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Abstract. In this paper we develop self-consistent and smoothed dependent estimators for the cause-specific failure time density
in a competing risks context, employed in the presence of both left-censored and right-censored data, while allowing for masking
of the failure cause. Dependence will be incorporated between the failure times and both the censoring times and the masked
causes with the use of both Kernel Regression and Multivariate Multiple Regression at each iteration of the algorithm. Our
approach to modeling the cause-specific failure times is intended to be the most automated and data-driven approach possible.
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1. Introduction

The theory of competing risks is employed by statisticians, actuaries (multiple decrement theory), engineers (re-
liability theory), demographers, biologists, and others. Scientists from these various disciplines who are involved
in the modeling of time-to-event data with competing modes of failure will very likely encounter censored and/or
masked data, as well as statistical dependence issues, in their work. This present work addresses a significant void
in the literature by providing a nonparametric framework for modeling competing risks data while simultaneously
allowing for the possibility of censoring, masking, and the statistical dependence of these latter phenomena with
the failure times themselves. The doubly-censored and nonparametric SC-CR Algorithm of Adamic (2010) will be
utilized as the engine to generate the cumulative incidence probabilities. However, the SC-CR Algorithm will be
enhanced at each iteration by employing either Kernel Regression or Multivariate Multiple Regression (MMR) to
account for the dependence between the censoring times and the masked failure causes with the failure time distri-
bution, but in such a manner so as to maintain the statistical attribute of self-consistency for the resulting estimators.
For illustrative purposes, the proposed models will be applied to a bivariate Trypanosomiasis data set.

This research fits in well within the overall trajectory of scholarship that has taken shape in the niche area of
nonparametric competing risks research. Nonparametric maximum likelihood estimators (NPMLEs) of the cumu-
lative incidence for competing risks data were pioneered by Aalen (1976) and Kalbfleisch and Prentice (1980).
Subsequently, Dinse (1982) proposed an NPMLE for right-censored and masked competing risks data to be com-
puted with the explicit use of a Dempster et al. (1977) Expectation-Maximization (EM) algorithm. Hudgens et
al. (2001) first presented an NPMLE estimated using an EM algorithm for competing risks data, subject to both
interval-censoring and truncation. Jewell et al. (2003) and Groeneboom et al. (2008) follow this trajectory with sim-
ilar studies of nonparametric maximum likelihood estimators for current status data. More recently, Adamic (2010),
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Adamic et al. (2010), and Adamic and Guse (2016) developed generalizations of Turnbull’s (1974, 1976) classical
univariate algorithms for modeling competing risks. These models, based on Turnbull’s self-consistent algorithm,
can be shown to be species of EM algorithms. Overall, distribution-free models that can be employed in a multiple
decrement context have received relatively little attention to date, in part due to the complexity that censoring and
masking carry in their respective trains. Our research is geared towards developing models that are as automated as
possible, by keeping the number of assumptions to an absolute minimum – and this aim is actualized in the present
work.

2. The SC-CR Algorithm for doubly-censored data

The first portion of Section 2, which summarizes the SC-CR Algorithm for doubly-censored data, is predomi-
nantly from Adamic (2010) and/or Adamic et al. (2010) and can be implemented as follows. The steps, statements,
and logic of the algorithm will be directly generalized from those of the single variable algorithm of the standard
textbook by Klein & Moeschberger (1997).

2.1. The SC-CR algorithm for doubly-censored data

Step 0: Provide initial estimates of the overall survival probabilities at each tr, trp
(τ)
0 , by equally allotting all

of the probability mass for each time point. Also, find initial estimates for the probability of failing
during each time interval by cause j, tr− tr−1q

(j)
tr−1

, for r = 1, . . . , n′, again by uniformly distributing the
probability mass. Ignore all of the left-censored observations when calculating these estimates.

Step 1: Using the current estimates of trp
(τ)
0 and tr− tr−1

q
(j)
tr−1

, calculate estimates of the conditional probabilities
e

(j)
ir = P [tr−1 < X(j) 6 tr|X(τ) 6 ti], where X(j) represents the event of failure due to cause j, using,

ê
(j),k
ir =

tr−1
p̂

(τ),K
0 · tr−tr−1

q̂
(j),k
tr−1

1− ti p̂
(τ),k
0

,∀r 6 i. (1)

Step 2: Using the results of the previous step, estimate the number of cause-specific failures at time ti by using,

d̂
(j),k
i = d

(j)
i +

n′∑
i=r

ciê
(j),k
ir . (2)

Step 3: Compute tr−tr−1
q̂

(j)
tr−1
∀r = 1, . . . , n′, using a generalized cause-specific Product-Limit estimator based

on the current estimates of d̂(j)
i . If,

sup
tr,j

∣∣∣∣tr−tr−1 q̂
(j),k
tr−1
− tr−tr−1 q̂

(j),k−1
tr−1

∣∣∣∣ < ε, (3)

jointly for all of the time points ti and causes j, given some small predetermined ε > 0, stop the algorithm;
otherwise return to Step 1.

Partial masking can be introduced into the algorithm. For details, consult Adamic and Guse (2016). In terms
of self-consistency, Adamic (2010) outlines a proof that the SC-CR Algorithms (for both the partially masked
and completely masked cases) produce self-consistent estimators of the CIF’s for each failure mode. Although we
strongly suspect that the CIF’s derived from the SC-CR Algorithms are also NPMLE’s, we will be content to rely
on the statistical merits of self-consistency for the present work.

Despite the novelty of modeling masked competing risks data using an EM-type algorithm, there is a significant
drawback associated with the various approaches that have been developed to date. As opined in Hudgens et al.
(2001), estimators of this type will have the unwelcome property that the resulting estimators of the survival dis-
tribution will be undefined over a potentially large set of regions. Indeed, the problem is even more acute in the
multiple-decrement environment: the SC-CR Algorithms of Adamic (2010) and Adamic and Guse (2016) can be
seen to converge only over a class of intervals that were dubbed cause-specific innermost intervals. To remedy this
problem, we have chosen to generalize a univariate kernel density estimator found in Braun et al. (2005) that was
used to fill in the gaps between the univariate innermost intervals that were created by invoking the self-consistent
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EM algorithm of Turnbull (1976). The converged estimator of the failure rate distribution is often difficult to smooth,
due to the large gaps often exhibited between innermost intervals, as well as the attendant multi-modal dispersion
of the probability distribution that will typically arise when there are many gaps between the probability masses.
As mentioned in Duchesne and Stafford (2001), adopting a kernel smoothed estimator at each iteration avoids the
bias created by arbitrarily assigning probability mass at the right end points of the innermost intervals, as is also
recommended by Pan (2000), and is furthermore better at borrowing more information from neighboring data points
than would otherwise be the case. Duchesne and Stafford (2001) go on to state that since the innermost intervals are
effectively no longer present, the kernel modification moves the algorithm away from problem causing areas – areas
where Turnbull’s algorithm can sometimes get stuck at local solutions (also see Li et al., 1997, for further details on
this point).

3. Kernel Regression modification to the SC-CR Algorithm

For motivation, let us first assume the survival data are interval-censored. Stafford (2005), drawing on the work of
Goutis (1997), argues that a natural extension of the standard kernel smoothing weight is to definewi as a conditional
expectation, conditional on the observed interval Ii = (Li, Ri]. That is, if the weight is defined as,

wi = E

[
1

h
K̃

(
Xi − x
h

) ∣∣∣Ii] , (4)

the kernel density estimate of f is,

f̌(x) =
1

n

n∑
i=1

E

[
1

h
K̃

(
Xi − x
h

) ∣∣∣Ii] , (5)

for a fixed kernel function K̃, as related in Stafford (2005). Now, Braun et al. (2005) espouse an intriguing way
to evaluate Eq. (5): use an iterative algorithm such as Turnbull’s algorithm, and the kernel density estimate itself
to evaluate the conditional expectation at each iteration. For our development here, we will translate this insightful
approach for the case of doubly-censored data, but use the nonparametric Kernel Regression framework instead, gen-
eralize to the multivariate level comprising of multiple decrements, and further generalize by allowing for covariates
and therefore the possibility of dependent smoothing.

The function npreg, part of the nonparametric np Package in R, is used to execute the Kernel Regression, an
approach based on Li and Racine (2003), Li and Racine (2004), and Racine and Li (2004). The function utilizes
data-driven (sometimes referred to as automated) bandwidth selection methods. As noted by Li and Racine (2003),
traditional nonparametric kernel methods presume that the underlying data is continuous in nature, which is fre-
quently not the case (and is not the case in the way we are regressing on censored and masked data, which are
indicator based, and hence categorical), and so they develop their methodology using what they call generalized
product kernels. Further details regarding the npreg function can easily be found online in the R documentation for
the np Package.

Using a kernel smoothing mechanism at each iteration of the SC-CR Algorithm, the density estimate at the kth
iteration is,

f̌k(x) =
1

n

n∑
i=1

Ef̌k−1

[
W

(
xi − x
h(x)

) ∣∣∣Ψ] , (6)

conditioning on all observations, Ψ, since the kernel smoother, W , can use all of the observed data. For the SC-CR
Algorithm, an expression analogous to Eq. (6) can be offered. For modes of failure indexed by j = 1, . . . ,m, the
cause-specific kernel smoothed estimate for iteration k could be expressed as,

f̌
(j)
k (x) =

1

n

n∑
i=1

E
f̌
(j)
k−1

[
W

(
x

(j)
i − x
h(x)

)∣∣∣∣Ψ
]
, (7)

where it is understood that the estimator is derived from the particulars of the chosen Kernel Regression routine.
The span, h(x), will be global and data driven, as computed by the npreg function. In our execution of npreg, we
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will assume a fixed span over the support of x(j), although npreg allows a much broader spectrum of span choices.
The covariates for the Kernel Regression were created by assessing if censoring and/or masking were present at
each of the failure times, the nature of the censoring or masking (left-censoring or right-censoring, complete or
partial masking), and then the production of an accompanying indictor for each observation. With the creation of
these covariates, revised estimates of f̂ (j)

k (x) can then be obtained at each iteration, which will now be a function
of (i.e. depend on) when the various censoring and masking types are occurring. Note that any interaction between
censoring and masking can easily be accounted for in this, like any, regression context. Finally, please note that we
have omitted explicit reference to the manually created regression β’s in Equation (7) above, and are assuming that
they are subsumed under the more general Ψ, for notational facility.

The following theorem shows that as the bandwidth tends to zero, the smoothed estimator of the CIF approaches
the self-consistent CIF. The theorem statement, steps, and logic of the proof are direct generalizations of an analo-
gous univariate proof from Braun et al. (2005).

Theorem 1. Let F̌ (j)
k (x) =

∫ x
−∞ f̌

(j)
k (t)dt be the Kernel Regression smoothed estimate of the corresponding CIF

for risk j at the kth iteration with span h(x), under a double censoring scheme with the possibility of masked failure
modes. Then, assuming a kernel weight function,

lim
h(x)→0

F̌
(j)
k (x) = F̂

(j)
k (x)∀x, j, k. (8)

Proof: The self-consistent CIF is,

F̂
(j)
k (x) = Ek−1

[
F (j)(x) | Ψ

]
(9)

= Ek−1

[
1

n

n∑
i=1

I(X(j)
i 6 x)

∣∣∣Ψ] , (10)

sinceF (j)(x) is the empirical and nonparametric maximum likelihood estimator when using complete data. Bringing
the expectation into the sum gives,

=
1

n

n∑
i=1

Ek−1

[
I(X(j)

i 6 x)
∣∣Ψ] . (11)

The kernel weight function is also a valid PDF that approaches the empirical distribution, and so,

=
1

n
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[
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x
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(12)

= lim
h(x)→0

1

n

n∑
i=1

Ek−1

[∫ x

−∞
W

(
x

(j)
i − u
h(x)

)
du

∣∣∣∣Ψ
]
, (13)

since
∫
W

(
x
(j)
i −u
h(x)

)
6 1, and therefore the limit can be taken outside of the expectation. By the Fubini-Tonelli

theorem, the orders of expectation and integration may be interchanged in this instance, producing,
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∫ x
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k (x). � (16)



P. Adamic et al. / Nonparametric modeling of multiple decrements subject to dependent censoring and masking 23

4. MMR modification to the SC-CR Algorithm

The multivariate linear regression model is

Y
(n×m)

= X
(n×(r+1))

β
((r+1)×m)

+ ε
(n×m)

, (17)

where E(ε(i)) = 0 and Cov(ε(i), ε(j)) = σijI for i, j = 1, 2, . . . ,m. The m observations on the jth trial have
covariance matrix Σ = σij , but observations from differing trials are decidedly uncorrelated. In particular, the ith

response Y(i) follows the linear regression model

Y(i) = Zβ(i) + ε(i), i = 1, 2, . . . ,m, (18)

with Cov(ε(i)) = σiiI . However, the errors for differing responses on the same trial are allowed to be correlated.
Amassing these univariate least squares estimates, we obtain

β̂ = [ β̂(1) | β̂(2) | . . . | β̂(m) ] = (X
′
X)−1X

′
[Y(1) |Y(2) | . . . |Y(m) ] (19)

or, summarily,

β̂ = (X
′
X)−1X

′
Y. (20)

Using least squares estimates β̂, we can form the following matrices:

Predicted values: Ŷ = Xβ̂ = X(X
′
X)−1X

′
Y (21)

Residuals: ε̂ = Y − Ŷ = [I −X(X
′
X)−1X

′
]Y (22)

The orthogonality present among the residuals, predicted values, and columns of X that hold in classical lin-
ear regression apply in multivariate multiple regression context as well. They proceed from X

′
ε̂ = X

′
[I −

X(X
′
X)−1X

′
] = X

′ − X
′

= 0. Specifically, for our purposes, this means that for each variable i, the fol-
lowing well-known results hold: E(β̂(i)) = β(i), E(Ŷ(i)) = Y(i) and E(ε̂(i)) = 0. In other words, the estimators of
the responses Y(i) are unbiased.

The foregoing was felicitous, as we want to explicitly maintain the statistical attribute of self-consistency when
adding the dependent smoothing at each iteration of the SC-CR Algorithm. A proof to this effect is as follows.

4.1. Proof for the self-consistency of the MMR estimators

Generalizing and adapting the preceding notation, the MMR estimator at a failure time x for iteration k and
competing risk j can be written as Ŷ kxj . We wish to briefly justify that the expected values of our MMR estimators
are self-consistent. Now, conditional on all of the observed censored and masked data Ψ, we have

Ek[Ŷ kxj | Ψ] = Ek[Y kxj | Ψ] (SinceYi = Ŷi + εi and E[εi] = 0∀k and given Ψ)

= Ek[f̂
(j)
k (x) | Ψ](f̂

(j)
k (x) is simply the input for Y at each k)

= Ek[f̂ (j)(x) | K = k,Ψ] (Re-parameterized for notational ease)

= Ek[Ek−1[f (j)(x) | Ψ] | K = k,Ψ](Since f̂ (j)
k (x) is self-consistent)

= Ek−1[Ek−1[f (j)(x) | K = k − 1,Ψ] | Ψ] (Since k is independent of both the

empirical density and Ψ; also, see Appendix A)

= Ek−1[f (j)(x) | Ψ]. (SinceE[E[X|Y, Z]|Y ] = E[X|Y ]; see Appendix A) �

By keeping track of the censoring and masking types at each time point, we can construct indicator (or categorical,
as necessary) regressors just like we did for Kernel Regression. We can run the modified SC-CR Algorithm just as
before, only this time, using MMR regression at each iteration.
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Table 1
Summary of the trypanosomiasis data

Case Year Age at infection Form of disease
1 1980 [20,20] N
2 1981 (0,29] LS
3 1981 [29,29] LS
4 1981 (0,32] LS
5 1981 [43,43] N
6 1982 (0,19] LS
7 1982 [23,23] N
8 1983 (0,40] LS or N
9 1984 [24,24] N
10 1984 (0,31] N
11 1986 [13,13] N
12 1988 [2,2] N
13 1988 (0,34] N
14 1990 [27,27] N
15 1991 [34,34] N
16 1992 (0,62] LS or N
17 1992 (0,50] N
18 1993 (0,30] N
19 1993 [27,27] LS
20 1993 [30,30] N
21 1996 [53,53] N
22 1997 (0,53] LS
23 1998 [45,45] LS
24 1999 (0,50] LS
25 1999 (0,34] LS or N
26 2001 [28,28] N

5. Application to a data set

The Trypanosoma brucei is a parasite that causes the rare disease African trypanosomiasis, colloquially referred
to as African sleeping sickness. There are two forms that the disease can assume: the neurological form (N) and
the lymphatic-sanguine (LS) form. These will comprise the two competing modes of failure, where the failure time,
x, is the age a person is first infected by the parasite. The data is from Legros et al. (2006) and is summarized in
Table 1. Due to the lengthy incubation period where the disease was not detected, the exact age at infection was not
always known precisely, resulting in several left-censored observations. In a few cases the exact form of the disease
(N or LS) was not able to be determined precisely, resulting in masked failure modes.

The SC-CR Algorithm was applied to the data. The raw results are given in the first and second columns of Table 2
under the subheading, “Unsmoothed”. As can be gleaned from the abundance of zeros, there is the conspicuous
presence of many gaps between the cause-specific innermost intervals. Therefore, the use of Kernel Regression
smoothing is especially opportune. The first Kernel Regression used only the masking information for creating the
regressors, not the censoring. Masking regressors (or covariates) can easily be created by assigned an indicator of 1
or 0, if a specific cause (in this case, cause N or LS) was possible at each failure time point in the data set. The npreg
Kernel Regression routine was then executed at each iteration of the SC-CR Algorithm.

The first set of results are shown under the “Dep Masking” subheading in Table 2, with the result rounded to the
nearest one-thousandth. Note that the innermost intervals are no longer present (the few zeros that remain, to the
nearest one-thousandth, are due to their numbers being very small; they are not nil). In particular, for cause LS, so
many more meaningful failure probabilities are now available, that have the additional benefit of drawing on the
dependence between the type of masking and the failure time. Indeed, the lymphatic-sanguine (LS) risk was more
associated with higher ages of onset of infection than the neurological form, N. Also, note that the magnitudes of
the failure probabilities are themselves revealing. For example, consider age 50. Before the kernel modification, it
was not known whether failure due to cause N or cause LS was more likely (since they were both zero). Now, we
can estimate that infection at age 50 is over twice as likely to be due to form N than form LS.

The next Kernel Regression was fit to only the censoring-type expressed in terms of regressors, the results being
summarized under the subheading, “Dep Censoring” in Table 2. Creating the regressors was yet again not difficult, as



P. Adamic et al. / Nonparametric modeling of multiple decrements subject to dependent censoring and masking 25

Table 2
Dependent kernel regression results

Age Unsmoothed Dep masking Dep censoring Dep mask/cens
x f (N)(x) f (LS)(x) f (N)(x) f (LS)(x) f (N)(x) f (LS)(x) f (N)(x) f (LS)(x)

2 0.112 0.000 0.097 0.002 0.098 0.011 0.111 0.000
13 0.112 0.000 0.082 0.002 0.082 0.011 0.091 0.000
19 0.000 0.000 0.001 0.015 0.001 0.001 0.000 0.000
20 0.075 0.000 0.074 0.002 0.074 0.011 0.079 0.000
23 0.075 0.000 0.071 0.002 0.071 0.011 0.077 0.000
24 0.075 0.000 0.070 0.002 0.070 0.011 0.077 0.000
27 0.075 0.075 0.067 0.015 0.076 0.041 0.075 0.075
28 0.075 0.000 0.065 0.002 0.065 0.011 0.076 0.000
29 0.000 0.075 0.001 0.038 0.057 0.011 0.000 0.075
30 0.068 0.000 0.072 0.002 0.056 0.011 0.068 0.000
31 0.000 0.000 0.062 0.002 0.000 0.001 0.000 0.000
32 0.000 0.000 0.001 0.015 0.000 0.001 0.000 0.000
34 0.054 0.000 0.056 0.002 0.051 0.011 0.055 0.000
40 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000
43 0.046 0.000 0.041 0.002 0.036 0.011 0.046 0.000
45 0.000 0.046 0.000 0.015 0.033 0.011 0.000 0.046
50 0.000 0.000 0.032 0.015 0.000 0.001 0.000 0.000
53 0.042 0.000 0.030 0.015 0.036 0.011 0.042 0.000
62 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000

Fig. 1. Converged CIF’s for the kernel regression models.

there were only left-censored and exact observations for this specific data set (that is, indicator variables sufficed). As
can be deduced from a cursory inspection of the data, left-censoring was far more common than exact observations
at the higher ages, on average. As such, accounting for this by utilizing a dependent smoothing mechanism is
advantageous, leading to more accurate estimates of the failure probabilities than by simply using an independent
kernel approach. Interestingly, the results for cause N under dependent censoring exhibited almost the same results
as under dependent masking, especially at the lower ages.

The final Kernel Regression was fit to all of the created regressors, whether masking-based or censored-based.
The final two columns of Table 2 furnish the results. The probability distribution seems very consistent with the
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Table 3
MMR dependence model results

Age Unsmoothed Dep masking Dep censoring Dep mask/cens
x f (N)(x) f (LS)(x) f (N)(x) f (LS)(x) f (N)(x) f (LS)(x) f (N)(x) f (LS)(x)

2 0.112 0.000 0.096 0.005 0.092 0.007 0.095 0.005
13 0.112 0.000 0.081 0.001 0.079 0.010 0.085 0.004
19 0.000 0.000 0.031 0.030 0.029 0.000 0.007 0.010
20 0.075 0.000 0.073 0.000 0.070 0.012 0.078 0.004
23 0.075 0.000 0.069 0.000 0.067 0.012 0.075 0.004
24 0.075 0.000 0.067 0.000 0.065 0.013 0.074 0.003
27 0.075 0.075 0.046 0.030 0.098 0.041 0.081 0.058
28 0.075 0.000 0.062 0.000 0.061 0.014 0.071 0.003
29 0.000 0.075 0.000 0.059 0.053 0.018 0.006 0.065
30 0.068 0.000 0.085 0.000 0.052 0.018 0.076 0.000
31 0.000 0.000 0.058 0.000 0.015 0.000 0.030 0.000
32 0.000 0.000 0.014 0.025 0.013 0.000 0.000 0.009
34 0.054 0.000 0.066 0.008 0.040 0.023 0.063 0.006
40 0.000 0.000 0.008 0.000 0.004 0.000 0.006 0.000
43 0.046 0.000 0.043 0.000 0.042 0.018 0.056 0.002
45 0.000 0.046 0.000 0.021 0.040 0.018 0.019 0.039
50 0.000 0.000 0.016 0.023 0.000 0.001 0.000 0.000
53 0.042 0.000 0.012 0.022 0.024 0.024 0.019 0.027
62 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fig. 2. Converged CIF’s for the MMR dependence models.

results from the previous two model fits for cause N. However, for cause LS, there was virtually no smoothing that
ensued. One possible explanation for this might be over-parameterization of the model in this case (i.e. too many
regressors for a relatively small number of data points); but this theory is inconclusive. Figure 1 depicts all of the
final CIF curves for all three Kernel Regression fits.

The entire process can be performed again, this time using MMR instead of Kernel Regression. Table 3 illustrates
the results. The results from the MMR fits were similar in many ways to the kernel approach, but different in other
respects. In terms of similarities, the results for cause N mimic quite closely the pattern exhibited from the kernel
approach: the probability distributions were roughly equivalent and the dependent masking and censoring fit again
produced similar results to when just masking or just censoring information is utilized. However, the results were
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very different for cause LS: less smoothing transpired for the MMR models fits when only censoring or only masking
information were used, whereas more smoothing emerges for the MMR fits when both masking and censoring were
employed in aggregate. Figure 2 plots all of the resulting MMR fits.

The main advantages of the MMR approach over a kernel-based method are (a) ease of understanding; (b) ease in
adopting further enhancements such as adding, say, interaction terms between the created masking and censoring co-
variates, if desired; and (c) computational efficiency. Indeed, this was corroborated by experience, as the algorithms
converged much more quickly using the MMR approach. The main advantage of the Kernel Regression over the
MMR approach is that it is entirely nonparametric, with the user not required to make any distributional/parametric
assumptions whatsoever.

6. Conclusion

The purpose of this paper was to relax the restrictive independence assumption commonly invoked between failure
times and the censoring and masking variables found in nonparametric competing risks modeling. This was achieved
by incorporating dependent smoothing of the cause-specific failure time density into the SC-CR paradigm, while
maintaining the statistical attribute of self-consistency. Dependence was incorporated between the failure times and
both the censoring times and the masked causes by employing both Kernel Regression and Multivariate Multiple
Regression at each iteration of the SC-CR Algorithm. Our approach to modeling the CIF’s in a multiple decrement
setting is intended to be the most automated and data-driven approach possible, and in this respect is unrivaled in
the literature to date.

7. Future work

In terms of future work, we note first that the dependent smoothing enhancements can also be incorporated into
the interval-censored version of the SC-CR Algorithm of Adamic et al. (2010). This would represent a valuable con-
tribution to the literature, as interval-censoring is extremely commonplace in practice. A second avenue to explore
would be whether or not a multivariate copula approach could be used to account for the dependence between failure
times with censoring and/or masking, as opposed to the regression approaches we have adopted in the present work.
We have already made reference in the introduction to active research in copula-based competing risks scholarship,
and a thorough investigation as to whether these methods can be used in the SC-CR framework is certainly war-
ranted. Specifically, the use of a fully nonparametric copula would be in keeping with our goals to provide models
that require the least number of assumptions for the analyst. Some research in this regard in the survival analysis
sphere has already begun to take shape; a good example is Gribkova and Lopez (2015), who espouse a nonparametric
copula approach under bivariate censoring.
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Appendix

Proof that E[E[X|Y , Z]|Y] = E[X|Y]

E[E[X|Y,Z]|Y ] =
∑
x

E[X|Y = y, Z = z] · P (Z = z|Y = y)

=
∑
z

∑
x

xP (X = x|Y = y, Z = z) · P (Z = z|Y = y)

=
∑
z,x

x
P (X = x, Y = y, Z = z)

P (Y = y, Z = z)
· P (Z = z, Y = y)

P (Y = y)

=
∑
z,x

x
P (X = x, Y = y, Z = z)

P (Y = y)

=
∑
x

x
P (X = x, Y = y)

P (Y = y)

=
∑
x

xP (X = x|Y = y)

= E[X|Y ] �

Proof that E[E[X|Y]|Y,Z] = E[X|Y]
Let E[X|Y ] = f(Y ), which is appropriate as E[X|Y ] is Y -measurable. Then,

E[E[X|Y ]|Y, Z] = E[f(Y )|Y,Z]

= f(Y ) · E[1|Y, Z]

= f(Y )

= E[X|Y ] �

Thus, it follows that E[E[X|Y,Z]|Y ] = E[E[X|Y ]|Y, Z] = E[X|Y ].


