Main Group Chemistry, 1998, Vol. 2, pp. 229–233 Reprints available directly from the publisher Photocopying permitted by license only © 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Printed in India.

Index Abstracts

Sior + Rosi + Ror

On the basis of his own and literature data, the author considers and gives theoretical substantiation to the routes for the formation and decomposition of linear and cyclic oligo- and polysiloxanes through an intramolecular reaction of geminal fragmentation of Si(OR)X groups with the intermediate formation (α -elimination) of short-lived silanones R₂Si == O. The latter further undergoes polymerization or insertion into Si — X bonds (X = O, Cl, etc.) of trapping reagents.

The interaction of In(III) with tripodal Schiff base ligands ($L_{(1-6)}$ prepared from the condensation of substituted salicylaldehydes with tris(2-aminoethyl)amine gives a range of neutral complexes of the type [In(III)(L)] (salicylaldehyde L_1 , *o*-vanillin L_2 , 5-methoxysalicylaldehyde L_3 , 5-nitrosalicylaldehyde L_4 (shown), 3,5-di-*t*butylsalicylaldehyde L_5 , 5-bromosalicyl-aldehyde L_6). These complexes were investigated spectroscopically, and in two cases by single crystal Xray diffraction, and are found to have heptacoordinate In (III) centres. M. G. Voronkov

A Third Route to the Formation and Decomposition of Siloxane Structures. To Siloxanes through Silanones

235 - 241

J. Parr, A. T. Ross and A. M. Z. Slawin

Complexes of Indium (III) with Tripodal Schiff Base Ligands

Twenty five 1:1 adducts of the triarylboroxines $(4-BrC_6H_4)_3B_3O_3$, (3- $NO_2C_6H_4)_3B_3O_3$ (3- $NH_2C_6H_4)_3$ B_3O_3 with N-donor ligands (cyclohexylamine, 4-picoline, 3-picoline, piperidine, morpholine, isobutylamine, triethylamine, pyridine, isoquinoline, benzylamine) have been prepared by reaction of stoichiometric quantities of ligand with tri(aryl)boroxine in Et₂O at room temperature. Variable temperature studies on selected adducts revealed ligand dissociation recombination ($\Delta G^+39-54 \text{ kJ.mol}^{-1}$) was occurring and the X-ray structure of 3-picoline $(4-BrC_6H_4)_3B_3O_3$ is reported.

Two Sb₄O₆ 'cage' molecules, containing bridging oxo-, hydroxo- and carboxylato-ligands, have been synthesised and the crystal structure of a related compound, [(SbPh₂)4(μ -O)(μ -OH)(μ -OEt)(μ -O₂CMe)₂], which also contains a bridging ethoxogroup, has been determined.

(E)-Enolate structure is proved of the isolated sodium and potassium derivatives of 2- (diphenylphosphinoyl)-2-phenyl ethenol. Their regiospecific O-acylation and O-alkylation is studied.

M. A. Beckett, D. E. Hibbs, M. B. Hursthouse, P. Owen, K. M. A. Malik and K. S. Varma

Synthesis and Characterisation of Amine Adducts of Tri(4bromophenyl)boroxine, Tri(3nitrophenyl)boroxine, and Tri (3-aminophenyl)boroxine; Molecular Structure of 3-Picolinetri(4-bromophenyl)boroxine

251-258

M. N. Gibbons, K. M. A. Malik, M. B. Hursthouse and D. B. Sowerby

Carboxylate Bridged Octaphenyltetra-antimony(V) 'Cage' Compounds; $[(SbPh_2)_4$ $(\mu$ -O)₄ $(\mu$ -OH)₂ $(\mu$ -O₂CR)₂ · HO₂-CR], where R=Me or t-Bu and the Crystal Structure of $[(SbPh_2)_4 (\mu$ -O)₄ $(\mu$ -OH) $(\mu$ -OEt) $(\mu$ -O₂CMe)₂]

259-265

J. Petrova, S. Momchilova and E. T. K. Haupt

Sodium and Potassium Derivatives of 2-(Diphenylphosphinoyl)-2-Phenyl-Ethenol: Synthesis, Structure and Reactivity

267-273

 $Y = CH_{3}CO$

 $Y = PhCH_{0}$

M ≂ Na M ≃ K

The synthesis and characterization of the primary terphenyl silanes and chlorosilanes 2,6-Mes₂C₆H₃SiCl₃(1a), 2,6-Trip₂C₆H₃SiCl₃(1b) (shown), 2,6-Mes₂C₆H₃SiHCl₂ (2a), 2,6-Trip₂C₆H₃₋ $-2,6-Mes_2C_6H_3SiH_3(3a),$ SiHCl₂ (2b), 2,6-Trip₂C₆H₃SiH₃(**3b**) and 2,6-Mes₂ $C_6H_3SiCl_2SiCl_3(4)$, (where Mes = 2,4, $6 - Me_3C_6H_2$ and $Trip = 2,4,6-i-Pr_3$ C_6H_2) are described. Compounds (1a, 1b), (2a, 2b) and (4) were prepared by the reaction between SiCl₄, SiHCl₃ or Si₂Cl₆, respectively, and the appropriate aryl lithium reagent (2,6-Mes₂C₆H₃Li or 2,6-Trip₂C₆H₃ Li-OEt₂). Compounds (3a) and (3b) were prepared by reduction of (1a) and (1b) with LiAlH₄, respectively. An improved synthesis of the precursor 2_{6} -Trip $_{2}C_{6}H_{3}I$ is also given.

Two equivalents of some bidentate amino alcohols (AA) are combined with LiAlH₄ to form unique chelated aluminates of the form [(AA)₂Al]-Li(THF)₂. One of the compounds undergoes a salt elimination when combined with Me₂AlCl to form the bimetallic derivative, [(AA)₂Al]Al-Me₂(shown). By comparison, a related reaction with [ArO₄Al] [Li(THF)₄] (Ar=aryloxide) leads to elimination of one of the aryloxide groups and the subsequent formation of neutral products.

Treatment of 2:1 mixture of $InBr_3$ and H_2O with 1 equivalent of the imidazol-2-ylidene carbene, affords the imidazolium salt, [HCN(Me)C₂(-Me)₂N(Me)][InBr₄] **2**, in good yield. The proposed mechanism for the formation of **2** and its X-ray crystal structure are described.

R. S. Simons, S. T. Haubrich, B. V. Mork, M. Niemeyer and P. P. Power

The Syntheses and Characterization of the Bulky Terphenyl Silanes and Chlorosilanes $2,6-Mes_2C_6H_3SiCl_3$, $2,6-Trip_2$ $C_6H_3SiCl_3$, $2,6-Mes_2C_6H_3SiH-Cl_2$, $2,6-Trip_2C_6H_3SiH-Cl_2$, $2,6-Trip_2C_6H_3SiH-Cl_2$, $2,6-Mes_2C_6H_3SiH-Cl_2$, $2,6-Mes_2C_6H_3SiCl_2-SiCl_3$

275 - 283

D. E. Hibbs, M. B. Hursthouse, C. Jones and N. A. Smithies

Synthesis, Crystal and Molecular Structure of 1,3,4,5-Tetramethylimidazolium Tetrabromoindium (III)

In the reaction of iminosilanes and methylalanes monomeric silylaminoalanes are obtained by a nucleophilic methanide-ion migration from aluminium to silicon.

Four-membered (SiNLiF)-rings react with ClAlMe₂ or AlCl₃ with formation of (SiNAlHal)-rings, fourmembered rings with bridging fluorine or chlorine atoms. These compounds may be considered as silyliumhaloaluminates. The partial zwitter ion character is supported by the low-field ²⁹Si-NMR shifts.

Ab Initio (3-21G(*), MP2/3-21G(*), MP2/3-21G(*)) molecular orbital calculations show that the *cis-trans* (**1a** – **1b**) interconversion of diazadiphosphetidines proceeds rather *via* an "edge" inversion than the classical "vertex" inversion at phosphorus. The semiempirical MNDO results are largely of the same quality as those obtained with the 3-21G(*) basis.

The 1:2 reaction of SnCl₂ with Li(THF)_{2.5}Ge(SiMe₃)₃ gave both colorless (1) and red (2) crystalline products. The former was identified as [(Me₃Si)₃Ge]₂SnCl₂, while FAB-MS, ¹¹⁹Sn NMR and an X-ray structure determination on **2** revealed it to be a heteroleptic cyclotetrastannane, [(Me₃ Si)₃GeSnCl]₄. Similar reactions of SnF₂ and SnI₂ gave only reduction.

 $\begin{array}{cccc} R_1 & R_2 & R_1 & R_2 \\ P & N & P & P & N & P \\ R_2 & R_1 & R_2 \\ 1a & 1b \end{array}$

J. Niesmann, U. Klingebiel, C. Röpken, M. Noltemeyer and R. Herbst-Irmer

Iminosilanes as Precursors for Monomeric Bis(silyl)aminomethylalanes and Silyliumtrichloroaluminates – Synthesis and Crystal Structures

_{le} 297-308

I. Silaghi-Dumitrescu, F. Lara-Ochoa and I. Haiduc

"Edge" or "Vertex" Inversion at Phosphorus in the *cis-trans* Isomerization of Diazadiphosphetidines? Model MNDO and *ab initio* Molecular Orbital Calculations

309-314

S. Mallela, W.-P. Su, Y.-S. Chen, J. D. Korp and R. A. Geanangel

The Reaction of Tin(II) Halides with Li(THF)_{2.5} Ge(SiMe₃)₃: The X-ray Crystal Structure of a New Cyclotetrastannane

Reaction of (2, 6-dimesitylphenyl)boron dibromide, (Mes₂C₆H₃)BBr₂. I, with [(2, 6-di-*i*-propylphenyl)amino]lithium, [(*i*-Pr₂C₆H₃)N(H)Li, affords 2, 6-dimesitylphenyl[(2,6-di-*i*-propylphenyl)-amino]boron bromide, (Mes₂ C₆H₃)B(Br)N(H)[(*i*-Pr₂C₆H₃)], II. II has been characterized by elemental analyses, ¹H and ¹³C NMR, and single crystal X-ray diffraction. *ab initio* examination of model molecules CH₃BBr₂, III, and CH₃B(Br) NH₂, IV, supports a measure of π bonding in the B—N bonds in III and IV.

X.-W. Li, Y. Xie, J. Su, H. F. Schaefer III, and G. H. Robinson

Synthesis and Molecular Structure of $(Mes_2C_6H_3)B(Br)N(H)$ $[(i-Pr_2C_6H_3)]$ and an *ab initio* Examination of CH_3BBr_2 and $CH_3B(Br)NH_2$