 115 71
53 0 67 145 65
54 0 79 173 38
55 0 92 202 62 23 45%
56 22 79 136 46
57 21 95 171 62
58 21 111 202 67
59 19 125 232 65 50 71%
60 49 106 164 89
61 70 146 222 76
62 91 181 271 70∗

63 106 210 314 59∗ 122 131%
64 9 67 124 70
65 0 76 153 34
66 0 86 178 47
67 0 96 201 43 34 84%

From Table 7 we see that, while Colorado and Minnesota provide quite similar VAR (1) models, where the
previous week’s death count is sufficient to predict the next week’s count, the model for Wisconsin also suggests
that knowledge of previous week’s hospitalizations is also helpful for death forecast, and the model for Georgia
suggests that the previous week’s case count might matter.

Comparison of COVID cases, hospitalizations and deaths in four states based on VAR models may be based on
estimated model parameters for different states. This analysis does not allow for a definitive conclusion whether
geographical differences and/or the distinctly different approach to preventive quarantine measures brings about
different patterns of epidemics development. Models for Minnesota and Colorado look simiar while models for
Minnesota and Wisconsin are somewhat different, with Wisconsin showing a wider first peak and a later secondary
peak of infections. Georgia looks different from the other three, with a much later peak in cases. All these features are
reflected in the difference of model parameters. This comparison cannot be used to justify any further conclusions
related to the efficiency of the quarantine measures since there are other factors to be taken into account, there is no
rigid boundary between the states, and interstate travel was not restricted in any way.

7. Vaccination and VAR forecast

The standard out-of-sample validation approach suggests that we can use part of the data for model construction
and the rest of the data for model validation, when we compare forecasted and actual values of the dependent
variables. To illustrate the short-term predictive quality of VAR models with or without external effects, we will
use the example of COVID-related deaths in Minnesota observed for 67 weeks from March 2020 to June 2021.
Out-of-sample forecast for weeks 52–55 is based on the model parameters estimated by the first 51 observations,
weeks 56–59 based on the first 55 observations, etc. A four-week window is recommended in (Bilinski & Salomon,
2021) and other related analyses.

Numerical values for four-week out-of-sample forecast (with 95% prediction intervals) based on previous obser-
vations are compared to actual values in Table 9 in the following table. Four-week periods are separated by horizontal
lines. Asterisks correspond to the cases when actual values did not fit into 95% prediction intervals. They appear in
the third four-week period analyzed (weeks 60–63: April/May 2021). This is the period following the most active
vaccination of elderly population in Minnesota.

Overall, MAE and MAPE values are high, but not out of line with the predictions discussed in (Johansson et al.,
2020). Coverage by confidence intervals is 87.5%. Parametric estimation and forecasting was also carried out for
VAR (2) and VAR (4), but the forecast errors are even larger for these.

In order to provide a graphical insight, four horizontal panels of Fig. 10 demonstrate performance of the models
based on pre-vaccination periods ending in March and April 2021, vaccination period ending in May 2021, and
post-vaccination period ending in June 2021, when they are used for short-term (four-week) forecast.
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Fig. 10. Forecast based on VAR models.
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Left sub-panels reflect the vaccination maps measuring accumulated percentages of fully vaccinated by county in
the end of the each of four months (February through May). Right sub-panels depict actual data on COVID-related
deaths, followed for illustrative purposes by the eight-week out-of-sample forecast. Solid blue lines correspond to
predicted deaths, with dark blue and light blue bands corresponding to 90% and 95% prediction intervals. The red
lines show actual deaths.

Pre-vaccination (February and March) models behave reasonably well, with actual data within prediction inter-
vals, while the peak vaccination (April/May) model’s forecast substantially overestimates the actual mortality. This
difference between models built by different periods may be used to demonstrate the strong negative effect of vac-
cination on COVID-related mortality since the model predicts higher mortality without vaccination. It also shows
that the model should be used with caution when new effects, such as vaccination or variants, are introduced. It is
interesting that post-vaccination (May/June) model returns to feasible forecast accuracy since the past data include
the vaccination period, and its effect is taken into account.

8. Conclusions

We suggest ARIMA models of excess deaths as a simple tool of addressing mortality at the early pandemic stages,
using mortality history only without getting deep into specific epidemiological factors. These models are not going
to provide full long-term picture, but may be helpful for short-term forecast. Structural breaks, bringing about non-
stationarity and substantial growth in mortality are detected in March for the U.S., and in April and October for
Minnesota.

In the present paper we do not compare excess mortality to official COVID mortality as reported by CDC.We
analyze excess mortality at the early pandemic stages, when COVID-specific data are not available. At the later
stages, we used COVID-specific data as provided by CDC and state healthcare systems.

VAR models built for Minnesota suggest that the past experience of COVID cases, hospitalizations and deaths
studied in their interdependence can provide valuable modeling information for the later pandemic stages. The
advantage of vector autoregressive time series modeling is in avoiding the use of external pandemic factors which
might be unclear or controversial. Comparison of four different states suggests both similarities and differences in
COVID-19 development, which may help to address local public health policy decisions.

Out-of-sample validation of VAR models of COVID-related deaths in Minnesota provided satisfactory results
with the exclusion of the peak vaccination period when actual mortality was overestimated by the model built by
pre-vaccination data. This may serve as an indirect confirmation of the efficiency of vaccination in slowing down
the disease-related mortality, compare (Moghadas et al., 2021).

Finally, one of the objectives is to introduce low-dimensional vector autoregresion (VAR) technique to an actuarial
mortality study. VAR is widely used in such fields as econometrics, but it is less popular in eplidemiology, and even
less so in actuarial mortality modeling. Our conclusion is that low-dimensional VAR may serve as an efficient tool
in presence of several related variables (such as cases, hospitalizations and deaths) observed on a regular basis and
having a structure of a vector time series. Our short-term (four-week) predictions based on VAR implementation
were effective as demonstrated by out-of-sample validation, confirming conclusions of (Bilinski & Salomon, 2021).

Once sufficient time passes, there will be a need to use the most recent CDC “corrected data” (notably, the CDC
periodically revises datasets) to refine this paper with updated deaths and include the added adjustments referred to
in the earlier sections. Our predictive model professes to be useful in making short-term best estimate projections of
deaths, in conjunction with ARIMA, VAR and the actuarial techniques outlined herein.
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The following abbreviations are used in this manuscript:
ACF Autocorrelation function
ADF Augmented Dickey-Fuller test
AIC Akaike information criterion
ARIMA Autoregressive integrated with moving average models
COVID-19 Coronavirus disease 2019
FPE Final prediction error information criterion
HQC Hannan-Quinn information criterion
IBNR Incurred but not reported
KPSS Kwiatkowski-Phillips-Schmidt-Shin test
MAE Mean absolute error
MAPE Mean absolute percentage error
PACF Partial autocorrelation function
SIC Schwarz information criterion
VAR Vector autoregression

References

Adiga, A., Dubhashi, D., Lewis, B., et al. (2020). Mathematical models for COVID-19 pandemic: A comparative analysis. J Indian Inst Sci, 100,
793-807. doi: 10.1007/s41745-020-00200-6.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
Althoff, K.N., Schlueter, D.J., Anton-Culver, H., et al. (2021). Antibodies to SARS-CoV-2 in All of Us Research Program Participants, January

2–March 18, 2020, Clinical Infectious Diseases, ciab519. doi: 10.1093/cid/ciab519.
Antulov-Fantulin, N., & Böttcher, L. (2022). On the accuracy of short-term COVID-19 fatality forecasts. BMC Infect. Dis., 22, 251. doi:

10.1186/s12879-022-07205-9.
Apolone, G., Montomoli, E., Manenti, A., et al. (Nov 2020). Unexpected detection of SARS-CoV-2 antibodies in the prepandemic period in Italy.

Tumori, 11: 300891620974755. doi: 10.1177/0300891620974755. Epub ahead of print. PMID: 33176598.
Basavaraju, S.V., Patton, M.E., Grimm, K., et al. (15 June 2021). Serologic Testing of US Blood Donations to Identify Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) – Reactive Antibodies. December 2019–January 2020, Clinical Infectious Diseases, V. 72–12,
e1004-E1009. doi: 10.1093/cid/ciaa1785.

Bellhouse, D.R., & Panjer, H.H. (1981). Stochastic Modeling of Interest Rates with Applications to Life Contingencies. The Journal of Risk and
Insurance, part I: 47(1), 91-110; part II: 48(4), 628-637.

Bhattacharyya, A., Chakraborty, T., & Rai, S.N. (2022). Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid
time series model. Nonlinear Dyn, Jan 13, 1-16. doi: 10.1007/s11071-021-07099-3. PMID: 35039713; PMCID: PMC8754528.

Bilinski, A., & Salomon, J.A. (2021). Pandemic Models Can Be More Useful: Here’s How, Health Affaris Forefront, 202110.1377/fore-
front.20210831.560758.

Box, G.E.P. (2015). Time Series Analysis: Forecasting and Control, Wiley, ISBN 978-1-118-67502-1.
Box, G.E.P., & Jenkins, G. (1970). Time Series Analysis Forecasting and Control, Published by (HD), SF CA USA, ISBN 10: 1619605848ISBN

13: 9781619605848
CDC COVID-19 Forecasts: Death. (2022). Reported and forecasted new and total COVID-19 deaths as of May 9, 2022. https://www.cdc.gov/

coronavirus/2019-ncov/science/forecasting/forecasting-us.html.
CDC Wonder. (2021). Available online https://wonder.cdc.gov/ucd-icd10.html (accessed December 17, 2021).
Chitwood, M.H., Russi, M., Gunasekera, K., Havumaki, J., Pitzer, V.E., Salomon, J.A., Swartwood, N., Warren, J.N., Weinberger, D.M., Cohen,

T., & Menzies, N.A. (2020). Reconstructing the course of the COVID-19 epidemic over 2020 for US states and counties: results of a Bayesian
evidence synthesis model. doi: 10.1101/2020.06.17.20133983.

Colorado Department of Public Health and Environment. (2021). Available online https://covid19.colorado.gov/data (accessed December 17,
2021).

Conde-Gutiérrez, R.A., Colorado, D., & Hernández-Bautista, S.L. (2021). Comparison of an artificial neural network and Gompertz model for
predicting the dynamics of deaths from COVID-19 in México. Nonlinear Dyn., 104(4), 4655-4669. doi: 10.1007/s11071-021-06471-7. Epub
2021 Apr 30. PMID: 33967393.

Deslandes, A., Berti, V., Tandjaoui-Lambotte, Y., Chakib, A., Carbonnelle, E., Zahar, J.R., Brichler, S., & Cohen, Y. (2020 Jun). SARS-CoV-2
was already spreading in France in late December 2019. Int J Antimicrob Agents, 55(6), 106006. doi: 10.1016/j.ijantimicag.2020.106006.

Doornik, J.A., Castle, J.L., & Hendry, D.F. (2022). Short-term forecasting of the coronavirus pandemic. International Journal of Forecasting,
38(2), 453-466. ISSN 0169-2070, doi: 10.1016/j.ijforecast.2020.09.003.

Du, Z., Javan, E., Nugent, C., Cowling, B.J., & Meyers, L.A. (2020 Sep). Using the COVID-19 to influenza ratio to estimate early pandemic
spread in Wuhan, China and Seattle, US. EClinicalMedicine, 26, 100479. doi: 10.1016/j.eclinm.2020.100479. Epub 2020 Aug 12. PMID:
32838239; PMCID: PMC7422814.

Georgia Department of Public Health. (2021). Available online https://dph.georgia.gov/covid-19-daily-status-report (accessed December 17,
2021).



T. Britt et al. / Short-term forecast of U.S. COVID mortality using excess deaths and vector autoregression 31

Guibert, Q., Lopez, O., & Piette, P. (2019). Forecasting mortality rate improvements with a high-dimensional VAR. Insurance: Mathematics and
Economics, 88, 255-72.

Hamilton, J. (1994). Time Series Analysis, Princeton University Press, ISBN 9780691042893.
Hannan, E.J., & Quinn, B.G. (1996). The Determination of the order of an autoregression. Journal of the Royal Statistical Society, Series B, 41,

190-195.
Imperial College COVID Response Team. (2022). Short-term forecasts of COVID-19 deaths in multiple countries. May 2022. https://mrc-

ide.github.io/covid19-short-term-forecasts/.
Johansen, S. (1996). Likelihood Based Inference in Conitegrated Vector Autoregression Models, Oxford University Press, Oxford.
Johansson, M.A., Reich, N.G., et al. (2020). Ensemble Forecasts of Coronavirus Disease 2019 (COVID-19) in the U.S. doi: 10.1101/2020.

08.19.20177493.
Kotze, K. (2020). Tutorial: Vector Autoregession Models, http://kevinkotze.github.io/ts-7-tut.
Kremer, E. (2005). The correlated chain-ladder method for reserving in case of correlated claims developments. Blätter DGVFM, 27, 315-322.

doi: 10.1007/BF02808313.
Leavitt, R. 2021. (2020). Excess Deaths in the U.S. General Population by Age and Sex, Mortality and Logevity, 2021, February, Society of

Actuaries.
Lee, R.D., & Carter, L.R. (1992). Modeling and Forecasting U.S. Mortality. Journal of the American Statistical Association, 87(419).
Li, H., & Shi, Y. (2021). Mortality Forecasting with an Age-Coherent Sparse VAR Model. Risks, 9, 35. doi: 10.3390/risks9020035.
Lopreite, M., Panzarasa, P., Puliga, M., et al. (2021). Early warnings of COVID-19 outbreaks across Europe from social media. Sci Rep, 11,

2147. doi: 10.1038/s41598-021-81333-1.
Lütkepohl, H. (2006). New Introduction to Multiple Time Series Analysis, Springer, New York.
Minnesota Department of Health. (2021). Available online https://www.health.state.mn.us/diseases/coronavirus (accessed December 17, 2021).
Moghadas, S.M., Sah, P., Fitzpatrick, M.C., Shoukat, A., Pandey, A., Vilches, T.N., Singer, B.H., Schneider, E.C., & Galiani, A.P. (2021).

COVID-19 deaths and hospitalizations averted by rapid vaccination rollout in the United States. doi: 10.1101/2021.07.07.21260156.
Mukhaiyar, U., Widyanti, D., & Vantika, S. (2021). The time series regression analysis in evaluating the economic impact of COVID-19 cases in

Indonesia, Model Assisted Statistics and Applications, 16(3), 197-210.
Musawa, N., & Mwaanga, C. (2017). The Impact of Pension Funds’ Investments on the Capital Market – The Case of Lusaka Securities Exchange.

American Journal of Industrial and Business Management, 7, 1120-1127. doi: 10.4236/ajibm.2017.710080.
Oliveira, T.P., & Moral, R.A. (2021). Global short-term forecasting of COVID-19 cases. Sci Rep, 11, 7555. doi: 10.1038/s41598-021-87230-x.
Park, C., Kim, D.-S., & Lee, K.Y. (2022). Asset allocation efficiency from dynamic and static strategies in underfunded pension funds, Journal

of Derivatives and Quantitative Studies. doi: 10.1108/JDQS-10-2021-0025.
Pfaff, B., & Stigler, M. (2018). Package ‘vars’. http://www.pfaffikus.de.
Piazzola, C., Tamellini, L., & Tempone, R. (2021). A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical

systems for epidemiology, Mathematical Biosciences, 332, February 2021. doi: 10.1016/j.mbs.2020.108514.
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