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Identification of new dihydrophenanthrene
derivatives as promising anti-SARS-CoV-2
drugs through in silico investigations

Imane Yamari, Oussama Abchir, Hassan Nour, Mhammed El Kouali and Samir Chtita∗
Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II
University of Casablanca, Casablanca, Morocco

Abstract. To research, evaluate, and invent novel compounds that inhibit SARS-CoV-2 activity, a series of reported 39
substituted 9, 10-dihydrophenanthrene derivatives were subjected to a quantitative structure-activity relationship (QSAR)
study. Gaussian 09 and ChemOffice programs were used to calculate the molecular descriptors employed to determine
their impact on the studied activity. Then we reduced the number of descriptors by eliminating the redundant information
using principal component analysis (PCA). The creation of molecular models was done by using multiple linear regression
(MLR) according to the principles established by the Organization for Economic Co-operation and Development (OECD)
and the validation by using external and internal validation, Y-randomization tests, and domain of applicability. Moreover,
we evaluated the toxicity of developed compounds using ADMET and Molecular docking to determine their optimal position
to form a stable complex. As a result, four molecules may be used to develop a novel drug that can inhibit SARS-CoV-2
without causing the side effect.
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1. Introduction

SARS-CoV-2, also known as severe acute respiratory syndrome coronavirus 2, was discovered as
a new coronavirus 2019 (COVID-19) outbreak that first appeared in the Chinese city of Wuhan in
December 2019. It represents a highly dangerous disease that paralyzes the world [1]. The virus has
quickly spread from one person to another through respiratory drops released when coughing and
sneezing [2], causing 618,521,620 confirmed cases of the infected human being throughout the world
[3].

On March 12, 2020, The World Health Organization (WHO) declared the viral epidemic a public
health emergency of international significance [4].

Likewise, governments and health departments have chosen various strategies to contain the virus’s
spread. Many attempts have been made worldwide to develop and find an efficient drug to treat patients
potentially infected with COVID-19, leading to the development of various vaccines that have been
widely applied to the public to reduce the transmission rate [5]. However, no single therapy has shown
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its effectiveness against SARS-CoV-2. And to date, the search for new treatments to combat this
epidemic continues to avoid future zoonotic epidemics [6].

SARS-CoV-2 is a member of the family Coronaviridae that belongs to beta coronavirus, an enveloped
virus with a single-stranded, positive-sense, 29-30 kb RNA genome in size. It encodes 16 non-structural
proteins (ORF1a −→ nsp1-11 and ORF1b −→ nsp12-16) and five major structural proteins (S, spike;
E, envelope; M, membrane; N, nucleocapsid; HE, hemagglutinin esterase). These include the papain-
like protease (PLpro) and the 3C-like protease (3CLpro), which are important for the viral life cycle and
responsible for inhibiting the host immune system [7]. These protease enzymes, therefore, represent
the crucial molecular targets for COVID-19 treatment. Furthermore, strong 3CLpro inhibition can
lower the chance of mutation-mediated drug resistance [8]. Herein, we will work on identifying a
novel agent that targets the enzymatic activity of 3-chymotrypsin-like protease (3CLpro) [9].

In this regard, we based our work on the in vitro results of the study conducted by Zhang et al, about the
discovery of multiple derivatives of 9,10-dihydrophenanthrene as potential non-covalent inhibitors of
the SARS-CoV-2-3CLpro [10]. By privileged scaffold fusion and structure-activity relationships study.
The FRET assay was used to investigate the inhibitory effects of the various discovered compounds
on SARS-CoV-2 3CLpro.

Only two effective compounds with the most strong SARS-CoV-2 3CLpro inhibitory activity were
among all evaluated 9,10-dihydrophenanthrene derivatives, with IC50 values of 1.55 ± 0.21 mM and
1.81 ± 0.17 mM, respectively. Furthermore, enzyme kinetics studies demonstrated that these two drugs
inhibit SARS-CoV-2 3CLpro via a mixed-inhibition mechanism. Then In vitro gastrointestinal, plasma,
and microsome stability assays were conducted for both discovered compounds and showed good
metabolic stability in the human gastrointestinal tract, plasma, and liver microsomes. We can state
that the investigation carried out by Zhang et al. come to continue our research on providing more
structural references for the development of SARS-CoV-2 3Clpro inhibitors with higher activity by
using computational methods. The benefit behind this is to accelerate the process of active compound
discovery.

In this work, we conducted an in-silico study using bioinformatics techniques to predict new nonco-
valent inhibitors with better activity against COVID-19. The quantitative structure-activity relationship
is an effective theoretical approach in discovering new effective anti-SARS-CoV-2 compounds [11].
Over the past few years, several models of quantitative structure-activity-QSAR relationships have
been developed to predict potential inhibitors of SARS-CoV-2 [12–15].

This paper determines candidate inhibitors of the studied series by QSAR and molecular docking
analysis. Moreover, the evaluation of drug-likeness and ADMET properties was performed to confirm
the use of the best inhibitor chosen for the anti-SARS-CoV-2 drug.

2. Materials and methods

This study aimed to create a model able to predict the inhibitory activities of novel compounds using
the QSAR technique for fighting COVID-19. To attain our aim, we followed the processes outlined
below, considering the recommendations established by the Organization for Economic Cooperation
and Development (OECD) [16] (Fig. 1).

2.1. The data sets

In this work, a dataset of reported thirty-nine (39) substituted 9, 10-dihydrophenanthrene analogs
covering a wide chemical space and having moderate to high activity against the SARS-CoV-2 virus
strain had been considered. The reported IC50 values were then converted into pIC50 (pIC50 = -logIC50)
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Fig. 1. The process adopted in this study.

before quantitative structure-activity relationships (QSAR) modeling. For the sake of better understand-
ing, the structures of all these compounds, along with their calculated pIC50 values, are provided in
Table 1.

2.2. Molecular descriptors calculation

The chemical structures of the 39 molecules in our dataset were drawn using Chemdraw software
[17]. The geometrical structure of the investigated series was optimized by using the density functional
theory DFT (B3LYP/6-31 G (d, p) basis set) method utilizing the Gaussian09 W [18] and Chem3D
software [17], were used to compute various quantum chemical descriptors and calculate the topo-
logical, physicochemical, and geometrical descriptors. After the calculation of the descriptors for
all the molecules of the studied database, we determined the quantitative relationship between these
descriptors and the biological inhibitory activity of the SARS-CoV-2 disease.

2.3. Statistical analyses

To build a linear mathematical model, a wide range of chemical descriptors that belongs to different
classes (1D, 2D, 3D) were generated for all the 39 molecules obtained by in vitro synthesis [10]. Then
for representing the QSAR models, we did use the statistical methods presented below.

2.3.1. Principal components analysis (PCA)
PCA is a descriptive statistical method, very useful in summarizing the maximum of information

contained in the data and representing them in a simple and comprehensible form, reducing the dimen-
sionality of a dataset and understanding the distribution of the variables and the connection between
them [19]. This paper used PCA to generate a robust model by removing highly inter-correlated and
redundant values while keeping efficient data. Furthermore, the pretreated descriptors were divided
into two sets of the group, a set of training used in the construction of the model 2D-QSAR and a set
of tests used in the external validation of these models. The descriptors applied for the development
of the models are shown in Table 2
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Table 1
Structures and pIC50 values of the 39 studied compounds

(Continued)
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Table 1
(Continued)

2.3.2. Model development
This study used the multiple linear regression (MLR) method available in XLSTAT software [20]

to develop the QSAR models. MLR is a statistical tool that establishes a linear regression between
independent variables X (molecular descriptors) and a dependent variable Y (biological activity to be
predicted) according to the following relation Equation (1)

Y = a0 +
n∑

i=1

aiXi (1)

Where ai represents the coefficients of those descriptors, a0 is the intercept of the equation, and n is
the number of the molecular descriptors.

Afterward, multiple statistical parameters, such as the correlation coefficient (R2) and the root mean
square error (RMSE), were determined. The model is simultaneously developed until the R2 value is
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Table 2
List of molecular descriptors with different classes

Descriptors Symbol Class

Percentage mass of Carbon %C Constitutional
Percentage mass of Hydrogen %H
Percentage mass of Nitrogen %N
Percentage mass of Brome %Br
Percentage mass of Chlore %Cl
Percentage mass of Oxygen %O
Molecular Weight MW
Number of HBond Acceptors NHA Physico-chemical
Number of HBond Donors NHD
Molecular Refractivity MR
Coefficient of partition Octanol/Water LogP
Pka (log units) Pka
Number Rotatable Bonds Nrot Geometrical
Polar Surface Area PSA Topological
Topological Diameter
Energy gap E (ev) Quantum (Electronic)
Dipole Moment �

Electronegativity X
Energy gap EGAP (ev)
Energy HOMO EHOMO (ev)
Energy LUMO ELUMO (ev)

significantly higher and the RMSE value is lower by entering the new descriptor. All developed models
were validated using internal cross-validation (R2

CV ) and external validation (R2
Test ).

2.3.3. Statistical testing and validation
The validation of the models QSAR remains a very sensitive step in statistical studies to evaluate the

importance of QSAR models and, thus, their predictive abilities of the activities/properties of other new
compounds. It generally starts with an internal validation and then an external validation. In addition,
we run a Y-randomization test to assess the effectiveness of the originally developed model and then
by the definition of the applicability domain, that is to say, the region of the chemical space in which
a compound can be predicted with confidence.

To select the best MLR model, the coefficient of determination R2 (Equation 2), the coefficient
adjusted for degrees of freedom R2

Adj (Equation 3), the mean squared error MSE (Equation 4), the
coefficient of determination for the test set R2

Test, and cross-validation coefficient R2
cv (Equation 5),

were used.
If R2, R2

Adj, R2
Test, and R2

cv values are greater than 0.6 according to A. Golbraikh, A.Tropsha [21],
F-value is higher (F > 0.33) and a level of signification p-value between 1% and 5%, the model is
statistically acceptable.

R2 = 1 −
∑n

i=1 (Yobs − Ycalc)
2

∑n
i=1

(
Yobs − Ȳcalc

)2 (2)

R2
adj = (n − 1) × R2 − p

n − 1 − p
(3)
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MSE = 1

n

n∑
i=1

(Yobs − Ycalc)
2 (4)

R2
CV = 1 −

∑
(Yobs (train) − Ycalc (train))2

∑ (
Yobs (train) − Ȳcalc (train)

)2 (5)

Where Yobs and Ycalc are, respectively, the value of the observed and calculated response, Ȳcalc is the
average value of the observed/ predicted response, p represents the number of explicative variables in
the model (descriptors), and n is the number of observations (Molecules).

2.3.4. Applicability domain
The applicability domain of a QSAR model is the final step in validating the developed QSAR

model; it is regarded as an important step in evaluating whether the model is accurate in making
predictions within the chemical space for which it was developed [22]. Furthermore, according to the
Organization for Economic Cooperation and Development (OECD), the validation process by defining
the applicability domain remains very important [23]. There are different methods for defining AD
models [24], but the most common method is determining the leverage value hi for each molecule
using the following formula Equation (6).

hi = xT
i

(
XT X

)−1
xi (6)

With (i = 1,2, . . . ..,n) for each compound, xi is the line-vector descriptor of the query compound,
X is n*(k-1) matrix of k model descriptor values for training set compounds, and the superscript T
refers to the transpose of matrix/vector [25]. In the present study, we used the Williams plot available in
Matlab software [26] to determine the AD, the leverage threshold h* value (Equation 7) was calculated
and then compared with the leverage value hi when (hi > h*), it indicates that the compound affects
negatively on the developed model, so it is considered outside the applicability domain.

h∗ = 3 × (k + 1)

n
(7)

With n the number of compounds in the training set and k the number of descriptors.

2.4. In silico Pharmacokinetic ADMET prediction

ADMET parameters (absorption, distribution, metabolism, excretion, and toxicity) and Pharma-
cokinetic characteristics of the selected compounds represent a vital tool to predict the failures in
drug development candidates and accelerate the process of active compound discovery [27]. These
studies consist of evaluating the drug’s likeness properties and determining the activity through the
human body. These pharmacokinetic parameters were assessed for the four derivatives predicted com-
pounds of 9, 10 dihydrophenantrene to examine their drug candidate properties. Applying the pkCSM
server [28] by introducing the SMILES strings of the structures. It’s a web platform that gives rapid
information to evaluate pharmacokinetic and toxicity properties.

2.5. Molecular docking

Molecular docking is an essential tool in structural molecular biology and computer-aided drug
design [29]. It is widely used to predict the predominant ligand’s binding mode(s) in the active site
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of a target protein with a known three-dimensional structure [30]. The configuration of the docking
input structures is just as important as the docking itself. First, the 3D-dimensional structure of the
SARS-CoV-2 main protein (PDB entry: 6LU7, Resolution: 2.16 Å) was downloaded from the Protein
Data Bank (http://www.rcsb.org). Then the target protein was prepared using AutoDockTool-1-5-6
[31] by removing all heteroatoms, water molecules, and imbalance charges by Gasteiger charges while
we added the polar hydrogens to the protein structures. Next, the 3D structures of the ligands (all the
proposed compounds) were optimized by the Gaussian 09 software using a combination of Density
Functional Theory (DFT) with Becke’s three Lee, Yang, Parr parameters (B3LYP) functional, together
with a basis set 6–31G* to achieve the optimal structures of the molecules, after that, the structures of the
ligands were converted to the PDBQT format using the AutoDockTool-1-5-6.The 3D grid configuration
for the AutoDock was set to define the map size, where the total binding energy between the ligand
and the SARS-CoV-2 protein is measured. We used a grid box with the dimensions 15 × 22 × 15 Å3,
with its center located at x = –10.75, y = 12.46, z = 68.92, with spacing 0.375 Å between the grid points.

After preparing the protein and the ligand, we performed molecular docking using the AutoDock
Vina program [32], where we determined the best position of the docked ligands with the appropriate
protein considering their binding affinities. The most stable complexes represent the lower value of
the binding score. Discovery Studio 2021 Software [33] was used to visualize the ligand-protein
interaction.

3. Results and discussions

After selecting the chemical descriptors to be used in our QSAR model by using the PCA tech-
nique and collecting the experimental values of the Anti-SARS-CoV-2 activities for the 39 derivative
molecules as reported by Zhang et al. [10]. We built the QSAR model, represented in Equation 8:

pIC50 = −0.717 + 0.258 MR − 0.014 PSA − 0.695 EHomo−1 − 8.598 EGap (8)

NTest (number of test compounds) = 6 and NTraining (number of training compounds) = 33
With Statistical parameters: R² = 0.805; R²adj = 0.777; RMSE = 0.042; p-value < 10−4; F = 28.951
Generally, a QSAR model is considered predictive if the calculated values of R², R²cv, are greater than

0.6 and 0.5 for R²adj [34]; hence, the robustness of the MLR model was confirmed based on the statistical
performances obtained. Also, a low value of the mean square error (RMSE = 0.042) indicated that the
predicted model is reliable and predictive. Then the high value of F-statistic (F = 28.951) signified that
the model is statistically acceptable. Moreover, the p-value is less than 0.0001, implying that the model
is statistically significant with a level greater than 95%.

Then, we carried out the internal validation by the leave-one-out cross-validation method, where the
value of the cross-validation coefficient R²cv was higher than 0.5 (R²cv = 0.732), which indicated a good
predictability of the pIC50 of the compounds of test set molecules in agreement with the experimentally
determined value. According to Y-randomization, we ran 50 random trials. As a result, the cRp

2 was
estimated, confirming the strength of the built model, and the results are listed in Table 3.

The predicted and calculated pIC50 values are given in Table 4. The relationship between the
observed activity values and the predicted values is shown in Fig. 2.

To evaluate the predictive power of the resulting model, the external validation was performed by
calculating the coefficient of correlation R² test. The concluded value of the R² test is 0.731, greater
than 0.6 [34]. Therefore, the external validation of the MLR model guarantees the robustness of the
developed model to predict the pIC50.

Therefore, we can sum up that the model gives important information to predict new molecules with
high activity against SARS-CoV-2. The model is a function of 4 molecular descriptors. The descrip-

http://www.rcsb.org
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Table 3
Random parameters values

Parameters values Threshold value

R²cv 0.732 >0.500
Average of 50 R²rand 0.100 <R²
Average of 50 R²cvrand –0.253 <R²cv

cR²p 0.758 >0.500

Table 4
Experimental pIC50 values for the 39 molecules used as training and test sets and

corresponding predicted values based on the MLR-developed model

T
ra

in
in

g
se

t

Compounds Activity (pIC50) Compounds Activity (pIC50)
Exp Pred Exp Pred

3 4,531 4,502 21 5,609 5,729
4 5,043 4,749 22 5,008 5,155
5 5,191 5,068 23 5,32 5,266
6 4,714 4,903 24 4,989 5,204
7 4,943 4,792 25 5,479 5,349
8 4,068 4,448 26 5 4,962
10 4,269 4,282 28 5,131 5,105
11 4,23 4,308 29 5,28 5,127
12 4,166 4,359 30 5,368 5,156
13 5,248 4,971 31 5,565 5,301
14 4,175 4,329 32 5,172 5,35
15 4,446 4,493 33 5,556 5,214
16 4,733 4,571 34 5,051 5,219
17 4,849 4,816 35 5,177 5,203
18 4,922 4,766 36 5,234 5,379
19 4,859 4,815 38 5,082 5,568
39 5,48 5,432 – – –

Te
st

se
t 1 4,214 4,265 20 5,069 5,464

2 4,481 4,356 27 4,95 5,187
9 4,239 4,327 37 5,437 5,048

Fig. 2. Correlation between the observed and predicted activity.
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Fig. 3. William plot for standardized residuals and leverage of the QSAR model generated using MLR methods.

tors, Polar Surface Area PSA, HOMO−1 energy (EHomo-1), and the Gap energy EGAP are negatively
influencing the activity, and the Molar Refractivity (MR) parameters are positively influencing the
activity. The Molar Refractivity has a positive sign in the model, which suggests that the increased
activity can be achieved by increasing the volume of the molecules.

3.1. Applicability domain

One of the most important aspects of QSAR modeling is defining the applicability domain (AD).
Figure 3 shows the William Plot based on the MLR model results. Vertical dashed lines and horizontal
dotted lines, respectively, have been used to indicate acceptable limits of structural similarity and
inhibitory activity. The standardized residuals and leverage threshold values (h* = 0.378) were plotted
to gain a better understanding of structural similarity and biological activity. The predicted activity
value will be valid and correct only for compounds located to the left of the leverage threshold h*,
while the molecules outside the applicability domain are not correctly predicted. h* value is calculated
by using the following Equation (Equation 9)

h∗ = 3
(k + 1)

n
(9)

n and k represent the number of training compounds and descriptors used in the model, respectively.
There are no outliers (h* = 0.378) among the compounds in the test set.

3.2. The newly designed compounds

Based on the established model, the sign of each variable (descriptor) in the model, also their level
of influence (Molar refractivity influence strongly on the SARS-CoV-2 activity). We proposed newly
designed molecules with better activity. We began by modifying the structure of the high-activity
compounds (Fig. 4) and attempting to increase the value of the molar refractivity by adding high
molecular weight groups.

Nine compounds were proposed at this phase, and we predicted their activity values. After that,
we calculated their leverage values to detect the molecules that belong to the applicability domain.
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Fig. 4. Structure of the highly active compounds

Table 5
List of the designed compounds

������
STRUCTURES MR PSA E GAP EHOMO

−1 pIC50 hi Outlier/
R1 R2 Inside

C1 19.278 58.890 0.159 –5.887 6.147 0.494 > h* outlier

C2 18.202 58.890 0.167 –6.286 6.354 0.316 < h* inside

C3 20.832 58.890 0.154 –6.061 6.307 0.709 > h* outlier

C4 20.055 58.890 0.153 –6.029 6.295 0.595 > h* outlier

C5 17.711 58.890 0.168 –6.127 6.235 0.291 < h* inside

C6 20.260 58.890 0.154 –6.078 6.319 0.618 > h* outlier

C7 18,213 58,89 0,082 –8,074 8,058 0,369 < h* inside

C8 18,545 58,89 0,095 –8,097 8,049 0,3469 < h* inside

C9 17,889 58,89 0,101 –8,097 7,827 0,3925 > h* outlier

Table 5 represents the list of the designed molecules with the calculated values. Compared to the most
active compounds, all designed compounds demonstrated excellent activities. Moreover, except for
the compounds identified as out of the domain (C1, C3, C4, C6, and C9), four designed compounds
(C2, C5, C7, and C8) fall within the applicability domain.
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Table 6
The screened compounds’ binding energies toward 6LU7

L
U

7
re

ce
pt

or Compounds C2 C5 C7 C8

Score (kcal/mol) –8.4 –8.1 –8.8 –8.8

3.3. Molecular docking results

A docking simulation was conducted to get detailed information about the most important interac-
tions that influence anti-SARS-CoV-2 activity. We performed the docking analysis for the four designed
compounds (C2, C5, C7, and C8) in the active site of the 6LU7 receptor, to get further information
about ligand-receptor binding energy and explore the binding poses adopted by the ligands. The results
obtained showed a good value of binding affinity, it represented a higher docking score of < -7 kcal/mol,
which concludes that the tested ligands can form a stable complex with the protein. Table 6 shows the
compounds with good binding affinity.

3.4. Protein-ligand interaction analysis

We defined the interaction between the protein and the ligand using the discovery studio. The anal-
ysis revealed that the high binding affinity of compound C1 (–8.4Kcal/mol) is due to the formation
of Pi-Alkyl bonds with MET49, Pi-Sigma bonds with MET49, Pi-Cation bonds with HIS41, two
carbon-hydrogen bonds with ARG188, THR190, carbon-hydrogen bonds with MET165 and Pi-Donor
Hydrogen Bond with CYS145 at a distance of 4.41Å, 3.58Å, 4.91Å, 2.48Å, 2.97Å, 3.57Å, 4.18Å respec-
tively. Furthermore, the C5 compounds also formed several interactions, including three conventional
hydrogen bonds with THR190, GLN192, and MET165 at a distance of 3.07Å, 3Å, and 2.74Å respec-
tively, Pi-Sigma bonds with MET49 at a distance of 3.52Å, Pi-Donor hydrogen bond with CYS145 at
a distance of 4.17Å and 2 Pi-Sulfur bonds with MET49 at a distance of (5.93Å, 4.49Å). Also, binding
analysis within the active site of 6LU7 indicated that the C7 forms three Conventional Hydrogen Bond
with GLN189, PHE140, and GLU166 at distances 2.46 Å, 2.49 Å, 2.47Å, two Pi-Alkyl Bonds with
MET165 at 4.64Å, 4.46Å, Pi-Sulfur with CYS145 at a distance of 5.77Å, Pi-Pi T-shaped with HIS41
at a distance of 4.98Å. Moreover, the interaction formed between the last ligand C8 and the amino
acid of 6LU7 protein shows three Pi-alkyl bonds with MET165, LEU27, and CYS145 at a distance
of 3.53Å, 4.46Å and 4Å respectively, Pi-cation bond with HIS41 at a distance of 4.46Å, and Carbon
Hydrogen Bond with MET165 at a distance of 3.53Å. The existence of van der Waals forces between
the ligand and followed residues (GLN192, GLN189, THR25, THR26, THR24, GLY143, ASN142,
PRO168, LEU167, THR190, ARG188, HIS172, HIS163, ASP187, HIS164, LEU141, SER144 and
ASN142, accounts for the obtained complexes’ high affinity. Which creates a robust environment, thus
stabilizing the complex. Table 7 shows the interaction formed between the amino acids of the 6LU7
protein and the proposed ligand.

3.5. ADMET prediction

The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties for the
four predicted compounds (C2, C5, C7, C8) were generated using the pkCSM web server [35]. Table 8
present the predicted values for every single property.
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Table 7
2D structures of complexes formed between proposed compounds and 6LU7 protein

N Residues Type 2D-structure

C2 MET49 Conventional hydrogen bond

HIS41 Pi-Cation
ARG188 Pi-Donor hydrogen bond
THR190 Pi-Sigma
MET165 Pi-Alkyl
CYS145

C5 GLN189 Conventional hydrogen
CYS145 Pi-Cation
HIS41 Pi-Donor hydrogen bond
MET49 Pi-Alkyl
THR190 Pi-sulfur
GLN192 Pi-Sigma
MET165

C7 CYS145 Conventional hydrogen
HIS41 Pi-Alkyl
MET165 Pi-sulfur
PHE140 Pi-Donor hydrogen bond
GLU166 Pi-T-shaped
SER144
GLN189

C8 LEU27 Pi-Alkyl

HIS41 Pi-cation
GLU166 Carbon hydrogen bonds
GLY143
CYS145
MET165

In terms of the percentage of absorption by the human small intestines, all compounds represent a
high absorption value (>90%) which indicates good absorption by the human intestine.

For the distribution, the steady-state volume (VDss) is considered low compared to the standard
value (Log VDss < –0.15) for all the compounds. Also, the compounds represent a high value of the
fraction unbound which shows that the predicted fraction of the compounds will be unbound to serum
proteins. The distribution indices reported by all molecules indicated a good distribution capacity.

In terms of metabolism, cytochrome P450 (CYP) is an important enzyme that can activate drug
metabolism. Therefore, it is indispensable to evaluate the ability of compounds to inhibit cytochromes
(CYP). The server predicted that the compounds are not inhibitors for the different isoforms (CYP1A2,
CYP2C19, CYP2C9, CYP2D6, and CYP3A4), only for the compounds C8 is an inhibitor for the
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Table 8
pkCSM webserver prediction of ADMET properties for the selected compounds

Properties Compounds
C2 C5 C7 C8

Absorption Intestinal absorption (human) 99.731 96.671 100 100
Distribution Fraction unbound (human) 0.325 0.298 0.357 0.365
Distribution VDss Human (log L/kg) –1,237 –1,238 –0.825 –0.674
Metabolism CYP1A2 inhibitor No No No Yes
Metabolism CYP2C19 inhibitor No No No No
Metabolism CYP2C9 inhibitor No No No No
Metabolism CYP2D6 inhibitor No No No No
Metabolism CYP3A4 inhibitor No No No No
Excretion Renal OCT2 substrate No No No No
Toxicity AMES toxicity No No No No
Toxicity hERG I inhibitor No No No No
Toxicity hERG II inhibitor Yes Yes Yes Yes
Toxicity Hepatotoxicity No Yes Yes Yes

CYP1A2 isoform. For the excretion, the predicted molecules are not a substrate for renal organic
cation transporter 2. The contact with this transporter aids in the clearance of substances and may
result in undesirable interactions; hence, a negative prediction is regarded as beneficial.

Finally, four indicators were employed to forecast the toxicity of the compounds. AMES toxicity
is a test that determines if a chemical is carcinogenic, all of the compounds don’t represent any of
the AMES toxicity. Inhibition of hERG I/II is the leading cause of fatal ventricular arrhythmia and
has led to the discontinuation of several drugs. The server predicts that all the compounds are likely
to be hERGII inhibitors. Hepatoxicity, reveals if the substance may interfere with the liver’s normal
function. The server shows that only the compound C2 is not likely to be o be associated with the
disrupted normal function of the liver.

4. Conclusion

In this study, The MLR approach was used to thoroughly investigate and explain the 2D quantitative
structure-activity relationship (2D-QSAR) for 9,10-dihydrophenanthrene derivatives to inhibit SARS-
CoV-2 activity. As a consequence, we established a model based on the molecular descriptors of
the 9,10-dihydrophenanthrenes derivatives that showed a strong capacity to impact the biological
activity against SARS-CoV-2 (3CLpro). As a result, 9 new drug molecules were created based on the
developed model and the structure of the compound n◦21 the most bioactive compound (the greatest
in vitro biological activity pIC50). The biological activity of designed compounds (pIC50) was then
predicted using the selected model, and their non-covalent interaction with 3CLpro (PDB code: 6LU7)
was determined by using molecular docking, and in silico pharmacokinetics, ADME characteristics,
and toxicity were assessed for the retained molecules. The findings of this investigation showed that
4 compounds, had strong biological inhibitory activity (pIC50), diversity of non-covalent binding
to 3CLpro, and acceptable pharmacokinetic appropriateness. Finally, we demonstrated that 4 small
compounds modeled on 9,10-dihydrophenanthrene structures have the potential to operate as a viable
non-covalent therapeutic candidate against COVID-19.
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