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Abstract. The Auto Regressive Integrated Moving Average (ARIMA) model seems not to easily capture the nonlinear patterns
exhibited by the 2019 novel coronavirus (COVID-19) in terms of daily confirmed cases. As a result, Artificial Neural Network
(ANN) and Error, Trend, and Seasonality (ETS) modeling have been successfully applied to resolve problems with nonlinear
estimation. Our research suggests that it would be ideal to use a single model of ETS or ARIMA for COVID-19 time series
forecasting rather than a complicated Hybrid model that combines several models. We compare the forecasting performance of
these models using real, worldwide, daily COVID-19 data for the period between January 22, 2020 till June 19, and June 20 till
January 2, 2021 which marks two stages, each stage indicating the first and the second wave respectively. We discuss various
forecasting approaches and the criteria for choosing the best forecasting technique. The best forecasting model selected was
compared using the forecasting assessment criterion known as Mean Absolute Error (MAE). The empirical results show that the
ETS and ARIMA models outperform the ANN and Hybrid models. The main finding from the ETS and ARIMA models analysis
indicate that the magnitude of the increase in total confirmed cases over time is declining and the percentage change in the death
rate is also on the decline. Our results shows that the chosen forecaste models are consistent during the first and second wave of of
the pandemic. These forecasts are encouraging as the world struggles to contain the spread of COVID-19. This may be the result
of the social distancing measures mandated by governments worldwide.
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1. Introduction

The 2019 novel coronavirus (COVID-19) pandemic has been recognized as a global threat that is having a
significant negative impact on all spheres of life, worldwide. It is a rapidly evolving emergency situation and its
effects are being felt all over the world as citizens of many countries have been restricted by ‘stay at home’ orders
and government-mandated social distancing measures to prevent the spread of the virus. Stock markets are crashing
with prices on a down swing, mental health issues are on the rise as people go into isolation, and unemployment is
surging as most industries lay off employees whose jobs must be performed on site.

In this paper, we aim to forecast total confirmed cases and death rates of COVID-19 using a hybrid model to
forecast the spread of COVID-19 around the world for the next two weeks using currently available data. The forecast
of confirmed cases is presented alongside the death rate to discover what should be expected in the coming days
as well as to determine the best forecasting method. The relative reliability of our forecasting model cannot be
overemphasized as the models for the spread of the virus can be best fitted with a combination of linear and nonlinear
models. To improve the overall forecasting performance of this COVID-19 model, a hybrid model – which is a
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combination of a linear stochastic model, the autoregressive integrated moving average (ARIMA) model, and the
nonlinear artificial neural network (ANN) and Error, Trend, and Seasonality (ETS) models – is used. Evidence from
previous studies suggests that the hybrid model performs better than the linear or nonlinear models. For example,
using a standardized precipitation index series, the hybrid model as well as individual stochastic and ANN models
were applied to forecast drought in India and the hybrid model was found to have the greatest accuracy (Mishra et al.,
2007).

The ANN model has received a great deal of attention over the last 20 years. It is one of the most powerful tools for
pattern classification due to its nonlinear and non-parametric adaptive-learning properties. Many studies have been
conducted that have compared ANNs with other traditional techniques (see, e.g., Safi, 2013; Valipour et al., 2012;
and White & Safi, 2016), among many others. White and Safi (2016) showed that when compared to the ARIMA
model, the ANN model performed well when its linking function was nonlinear. However, when its linking function
was linear, the ARIMA model outperformed the ANN model. This is not surprising since the ARIMA model was
designed specifically for this situation.

Several studies are being conducted using a variety of models to predict the potential evolution of the COVID-19
pandemic. These models are based on various assumptions and their associated analyses are likely subject to bias.
Benvenuto et al. (2020) performed an ARIMA model prediction on the Johns Hopkins epidemiological data to predict
epidemiological trends in the prevalence and incidence of COVID-2019; however, it is only reliable if we assume
that the data follow only a linear pattern. In a different light, Remuzzi and Remuzzi (2020), Liu et al. (2020), and
Zhao et al. (2020) used an exponential growth model to explain the spread of severe acute respiratory syndrome and
COVID-19; however, this forecast is reliable only if the trends follow a strictly exponential pattern. Therefore, our
proposed hybrid forecasting model is a blend of linear and nonlinear models that combines the ARIMA, ANN, and
ETS models to more accurately account for the linear and nonlinear patterns in the data.

2. Data description and measures of forecasting accuracy

2.1. Description of the datasets

There are currently 85,040,066 confirmed cases and 1,844,920 deaths from the coronavirus COVID-19 outbreak as
of January 03, 2021, 10:37 GMT.

We consider total confirmed cases as of close of business on January 22, 2020 through June 19, 2020. In addition,
we considered the data for the outcomes of all closed cases, which resulted in death, from February 2, 2020 through
June 19, 2020 (Worldometer, 2020).

Figure 1 shows the total confirmed COVID-19 cases and reflects the fact that there were 1,201,483 confirmed
cases of COVID-19 worldwide at the end of the day on June 19, 2020. This figure includes deaths and recovered or
discharged patients (i.e., cases with an outcome). Total confirmed cases ranged between 580 and 8,750,990 with a
mean of 2,418,848.85. This summary indicates that the spread of total confirmed cases varies among the various
countries.

In addition, Fig. 1 shows the outcome of all closed cases (death rate) from February 2, 2020 through June 19, 2020.
This figure illustrates the cumulative number of total deaths over the cumulative number of closed cases. The death
rate ranges between 5.64% and 41.8% with a mean of 15.01 and a median of 14.32.

In this study, 10% of the sample size is used as the testing sample. A training sample is used for the model
building, and the testing sample is used for the model validation at the end of analysis. We considered the first 135
observations as training sample for the total confirmed cases and 125 observations as training sample for the death
rate of COVID-19 data.

2.2. Assessment of forecasting accuracy

The accuracy of forecasts can be determined by considering how well a model performs on new data that were not
used when fitting the model. Accuracy is an important issue in forecasting; therefore, researchers tend to add more
and more variables to their proposed model. Safi and White (2017) considered the issue of whether a complex model
does a better job than a simple one.
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Fig. 1. Time series plot of total confirmed cases and death rate of COVID-19.

Many measures of forecasting accuracy have been developed and several authors have discussed the fundamental
usage of these measurements and compared the accuracy of forecasting methods with univariate time series data (see,
i.e., Cryer & Chan, 2008; Hyndman & Athanasopoulos, 2018; Wei, 2006). The best forecasting models selected will
be compared using three different forecasting accuracy measuring criteria: mean absolute error (MAE), the root mean
squared error (RMSE), and mean absolute percentage error (MAPE).

Definition 1. Suppose y1, y2, . . . , yn denotes the dataset. The MAE is then defined as:

MAE =

n∑
i=1

|yi − ŷi|
n

(1)

Definition 2. The RMSE is defined as:

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
(2)

The RMSE has been popular, largely because of its theoretical relevance in statistical modeling (Hyndman et al.,
2002). However, this measure is more sensitive to outliers than the MAE, which has led some authors (e.g., see
Armstrong, 2001) to recommend using other measures of forecasting accuracy. The MAE is preferable in cases of the
existence of outliers. Using the MAE or RMSE is recommended when comparing forecasting methods on a single
data set. This means, the MAE and RMSE should be used if all forecasts are measured on the same scale.

Definition 3. The MAPE is defined as:

MAPE =

n∑
i=1

∣∣∣yi−ŷi

yi

∣∣∣
n

× 100 (3)

The MAPE presents the forecast error in terms of percentage and hence it is scale invariant and unit-free (Lyhagen
et al., 2015). The MAPE is a simple average of absolute percentage errors. It is recommended to use MAPE when
comparing the accuracy of the same or different methods on different time series data with different scales, unless the
data contain zeros or small values (Hyndman & Koehler, 2006).

The evaluation criterion for these measures of forecasting accuracy is that the smaller the value obtained, the better
the model’s forecasting ability (McKenzie, 2011).
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Definition 4. The efficiency of the proposed forecasting method relative to that of the benchmark method in terms of
the RMSE, ψ, is defined as:

ψ =
RMSEp

RMSEb
, (4)

where RMSEp and RMSEb represent the RMSE from the proposed and the benchmark methods, respectively.
Usually the benchmark method is the most naïve method (Hyndman, 2006). A ratio of less than one indicates that the
forecasting performance of the proposed method is more efficient than the benchmark method and if ψ is close to
one, then the proposed forecasting method is nearly as efficient as the benchmark forecasting method. Otherwise, the
proposed method performed poorly (White & Safi, 2016).

3. Forecasting models

3.1. The ARIMA model

The general ARIMA (p, d, q) model is given by Box et al. (2015)

φ(B)∇dYi = θ(B)εi, (5)

where d > 1 is the degree of differencing,∇ = 1−B is the differencing operator, and the lag operator B is defined
as BYt = Yt−1, the operator that provides the previous value of the series. φ(B) and θ(B) are polynomials of degrees
p and q in B,

φ(B) = 1− φ1B − φ2B2 − . . .− φpBp (6)

and

θ(B) = 1− θ1B − θ2B2 − . . .− θqBq (7)

The best ARIMA model is chosen according to its Akaike information criterion (AIC), AICc, or BIC value.

3.2. The exponential smoothing model

The exponential smoothing method has been in use since the 1950s and is still the most popular forecasting method
used in business and industry. The field of exponential smoothing has undergone a substantial evolution over the past
10 years.

Let Y1, Y2, . . . , Yn denote the time series of interest and let xt = (lt, bt, st, st−1, . . . , st−(m−1)), where lt denotes
the level, bt denotes the trend, and st denotes the seasonal component, all at time t. Then, the state space models are:

Yt =Hxt−1 + εt (8)

xt = Fxt−1 +Gεt, (9)

where {εt} is the residual at time t and εt ∼ NID(0, σ2). The methodology of the exponential smoothing state space
model is fully automated using R-software (Hyndman et al., 2008).

3.3. The ANN model

The nnetar function is used to fit neural networks. This function is described as a feed-forward neural network with
a single hidden layer and lagged inputs for forecasting univariate time series. The nnetar function fits a neural network
autoregressive NNAR(p, P, k) model. For a non-seasonal time series, the default is the optimal number of lags,
according to the AIC value, for a linear autoregressive AR(p) model. For a seasonal time series, the default values is
P = 1 where p is chosen from the optimal linear model fitted to the seasonally adjusted data and k = 1

2 (p+ P + 1)
(rounded to the nearest integer). By default, 25 networks with random starting values are trained and their predictions
are averaged (Hyndman, 2004).
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3.4. The hybrid model

The hybrid model fits multiple individual model specifications to enable the easy creation of ensemble forecasts.
The hybrid model consists of a combination of three models: the ARIMA, the exponential smoothing, and the ANN
models. Looking at a time series composed of autocorrelated linear and nonlinear components, we have:

yt = Lt +Nt (10)

Fitting L̂t using the ARIMA model with et as the residual yields:

et = yt − L̂t (11)

The error term consists of nonlinear relationships with previous errors. The nonlinear relationships can be modeled
from the past residuals as follows:

et = f(et−1, et−2, . . . , et−n) + εt (12)

Then, using an ANN model to predict et as an estimate for Nt, we can calculate the forecast:

ŷt = L̂t + N̂t (13)

These models were built using hybrid Model command in the forecast Hybrid package. This package fits multiple
models and combines them using either equal weights or weights based on in-sample errors. There are six models:
ARIMA, exponential smoothing, theta, neural network autoregression (NNAR), seasonal and trend decomposition,
and the trigonometric seasonal + exponential smoothing method + Box-Cox Transformation (TBATS) model for
heterogeneity and the autoregressive moving average model for residuals + trends + seasonal (including multiples
and non-integer periods).

4. Empirical results

This section presents the empirical results of the models used to forecast the total confirmed cases and the recovery
or death rate using four different approaches; the ARIMA, ETS, ANN models, and the hybrid combination of the
three models. The forecasting results are presented in the following sub-sections.

4.1. Test for normality

We carried out the Anderson-Darling (AD) normality test to determine if the residuals after approximation for the
four models followed a normal distribution (Thode, 2002).

For the total confirmed cases’ residuals of COVID-19 data, normality test yielded the following AD values: 8.8922,
7.5803, 6.22, and 9.645, with corresponding p-values of < 2.2e-16, < 2.2e-16, 2.333e-15, p-value < 2.2e-16 for
ARIMA, ETS, ANN, and Hybrid models, respectively.

For the death rates residuals’, the normality test yielded the following AD values: 4.976, 0.535, 2.368, and 1.029,
with corresponding p-values of 2.25e-12, 0.168, 5.002e-06, and 0.01006, for ARIMA, ETS, ANN, and Hybrid
models, respectively. Both the test for normality and the probability plots for the residuals of the total confirmed cases
and the death rate indicate that the normality assumption was not satisfied for all cases except for the residuals of the
death rate for ETS model.

Since the data are not normally distributed (without loss of generality), to compare the performance of the models
through the two datasets, we used the forecasting accuracy measure, the MAE, over the forecasting period for each
model. The smaller values of MAE indicate higher forecasting accuracy. Therefore, the ratios of the MAE of the
hybrid model to those of the ARIMA, ETS, and ANN models were calculated for analysis.

4.2. Relative efficiencies of the empirical results

Table 1 lists the complete empirical results for the ratios of the hybrid model’s RMSE, MAE, and MAPE of
residuals after approximation to those of the ARIMA, ETS, and ANN models for total confirmed cases and the death
rate. Since the data are not normally distributed, we discuss these empirical results based on the ratios of the hybrid
model’s MAE to those of the ARIMA, ETS, and ANN models.
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Table 1
Ratios of the RMSE, MAE, and MAPE for the hybrid to the ARIMA, ETS, and ANN models

Dataset Statistic Hybrid/ARIMA Hybrid/ETS Hybrid/ANN
Total confirmed cases RMSE 1.5142 1.5700 0.5865

MAE 1.5089 1.5638 0.5890
MAPE 1.5070 1.5611 0.5897

Death rate RMSE 1.1804 1.1068 0.7950
MAE 1.1682 1.1417 0.7593

MAPE 1.1699 1.1384 0.7629

Table 2
Forecast in total confirmed cases and death rate for the full data

Date Total cases Death rate
20-Jun 8,901,699 9
21-Jun 9,055,284 8.92
22-Jun 9,208,869 8.84
23-Jun 9,362,454 8.76
24-Jun 9,516,039 8.69
25-Jun 9,669,624 8.63
26-Jun 9,823,209 8.57
27-Jun 9,976,794 8.52
28-Jun 10,130,379 8.47
29-Jun 10,283,964 8.42
30-Jun 10,437,549 8.38
1-Jul 10,591,134 8.34
2-Jul 10,744,719 8.3
3-Jul 10,898,304 8.27
4-Jul 11,051,889 8.24

4.3. Total confirmed cases data

Applying the ANN model with average of 10,000 networks, each of which is a 1-25-1 network, with 76 weights
and estimated noise variance of 1.33e+08. This indicates that 25 networks were trained and that their predictions
were averaged. For the hybrid model, the weights for the ARIMA, ETS, and ANN models were chosen to be equal.
For the ARIMA model, the result shows that the best fit model was the ARIMA (0, 2, 1) with estimated moving
average coefficient −0.6791 and estimated noise variance of 1.77e+08 (with AIC = 2907.24, AICc = 2907.33, and
BIC = 2913.02).

For the exponential smoothing model, simple exponential smoothing with additive errors is fitted. The estimated
values of the model smoothing parameters are α̂ = 0.8779, β̂ = 0.3243, with initial level l0 = −2273.75 and initial
trend b0 = 1507.71 and the estimated noise variance equals 13271.8 (with AIC = 3231.369, AICc = 3231.834, and
BIC = 3245.895).

The relative efficiencies based on residuals after approximation of the hybrid model to the ARIMA, ETS, and
ANN models equal ψ = 1.5089, 1.5638, and 0.5890, respectively. Equivalently, the relative efficiencies of the ETS
model to the ARIMA, ANN, and Hybrid models equal ψ = 0.9649, 0.3766, and 0.6395, respectively. This result
indicates that the ETS MAEs equal 96.49%, 37.66%, and 63.95% of that of the ARIMA, ANN, and Hybrid models,
respectively.

Therefore, the ETS model perfroms more efficient as compared to ARIMA, and was superior than the ANN and
Hybrid models for total confirmed cases of COVID-19 data. However, as a second choice in this case, we could use
the ARIMA model since it is almost as efficient as the ETS model, keeping in mind that it is not a perfect substitute.

4.4. Death rate data

The ANN model with an average of 10,000 networks, each of which was a 1-25-1 network, with 76 weights and
estimated noise variance of 0.2494. This indicates that 25 networks were trained and that their predictions were
averaged. For the hybrid model, the weights for the ARIMA, ETS, and ANN models were chosen to be equal. For
the ARIMA model, the result shows that the best fit model is ARIMA (2,0,2) with zero mean and estimated noise
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Fig. 2. Forecasts and Actual values in total confirmed cases and death rate.

Fig. 3. Time Series Plot of percentage change* from the forecast in total confirmed cases and death rate. *The percentage change is
(Xt −Xt−1)/Xt−1 × 100%, where Xt and Xt−1 represent the total confirmed cases or death rate at time t and t− 1, respectively.

variance equaling 0.09114 (with AIC = 66.23, AICc = 66.73, and BIC = 80.37). For the exponential smoothing
model, simple exponential smoothing with multiplicative errors is fitted. The estimated values of the model smoothing
parameters are, α̂ = β̂ = 0.711, φ̂ = 0.925. The initial level l0 = 45.4072 and initial trend b0 = −2.6433 with an
estimated variance of 0.0156 (with AIC = 232.8629, AICc = 233.5748, and BIC = 249.8328).

The relative efficiencies based on residuals after approximation of the hybrid to the ARIMA, ETS, and ANN
models equal ψ = 1.1682, 1.1417, and 0.7593, respectively. Equivalently, the relative efficiencies of the ARIMA
model to the ETS, ANN, and Hybrid models equal ψ = 0.9773, 0.3766, and 0.6395, respectively. This result indicates
that the ETS MAEs equal 97.73%, 37.66%, and 63.95% of that of the ETS, ANN, and Hybrid models, respectively.
Therefore, the ARIMA model perfroms more efficient as compared to ETS, and was superior than the ANN and
Hybrid models for death rate of COVID-19 data. However, as a second choice in this case, we could use the ETS
model since it is almost as efficient as the ARIMA model.

Therefore, the hybrid model performed poorly as compared to the ARIMA and ETS models and was more efficient
than the ANN model for forecasting the total confirmed cases and the death rate of COVID-19 data. Therefore, the
ANN model is not the best choice for forecasting COVID-19 death rates, and ARIMA outperforms the other models.



32 S.K. Safi and O.I. Sanusi / A hybrid of artificial neural network, exponential smoothing, and ARIMA models for COVID-19

Table 3
Actual and forecast in total confirmed cases and death rate

Total cases Death rate
Date Actudal Forecast Actudal Forecast
20-Jun 8,884,614 8,901,699 8.99 9
21-Jun 9,016,161 9,055,284 8.88 8.92
22-Jun 9,156,852 9,208,869 8.8 8.84
23-Jun 9,321,853 9,362,454 8.7 8.76
24-Jun 9,496,903 9,516,039 8.57 8.69
25-Jun 9,678,539 9,669,624 8.53 8.63
26-Jun 9,874,597 9,823,209 8.41 8.57
27-Jun 10,053,182 9,976,794 8.34 8.52
28-Jun 10,218,466 10,130,379 8.27 8.47
29-Jun 10,381,866 10,283,964 8.18 8.42
30-Jun 10,558,291 10,437,549 8.09 8.38
1-Jul 10,758,053 10,591,134 7.99 8.34
2-Jul 10,968,830 10,744,719 7.83 8.3
3-Jul 11,184,378 10,898,304 7.75 8.27
4-Jul 11,381,197 11,051,889 7.66 8.24

Fig. 4. Actual data in total confirmed cases and death rate.

Fig. 5. Time Series Plot of percentage change in total confirmed cases.
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Fig. 6. Time series plot for residuals of the total confirmed cases and the death rate.

5. Model forecasting

The forecast for total comfirmed cases and death rates using the ETS and ARIMA respectively is compared with
the actual values as shown in Fig. 2. We could observe from this Fig that the predicted values are close to the actual
values. This substantiates the valid use of the models.

In Fig. 3, we show the forecasts and percentage changes in total confirmed cases and the death rate calculated using
the ETS and ARIMA models, respectively, to forecast the next 14 days (June 4–June 19). The prediction intervals
are preserved from the individual component models and use the most extreme values from each individual model,
producing conservative estimates for the combination’s performance.

After feeding the model with data from June 4–June 19, and repeating the procedure, we show the forecasts in total
confirmed cases and the death rate for the next 14 days (June 20–July 4). This is shown in Table 2.

In our forecast for June 20th till July 4th, the daily total confirmed cases is shown to be on the increase, however,
this increase is at a decreasing rate. The death rate exhibit a declining trend which increases our optimism as the fight
to contain the COVID-19 continues.

Table 3 shows actual and forecast numbers in total confirmed cases side by side the actual and forecast of death
rate. The figure illustrates the increase in total confirmed cases of the actual data alongside the forecast value from
January 20th till July 4th 2020. From the plots we observe the closeness of our forecast value to the actual value,
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indicating that our selected model in forecasting the total confirmed cases is relatively close to the actual values,
hence, this can be reliable for policy implementation. For the death rate, the figure illustrates a decline in both the
actual and forecast values and the forecast value for the death rate is closer to the actual rates. However, the chosen
forcasting model which is relatively higher prepares policy makers for the worst case scenario as we go through the
second wave of the pandemic.

6. First wave and suggested second wave of COVID-19

In Fig. 4, we show two different stages of the actual data of total confirmed cases and death rate for COVID-19
each separated by a partition. The total confirmed cases for the first stage which is the data used for the initial analysis
and forecasts starts from January 22nd, 2020 till June 19th, 2020, while the second stage is the update of the data
used and it starts from June 20th, 2020 till Jan. 2nd, 2021. The death rate for the first stage as used in the analysis and
forecasts begins from February 2nd till June 19th, 2020, while the second stage is the update of the death rate data
used and it starts from June 20th, 2020 till Jan. 2nd, 2021.

Figure 5 shows the time series plot of percentage changes in total confirmed cases of COVID-19. The daily total
confirmed cases is on the increase while the percentage change in total confirmed cases is declining, which indicates
that the magnitude of increase over time of total cases is falling. Overall, the results shows that our chosen forecaste
model is consistent in both the first and the second wave of the pandemic. This result is promising as the world enters
the second wave of the spread of COVID-19.

7. Conclusions and future research

We used the hybrid model to exploit the capabilities of the ARIMA, ANN, and ETS models in time series
forecasting of COVID-19 trends. Forecasting performance was compared based on the residuals for these models
using the current daily data for COVID-19 around the world for forthcoming days. We further enumerated, explained,
and discussed the various forecasting approaches and the criteria for choosing a forecasting technique that provides
the best forecasts for total confirmed cases and the death rate for COVID-19.

The results show that the ETS and ARIMA models outperforms the ANN and Hybrid models. This is not a
surprising fact as the ARIMA model is well-fitted to stationary residuals as exhibited in the sample period as shown
in Fig. 6. This result adds to the growing body of literature that seeks to accurately forecast the spread of COVID-19
by combining and examining the validity of multiple models used by other researchers. We were able to establish that
the use of complicated models such as ANN and Hybrid does not necessarily provide the best results. With the ETS
and ARIMA models, the forecasting results indicate that there are brighter days ahead as we observe a percentage
decrease in new total daily cases and a decline in the death rate percentage respectively around the world. Our findings
shows that the chosen forecaste models are consistent during the first and second wave of of the pandemic. This
forecast strengthens our optimism that, more people will recover from COVID-19 as the mortality rate declines.

In addition, there is more hope as many countries are racing to discover a cure as well as a vaccine that would
mitigate the negative effects of COVID-19. Further research could be carried out in this area by studying a Hybrid
model that combines ARIMA and ETS in contrast to the individual use of either ARIMA or ETS to forecast total
cases and death rates. Also, one could examine the impact of COVID-19 on economic variables using the most
appropriate forecasting techniques.

References

Armstrong, J. S. (2001). Principles of forecasting: A handbook for researchers and practitioners. Springer Science & Business Media, 30.
Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic

dataset, Data in Brief , 105340.
Cryer, J., & Chan, K. (2008). Time series analysis with applications in R. Springer, New York.
Hyndman, R. J. (2004). New in Forecast 4.0. http://robjhyndman.com/hyndsight/forecast4/.



S.K. Safi and O.I. Sanusi / A hybrid of artificial neural network, exponential smoothing, and ARIMA models for COVID-19 35

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy, International Journal of Forecasting, 22, 679-688.
Hyndman, R. J., Akram, M., & Archibald, B. C. (2008). The admissible parameter space for exponential smoothing models, Annals of the Institute

of Statistical Mathematics, 60, 407-426.
Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing

methods, International Journal of Forecasting, 18, 439-454.
Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus,

Journal of Travel Medicine.
Lyhagen, J., Ekberg, S., & Eidestedt, R. (2015). Beating the VAR: Improving Swedish GDP forecasts using error and intercept corrections, Journal

of Forecasting, 34, 354-363.
McKenzie, J. (2011). Mean absolute percentage error and bias in economic forecasting, Economics Letters, 113, 259-262.
Mishra, A. K., Desai, V. R., & Singh, V. (2007). Drought forecasting using a hybrid stochastic and neural network model, Journal of Hydrologic

Engineering, 12, 626-638.
Remuzzi, A., & Remuzzi, G. (2020). COVID-19 and Italy: What next? The Lancet.
Safi, S. K. (2013). Artificial neural networks approach to time series forecasting for electricity consumption in Gaza strip, Artificial Neural

Networks Approach to Time Series Forecasting for Electricity Consumption in Gaza Strip, 21.
Safi, S. K., & White, A. K. (2017). Short and long-term forecasting using artificial neural networks for stock prices in Palestine: A comparative

study, Electronic Journal of Applied Statistical Analysis, 10, 14-28.
Thode, H. C. (2002). Testing for normality. CRC press. 164.
Valipour, M., Banihabib, M. E., & Behbahani, S. M. R. (2012). Monthly inflow forecasting using autoregressive artificial neural network, Journal

of Applied Sciences, 12, 2139-2147.
Wei, W. (2006). Time Series Analysis Univariate and Multivariate Methods, Second edition, Pearson Education, Inc.
White, A., & Safi, S. K. (2016). The efficiency of artificial neural networks for forecasting in the presence of autocorrelated disturbances, The

Efficiency of Artificial Neural Networks for Forecasting in the Presence of Autocorrelated Disturbances, 5.
Worldometer, C. C. (2020). 1-22.
Zhao, S., Musa, S. S., Fu, H., He, D., & Qin, J. (2019). Simple framework for real-time forecast in a data-limited situation: The Zika virus (ZIKV)

outbreaks in Brazil from 2015 to 2016 as an example, Parasites & Vectors, 12, 344.


