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Abstract
Recently, the proof system MICE for the model counting problem #SAT was introduced

by Fichte, Hecher and Roland (SAT’22). As demonstrated by Fichte et al., the system MICE
can be used for proof logging for state-of-the-art #SAT solvers.

We perform a proof-complexity study of MICE. For this we first simplify the rules
of MICE and obtain a calculus MICE′ that is polynomially equivalent to MICE. We then
establish an exponential lower bound for the number of proof steps in MICE′ (and hence
also in MICE) for a specific family of CNFs. We also explain a tight connection between
MICE′ proofs and decision DNNFs.
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1. Introduction

The problem to decide whether a Boolean formula is satisfiable (SAT) is one of central
problems in computer science, both theoretically and practically. From the theoretical side,
SAT is the canonical NP-complete problem [19], making it intractable unless P = NP. From
the practical side, the ‘SAT revolution’ [37] with the evolution of practical SAT solvers has
turned SAT into a tractable problem for many industrial instances [8].

In this paper we consider the model counting problem (#SAT) which asks how many
satisfying assignments a given Boolean formula has. While #SAT is obviously a generalization
of SAT, it is presumably much harder. #SAT is the canonical complete problem for the
function class #P. While FP = #P would imply P = NP, it is known that FP = #P is even
equivalent to P = PP. The power of #SAT is also illustrated by Toda’s theorem [36] stating
that any problem in the polynomial hierarchy can be solved in polynomial time with oracle
access to #SAT.

Despite its higher complexity, #SAT solving has been actively pursued through the past
two decades [26] and a number of #SAT solvers have been developed throughout the years.
In fact, the past years have witnessed increased interest in #SAT solving with an annual
model counting competition being organised since 2020 as part of the SAT conference [23].
#SAT solvers allow to tackle a large variety of real-world questions, including all kinds of
problems in the areas probabilistic reasoning [2,31], risk analysis [22,40] and explainable
artificial intelligence [3,34].

Unlike in SAT solving where conflict-driven clause learning (CDCL) [32] dominates the
scene, there are a number of conceptually different approaches to #SAT solving, including the
lifting of standard techniques from SAT-solving [35], employing knowledge compilation [30],
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and via dynamic programming [25]. While some approaches try to approximate the number
of solutions, we will only consider exact model counting in the following.

There is a tight correspondence between practical SAT solving and propositional proof
systems [14]. While we know that in principle every SAT solver implicitly defines a proof
system, a seminal result of [1,33] established that CDCL (at least in its nondeterministic
version) is equivalent to the resolution proof system. However, practical CDCL with e.g. the
VSIDS heuristics corresponds to an exponentially weaker proof system than resolution [38].
In the same vein, there has recently been a line of research to understand the correspondence
between solvers for quantified Boolean formulas (QBF) and QBF resolution proof systems
[6,9,10]. This correspondence between solvers and proofs is not only of theoretical, but also of
immense practical interest as it can be used for proof logging, i.e. for certifying the correctness
of solvers on unsatisfiable SAT or QBF instances. Optimised proof systems have been devised
in terms of RAT/DRAT for SAT [28,39] and QRAT for QBF [29] for this purpose. These proof
systems aim to capture all modern solving techniques, including preprocessing and therefore
tend to be very powerful [15,18]. In particular, in contrast to weak proof systems such as
resolution, no lower bounds are known for RAT or QRAT.

In sharp contrast, far less is known about the correspondence of model counting solvers
to proof systems. To our knowledge, there are currently three proof systems for #SAT. One
is a static proof system based on decision DNNFs called kcps(#SAT) (the acronym stands for
Knowledge Compilation based Proof System for #SAT) [16]. A very similar idea was used to
modify current knowledge compilers such that they output certifiable decision DNNFs [17].
With the help of an implemented checker it can be verified in polynomial time that a given
CNF is indeed equivalent to the resulting certifiable decision DNNF.

The second, a line based proof system called MICE [24] (the acronym stands for Model-
counting Induction by Claim Extension), was introduced in 2022 [24]. Interestingly, the system
MICE not only provides a theoretical proof system for #SAT, but also allows proof logging for
a number of state-of-the-art solvers in model counting, including sharpSAT [35], DPDB [25]
and D4 [30], as demonstrated in [24]. Hence MICE proofs can be used to verify the correctness
of answers of these #SAT solvers.

A third proof system was introduced very recently [13] for certified proof checking of
#SAT solvers. The system is similar in spirit to the general proof-checking formats RAT and
DRAT [28,39] used for SAT solving and employs Partitioned-Operation Graphs (POGs).

1.1. Our Contributions

We perform a proof complexity analysis of the #SAT proof system MICE from [24]. Prior to
this paper, no proof complexity results for MICE were known. Our results can be summarised
as follows.
(a) A simplified proof system MICE’. We analyse the proof system MICE and define a some-
what simplified calculus MICE′. Lines in MICE are of the form ((F, V ), A, c) where F is a
propositional formula V is a set of variables, A is a partial assignment and c ∈ N. Semanti-
cally, these lines express that the formula F under the partial assignment A has precisely c
models. The system MICE then employs four rules to derive new lines with the ultimate goal
to derive a line ((F, vars(F )), ∅, c). Thus in the ultimate line, c is the number of models of the
formula F .

The four rules of the system include one axiom rule for satisfying total assignments and
three rules to compose, join and extend existing lines. All the rules have a rather extensive
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set of side conditions to verify their applicability. For the composition rule this even includes
an external resolution proof to check that the composition of claims in the rule indeed covers
all models.

The variable set V does not feature in the semantical explanation above. While it might
be tempting to choose V = vars(F ) for all lines (as is done in the final claim), we show that
this restriction is too strong and results in an exponentially weaker system. Nevertheless,
we show that we can slightly adapt the rules of MICE (in particular the extension rule) and
obtain a system MICE′ for which we can impose V = vars(F ) for all lines without weakening
the system. Lines in MICE′ therefore can take the form (F,A, c). This allows to eliminate and
simplify some of the side conditions for the original rules of MICE when transferring to MICE′.
Our simplified system MICE′ is as strong as MICE in terms of simulations (Propositions 4.8
and 4.9). Hence also MICE′ can be used for proof logging for the #SAT solvers mentioned
above.
(b) Lower bounds for MICE and MICE’. We show an exponential lower bound for the proof
size in MICE′ (and hence also for MICE) for a specific family of CNFs.

As mentioned above, the composition rule of MICE (and MICE′) incorporates resolution
proofs. Exploiting this feature, it is not too hard to transfer resolution lower bounds to MICE′.
In fact, we can show that on unsatisfiable formulas, resolution is polynomially equivalent to
MICE′ (Theorem 5.1).

However, we would view such a transferred resolution lower bound not as a ‘genuine’ and
interesting lower bound for MICE′. We therefore show a stronger bound for MICE′ for the
number of proof steps (where we disregard the size of the attached resolution proofs). In our
main result we show a lower bound of 2Ω(n) for the number of proof steps for a specific set
of CNFs, termed XOR-PAIRSn, based on the parity function (Theorem 5.6). Technically, our
lower bound is established by showing that in MICE′ proofs of XOR-PAIRSn, all applications
of the join and extension rules preserve the model count.
(c) A connection between MICE and decision DNNFs. We show a tight connection between
MICE′ and decision DNNFs. Specifically, we efficiently extract a decision DNNF from a MICE′

proof (Theorem 6.1). This provides an alternative way to obtain lower bounds for MICE′.

1.2. Organisation

The remainder of this article is organised as follows. After reviewing some standard notions
from propositional logic and proof systems in Section 2, we revise the #SAT proof system
MICE from [24] in Section 3 and show some properties of the system. This gives rise to a
simplified proof system MICE′ which we define in Section 4. Section 5 contains our results
on the exponential lower bound for MICE′ (and hence for MICE). In Section 6 we explain
the connections to decision DNNFs, yielding additional MICE′ lower bounds. We conclude in
Section 7 with relations to some open questions and future directions.

2. Preliminaries

We introduce some notations used in this paper. A literal l is a variable z or its negation
z, with var(l) = z. A clause is a disjunction of literals, a conjunctive normal form (CNF) is
a conjunction of clauses. Often, we write clauses as sets of literals and formulas as sets of
clauses. We assume that every propositional formula is written in CNF.
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For a formula F , vars(F ) denotes the set of all variables that occur in F , and lits(F ) is
the set of all literals of F . If C ∈ F is a clause and V ⊆ vars(F ) is a set of variables, we define
C|V = {l ∈ C | vars(l) ∈ V } and F |V denotes the formula F with every clause C replaced
by C|V . An assignment is a function α mapping variables to Boolean values. If a function
F evaluates to true under an assignment α, we say α satisfies F and write α |= F . We also
allow α to be a partial assignment to vars(F ) or to contain variables not occurring in F .
Occasionally, we interpret an assignment as a CNF consisting of precisely those unit clauses
that specify the assignment. Therefore, the set operations are well defined for formulas and
assignments. We say that two assignments are consistent if their union is satisfiable. For some
set of variables X, 〈X〉 denotes the set of all 2|X| possible assignments to X.

In this paper we are interested in proof systems as introduced in [20]. Formally, a proof
system for a language L is a polynomial-time computable function f with rng(f) = L. If
f(w) = x, then w is called f -proof of x ∈ L. In order to compare proof systems we need the
notion of simulations. Let f and g be proof systems for language L. We say that f simulates
g, if for any g-proof w there exists an f -proof w′ with |w′| = |w|O(1) and f(w′) = g(w). If we
can compute w′ in polynomial time from w, we say that f p-simulates g. Two proof systems
are (p-)equivalent if they (p-)simulate each other.

For the language UNSAT of unsatisfiable CNFs, resolution is arguably the most studied
proof system. It operates on Boolean formulas in CNF and has only one rule. This resolution
rule can derive C ∪D from C ∪ {x} and D ∪ {x} with arbitrary clauses C, D and variable
x. A resolution refutation of a CNF is a derivation of the empty clause �. We sometimes
add a weakening rule that enables us to derive C ∪D from C for arbitrary clauses C and D.
However, it is well-known that any resolution refutation that uses weakening can be efficiently
transformed into a resolution refutation without weakening.

3. The Proof System MICE for #SAT

In this section we recall the MICE proof system for #SAT from [24] and show some basic
properties of the system.

Definition 3.1 ([24]). A claim is a triple ((F, V ), A, c) where F is a propositional formula
in CNF, V is a set of variables, A is an assignment with vars(A) ⊆ V and c ∈ N. For such a
claim, let ModA(F, V ) := {α ∈ 〈V 〉 | α |= F ∪ A}. The claim is correct if c = |ModA(F, V )|.

Claims will be the lines in our proof systems for model counting. Semantically, they
describe that the formula F under the partial assignment A has exactly c models. The par-
tial assignment A is sometimes also referred to as the assumption. What is perhaps a bit
mysterious at this point is the role of the variable set V . We will get to this shortly.

The rules of MICE are Exactly One Model (1-Mod), Composition (Comp), Join (Join) and
Extension (Ext). They are specified in Fig. 1. We give some intuition on the rules. The axiom
rule (1-Mod) states that if a complete assignment A satisfies a formula F , then F has exactly
one model under A.

With (Comp) we can sum up model counts of a formula F under different partial assign-
ments A1, . . . , An in order to weaken the assumption to a partial assignment A. This is only
sound if the solutions of F under assumptions A1, . . . , An form a disjoint partition of the full
solution space of F under A. That this is indeed the case can be verified with an independent
proof, e.g. in propositional resolution. This proof is called an absence of models statement.
We want to emphasize that the rule (Comp) can be applied with n = 0, i.e. we can derive
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Exactly One Model.

((F, V ), A, 1) (1-Mod)

• (O-1) vars(A) = V ,
• (O-2) A satisfies F .

Composition.

((F, V ), A1, c1) · · · ((F, V ), An, cn)
((F, V ), A,

∑
i∈[n] ci)

(Comp)

• (C-1) vars(A1) = vars(A2) = · · · = vars(An) and Ai �= Aj for i �= j,
• (C-2) A ⊆ Ai for all i ∈ [n],
• (C-3) there exists a resolution refutation of A ∪ {C|V | C ∈ F} ∪ {Ai | i ∈ [n]}. Such a

refutation is included into the trace and is called an absence of models statement.

Join.

((F1, V1), A1, c1) ((F2, V2), A2, c2)
((F1 ∪ F2, V1 ∪ V2), A1 ∪ A2, c1 · c2)

(Join)

• (J-1) A1 and A2 are consistent,
• (J-2) V1 ∩ V2 ⊆ vars(Ai) for i ∈ {1, 2},
• (J-3) vars(Fi) ∩ ((V1 ∪ V2) \ Vi) = ∅ for i ∈ {1, 2}.
Extension.

((F1, V1), A1, c)
((F, V ), A, c) (Ext)

• (E-1) F1 ⊆ F , V1 ⊆ V ,
• (E-2) V \ V1 ⊆ vars(A),
• (E-3) A|V1 = A1,
• (E-4) A satisfies F \ F1,
• (E-5) for every C ∈ F1: A|V \V1 does not satisfy C.

Figure 1. Inference rules for MICE [24].

any claim ((F, V ), A, 0) if A ∪ {C|V | C ∈ F} is unsatisfiable. In particular, we can derive
((ϕ, vars(ϕ)), ∅, 0) for any unsatisfiable formula ϕ with a single application of (Comp).

The (Join) rule allows us to multiply the model counts of two formulas that are completely
independent restricted to the assumptions. Finally, with (Ext), we can extend simultaneously
all models, i.e. we enlarge the formula and assumption without changing the count.

We can now formally define MICE proofs.

Definition 3.2 (Fichte, Hecher, Roland [24]). A MICE trace is a sequence π = (I1, . . . , Ik)
where for each i ∈ [k], either
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• Ii is a claim if Ii is derived by one of (1-Mod), (Join), (Ext) or
• Ii = (I, ρ) if the claim I is derived by (Comp) and ρ is the resolution refutation for the

respective absence of models statement.

A MICE proof of a formula ϕ is a MICE trace π = (I1, . . . , Ik) where Ik is (or contains in
case of (Comp)) the claim ((ϕ, vars(ϕ)), ∅, c) for some c ∈ N.

In [24] it is shown that MICE is a sound and complete proof system for #SAT.
For measuring the proof size, we use two natural options. s(π) notates the size of π which

is the total number of claims plus the number of clauses in resolution proofs in the absence
of models statements. c(π) counts only the number of claims a proof has which is exactly the
number of inference steps that the proof needs.

In a correct claim ((F, V ), A, c) the count c is uniquely determined by the formula F ,
set of variables V and assumption A. Therefore, we often omit c and refer to the claim as
((F, V ), A). To ease notation we will usually just write a MICE proof as sequence of claims
I1, . . . , Im and do not explicitly record the used absence of models statements. We just assume
that whenever we use (Comp), the necessary resolution refutation is part of the MICE proof.

If a formula F is satisfied by the partial assignment A, we can set the remaining vari-
ables arbitrarily. Therefore, the component (F, vars(F )) has exactly 2|vars(F )|−|vars(A)| models
under assumption A. The following construction shows that we can efficiently derive the
corresponding claim in MICE.

Proposition 3.3. If some assumption A satisfies an arbitrary formula F with vars(A) ⊆
vars(F ), there is a MICE derivation of the claim I = ((F, vars(F )), A, 2|vars(F )\vars(A)|) with
s(π) = 7 · (|vars(F ) \ vars(A)|) and c(π) = 4 · (|vars(F ) \ vars(A)|).

Proof: Let vars(F ) \ vars(A) = {x1, . . . , xn}. For every i ∈ [n] we derive I1
i = ((∅, vars(A) ∪

{xi}), A ∪ {xi}, 1) and I0
i = ((∅, vars(A) ∪ {xi}), A ∪ {xi}, 1) with (1-Mod). This is possible

since every assignment satisfies the empty formula. With (Comp) we get Ii = ((∅, vars(A) ∪
{xi}), A, 2) using the absence of models statement ρi = ((xi), (xi),�). We use (Join) of I1
and I2, then (Join) of the result and I3, and so on. The requirements (J-1), (J-2) and (J-
3) are satisfied. In this way we get ((∅, vars(F )), A, 2|vars(F )\vars(A)|). We use (Ext) to obtain
I = ((F, vars(F )), A, 2|vars(F )\vars(A)|). It is easy to see that all requirements (E-1) to (E-5) are
satisfied. For (E-4), we use that A satisfies F . In total we use 4n MICE steps to derive I and
we have n absence of models statements with 3 clauses each. �

We investigate some properties that any claim in a MICE proof has to fulfill. We assume
that any MICE proof has no redundant claims, i.e. in the corresponding proof dag, there is a
path from any node to the final claim. We also observe that for all inference rules, the derived
F and V never shrink. This leads to the following two observations:

Observation 3.4. If ((F, V ), A) is derived from ((F1, V1), A1) in a MICE trace (not neces-
sarily in one step), then F1 ⊆ F and V1 ⊆ V .

Therefore, any claim ((F, V ), A) in a MICE proof of ϕ fulfills F ⊆ ϕ and V ⊆ vars(ϕ).

From Definition 3.1 it is not obvious how F and V are related. Intuitively, one might be
tempted to set V = vars(F ) for any claim ((F, V ), A). However, this would make the proof
system exponentially weaker as we will see later. Lemma 3.6 will show that we can at least
assume vars(F ) ⊆ V for every claim. To show this we need the following lemma:
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Lemma 3.5. For any claim ((F, V ), A) and any variable x, if x ∈ vars(F ) \ V , then literals
x and x cannot both occur in F .

Proof: Suppose there exists such an x. Since ((F, V ), A) is not redundant, there is a path
to the final claim. Thus, there have to be claims ((F1, V1), A1) and ((F2, V2), A2) directly
adjacent in the path with F ⊆ F1 ⊆ F2, V ⊆ V1 ⊆ V2 and x /∈ V1, x ∈ V2. Now ((F2, V2), A2)
is directly derived from ((F1, V1), A1) in one step. We argue that this is not possible:

• It is impossible with (1-Mod), since this rule uses no previous claim.
• It is impossible with (Comp), since V1 �= V2.
• It is impossible with (Join). Assume otherwise that ((F1, V1), A1) is joined with some

((F3, V3), A3). Because of x ∈ V2 = V1∪V3 we have x ∈ V3. Then x ∈ vars(F1)∩(V3\V1),
contradicting condition (J-3).

• It is impossible with (Ext). Otherwise x has to be in vars(A2) because of (E-2) and
x ∈ V2 \ V1 per construction. Then A2|V2\V1 satisfies a clause in F1 since both literals
x and x occur in F1 (because F ⊆ F1). Thus condition (E-5) fails.

This leads to a contradiction. As a result, such an x can not exist. �

Lemma 3.6. Let a formula ϕ and a MICE proof π for ϕ be given. Then there is a MICE
proof π′ satisfying vars(F ) ⊆ V for any claim ((F, V ), A) ∈ π′ such that s(π′) = O(s(π)3)
and c(π′) = c(π).

Proof: Let π = (I1, . . . , Im) with Ii = ((Fi, Vi), Ai). Because of Lemma 3.5, for any i ∈ [m],
we can assume that there is no variable x ∈ vars(Fi) \ Vi that occurs in both polarities in Fi.
Let αi ∈ 〈vars(Fi) \ Vi〉 be the assignment that does not satisfy any clause in Fi, i.e. if x is
in Fi we assign αi(x) = 0 and vice versa. For every claim Ii, αi exists and it is unique. We
define

f
((

(Fi, Vi), Ai

))
:=

((
Fi, Vi ∪ vars(Fi)

)
, Ai ∪ αi

)
with the unique αi defined above. Note that Ai and αi have no variables in common and are
therefore consistent. The resulting claim on the right side satisfies the requirement we want
to achieve.

We show by induction that (f(I1), . . . , f(Ik)) is a valid MICE trace for all k ∈ {0, . . . ,m}.
In the base case k = 0 the empty trace is valid. For the induction step we assume that we
have already derived f(I1), . . . , f(Ik−1). In particular, we have derived f(I) for every claim
I we used to derive Ik. We consider the different rules from which Ik could be derived.
Exactly One Model. Ik = ((Fk, Vk), Ak) is derived with (1-Mod). We can derive f(Ik) =
((Fk, Vk ∪ vars(Fk)), Ak ∪ αk) with (1-Mod) as well.

• (O-1). vars(Ak ∪ αk) = Vk ∪ vars(Fk) since vars(Ak) = Vk ((O-1) for Ik) and vars(αk) =
vars(Fk) \ Vk.

• (O-2). Ak ∪ αk satisfies Fk, since Ak satisfies Fk ((O-2) for Ik).
Composition. Ik = ((Fk, Vk), Ak) is derived with (Comp) of claims Ii1 , . . . , Iir with ij < k
and Iij = ((Fk, Vk), Aij ) for j ∈ [r]. Let ρ be the absence of models statement ((C-3) for Ik)
that refutes

{C|Vk | C ∈ Fk} ∪ Ak ∪
{
Aij | j ∈ [r]

}
.
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For j ∈ [r] let f(Iij ) = ((Fk, Vk∪vars(Fk)), Aij∪αk) with αk = αij , since αij does only depend
on Fk and Vk and is therefore equal to αk. To derive f(Ik) = ((Fk, Vk ∪ vars(Fk)), Ak ∪ αk)
we can use (Comp) of f(Ii1), . . . , f(Iir):

• (C-1). Aij ∪αk assign the same variables and are pairwise inconsistent, since Aij assign
the same variables and are pairwise inconsistent ((C-1) for Ik).

• (C-2). For every j ∈ [r] we have Ak ⊆ Aij ((C-2) for Ik) and in particular Ak ∪ αk ⊆
Aij ∪ αk.

• (C-3). We need an absence of models statement that refutes

{C|Vk∪vars(Fk) | C ∈ Fk} ∪ (Ak ∪ αk) ∪
{
Aij ∪ αk | j ∈ [r]

}
= Fk ∪ Ak ∪ αk ∪

{
(Aij ∨ αk) | j ∈ [r]

}
For this we do at most (|Fk| + r) · |αk| = O(|π|2) resolution steps to remove all αk

literals from Fk and (Aij ∨ αk). Note that this is possible, since for any x ∈ lits(αk),
only x can appear in lits(Fk) per construction of αk. It remains exactly the formula
that is refuted by ρ as all variables from αk are removed.

Join. Ik = ((Fk, Vk), Ak) = ((Fi ∪ Fj , Vi ∪ Vj), Ai ∪ Aj) is derived using (Join) of claims
Ii = ((Fi, Vi), Ai) and Ij = ((Fj , Vj), Aj) with i, j < k. First, we show

vars(Fi) \ (Vi ∪ Vj) = vars(Fi) \ Vi.

The inclusion ⊆ follows directly. To show the other direction ⊇, assume x ∈ vars(Fi)
and x /∈ Vi. Because of (J-3) for Ik is x /∈ vars(Fi) ∩ (Vj \ Vi). Thus, x /∈ Vj and therefore,
x ∈ vars(Fi) \ (Vi ∪ Vj).

Using this we can prove

αk = αi ∪ αj .

For that it is sufficient to show that both sides assign the same variables and that they are
consistent.

We show that vars(αk) = vars(αi) ∪ vars(αj). With the definitions of α and Fk we get
vars(αk) = vars(Fk) \ Vk = vars(Fi ∪ Fj) \ (Vi ∪ Vj). Applying simple set operations and
the equation from above, this is equal to (vars(Fi) \ (Vi ∪ Vj)) ∪ (vars(Fj) \ (Vi ∪ Vj)) =
(vars(Fi) \ Vi) ∪ (vars(Fj) \ Vj). This is exactly vars(αi) ∪ vars(αj) per definition.

To show consistency of αi, αj and αk, we show that every pair is consistent. αi and
αj are consistent: Otherwise suppose x ∈ lits(αi) and x ∈ lits(αj) for some literal x. Per
construction is x ∈ lits(Fi), x ∈ lits(Fj) and therefore, x ∈ lits(Fk), x ∈ lits(Fk). Furthermore,
var(x) /∈ (Vi∪Vj) = Vk. As a result, var(x) ∈ vars(Fk)\Vk and x occurs in both polarities in Fk

leading to a contradiction to Lemma 3.5. αk and αi are consistent: Assume x ∈ vars(αk) and
x ∈ vars(αi) for some variable x. W.l.o.g. let x ∈ lits(αk). Then, x ∈ lits(Fk) = lits(Fi ∪ Fj)
leading to x ∈ lits(Fi) and x ∈ lits(αi). Analogously we get that αk and αj are consistent.

To derive

f(Ik) =
((
Fk, Vk ∪ vars(Fk)

)
, Ak ∪ αk

)
=

((
Fi ∪ Fj , Vi ∪ Vj ∪ vars(Fi) ∪ vars(Fj)

)
, Ai ∪ Aj ∪ αi ∪ αj

)
we can use (Join) of f(Ii) = ((Fi, Vi∪vars(Fi)), Ai∪αi) and f(Ij) = ((Fj , Vj∪vars(Fj)), Aj∪αj):
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• (J-1). Ai and Aj are consistent because of (J-1) for Ik. We showed already that αi and
αj are consistent. Ai and αj are consistent, because they have no variables in common.
Otherwise let x be a variable with x ∈ vars(Ai) and x ∈ vars(αj). Per construction is
x ∈ Vi, x ∈ vars(Fj) and x /∈ Vj and thus, x ∈ vars(Fj) ∩ (Vi \ Vj). This contradicts
(J-3) for Ik. The same argument shows that Aj and αi are consistent.
As a result, Ai ∪ αi and Aj ∪ αj are consistent.

• (J-2). First we show

Vi ∩ vars(αj) = ∅ and Vj ∩ vars(αi) = ∅.

For the sake of contradiction, assume there is a variable x with x ∈ Vi and x ∈ vars(αj).
Per construction is x ∈ vars(Fj) and x /∈ Vj and thus x ∈ vars(Fj) ∩ (Vi \ Vj) which
contradicts (J-3) for Ik. Analogously we get Vj ∩ vars(αi) = ∅. Furthermore, (Vi∩Vj) ⊆
vars(Ar) for r ∈ {i, j} because of (J-2) for Ik. Using this, we get

(
Vi ∪ vars(αi)

)
∩
(
Vj ∪ vars(αj)

)
= (Vi ∩ Vj) ∪

(
vars(αi) ∩ vars(αj)

)
∪
(
Vi ∩ vars(αj)

)
∪
(
Vj ∩ vars(αi)

)
= (Vi ∩ Vj) ∪

(
vars(αi) ∩ vars(αj)

)
⊆ vars(Ar) ∪

(
vars(αi) ∩ vars(αj)

)
⊆ vars(Ar) ∪ vars(αr)

for r ∈ {i, j}.
• (J-3). The requirement vars(Fi)∩ ((Vi∪Vj)\Vi) = ∅ is always fulfilled if the two joined

claims satisfy vars(Fi) ⊆ Vi.
Extension. Ik = ((Fk, Vk), Ak) is derived using (Ext) of Ii = ((Fi, Vi), Ai) with i < k. Then
we can also derive f(Ik) = ((Fk, Vk∪vars(Fk)), Ak∪αk) from f(Ii) = ((Fi, Vi∪vars(Fi)), Ai∪αi)
with (Ext):

• (E-1). Fi ⊆ Fk, Vi ∪ vars(Fi) ⊆ Vk ∪ vars(Fk) is fulfilled, since Fi ⊆ Fk and Vi ⊆ Vk

because of (E-1) for Ik.
• (E-2). We have to show (Vk ∪ vars(Fk)) \ (Vi ∪ vars(Fi)) ⊆ vars(Ak ∪ αk). For this, let
x be an arbitrary variable with x ∈ (Vk ∪ vars(Fk)) \ (Vi ∪ vars(Fi)). If x ∈ Vk, then
x ∈ Vk \ Vi ⊆ vars(Ak) because of (E-2) for Ik. Otherwise if x /∈ Vk, x ∈ vars(Fk) and
thus x ∈ vars(αk) per construction of αk.

• (E-3). We have to show that (Ak ∪ αk)|Vi∪vars(Fi) = Ai ∪ αi. For this we use

Ak|Vi = Ai

which follows from (E-3) for Ik. Furthermore, by using Vi ⊆ Vk and vars(α) ∩ Vk = ∅,
we receive

αk|Vi = αk|Vk∩Vi = (αk|Vk)|Vi = ∅.

Next, we prove

(Ak ∪ αk)|vars(Fi)\Vi = αi.
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For this we show that both assign the same variables and then that every variable is
assigned equally.
To show that both sides assign the same variables, the direction ⊆ follows with
vars((Ak ∪ αk)|vars(Fi)\Vi) ⊆ vars(Fi) \ Vi = vars(αi). For the other direction ⊇, let
x ∈ vars(αi) implying x ∈ vars(Fi) \ Vi. Thus, we have to show that x ∈ vars(Ak ∪ αk).
If x ∈ Vk, then x ∈ Vk \ Vi and thus, x ∈ vars(Ak) because of (E-2) for Ik. If x /∈ Vk,
then x ∈ αk, since x ∈ vars(Fi) ⊆ vars(Fk).
In order to show that αk and αi are consistent, assume x ∈ vars(αk) ∩ vars(αi) and
let x ∈ lits(αi). Then we have x ∈ lits(Fi) ⊆ lits(Fk) leading to x ∈ lits(αk). Ak, αi

are consistent: Assume x ∈ vars(Ak) ∩ vars(αi) and let x ∈ lits(αi). Then x ∈ lits(Fi),
x /∈ Vi, x ∈ Vk. Because of (E-5) for Ik, Ak|Vk\Vi and in particular Ak|{x} does not
satisfy any C ∈ Fi. Since there is a clause in Fi that contains literal x, x ∈ lits(Ak).
Using those three properties from above we get

(Ak ∪ αk)|Vi∪vars(Fi) = Ak|Vi ∪ αk|Vi ∪ (Ak ∪ αk)|vars(Fi)\Vi = Ai ∪ αi.

• (E-4). (Ak ∪ αk) satisfies Fk \ Fi, since Ak satisfies Fk \ Fi (E-4) for Ik.
• (E-5). (Ak ∪ αk)|(Vk∪vars(Fk))\(Vi∪vars(Fi)) does not satisfy C for any C ∈ Fi as the re-

stricted assignment has no variables in vars(Fi).

This completes the induction. Since Im = ((ϕ, vars(ϕ)), ∅) = f(Im), π′ = (f(I1), . . . ,
f(Im)) is a valid proof for ϕ with the claimed property. The number of claims does not
change. The number of clauses in the refutation does only increase in the (Comp) case and
at most by a factor of O(s(π)2). �

In the following we always assume vars(F ) ⊆ V for any claim ((F, V ), A). With this
requirement, the conditions of the inference rules can be simplified.

Corollary 3.7. If we require vars(F ) ⊆ V for every claim ((F, V ), A), the following simpli-
fications for the MICE rules apply:

• We can simplify the absence of models statement in the requirement (C-3) to be a
refutation of F ∪ A ∪ {Ai | i ∈ [n]}.

• We can remove condition (J-3) for (Join).
• We can remove condition (E-5) for (Ext).

However, imposing the stronger condition vars(F ) = V for every claim ((F, V ), A) would
make the proof system exponentially weaker as we illustrate with the next proposition.

Lemma 3.8. There is a family of formulas (Tn)n∈N such that for both measures s(·) and c(·)
holds:

• Tn has polynomial-size MICE proofs and
• if vars(F ) = V is required for all claims ((F, V ), A), the shortest MICE proof of Tn has

exponential size.

Proof: Consider the family of formulas (Tn)n∈N that only have one clause

(x1 ∨ x2 ∨ · · · ∨ xn).
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First we show that Tn has a MICE proof of size O(n2) for every n. With the construction of
Proposition 3.3 we derive

I1 =
((
Tn, vars(Tn)

)
, {x1 = 1}, 2n−1),

I2 =
((
Tn, vars(Tn)

)
, {x1 = 0, x2 = 1}, 2n−2),

...

In =
((
Tn, vars(Tn)

)
, {x1 = 0, x2 = 0, . . . , xn−1 = 0, xn = 1}, 1

)
.

We apply (Comp) to the one claim In which results in

Jn =
((
Tn, vars(Tn)

)
, {x1 = 0, x2 = 0, . . . , xn−1 = 0}, 1

)
.

Then, we use (Comp) of Jn and In−1 which results in

Jn−1 =
((
Tn, vars(Tn)

)
, {x1 = 0, x2 = 0, . . . , xn−2 = 0}, 3

)
.

Similarly we apply (Comp) to every pair of claims Ii and Ji+1 and finally get

J1 =
((
Tn, vars(Tn)

)
, ∅, 2n − 1

)
.

In total we need O(n2) steps to derive all Ii and n applications of (Comp) to combine these
claims.

Next, we show that any MICE proof with the additional requirement vars(F ) = V has size
2Ω(n). Note that the construction from Proposition 3.3 does not work under this additional
requirement.

We show that the claim I∅ = ((∅, ∅), ∅, 1) does not help for the proof. If we use (Join) on
I∅ together with any claim I, the result is I. Similarly, if we derive I with (Ext) from I∅, we
can derive I with (1-Mod) without I∅. If we apply (Comp) on claim I∅ together with some
other claims, (C-1) implies that all used claims have to be I∅. Thus, (Comp) would result in
I∅. Therefore, we can assume I∅ is not in the proof at all.

Thus, the only component we can use is C = ({x1 ∨ . . .∨ xn}, {x1, . . . , xn}). Assume I is
derived with (Join) from I1 = (C,A1) and I2 = (C,A2). Condition (J-2) implies vars(A1) =
vars(A2) = {x1, . . . , xn} and in particular A1 = A2 because of (J-1). Therefore, I = I1 = I2
and the usage of (Join) is redundant. Let I = (C,A) be derived from I1 = (C,A1) with (Ext).
Because of (E-3) we have A = A1 and hence I = I1. Hence, the rules (Join) and (Ext) achieve
nothing and we can assume that they do not appear in the proof.

As a result, the proof can only use rules (1-Mod) and (Comp). Such a proof needs 2n − 1
applications of (1-Mod) as Tn has 2n − 1 models. �

4. A Simplified Proof System MICE’ for #SAT

We now adapt MICE to a new proof system MICE′ that is as strong as MICE and only
uses claims ((F, V ), A) with components satisfying V = vars(F ). Therefore, we can drop the
explicit mentioning of the variable set V and only need to specify the formula F . This makes
the resulting proof system more intuitive and easier to investigate for lower bounds.

37



O. Beyersdorff et al.

Axiom.

(∅, ∅, 1) (Ax)

Composition.

(F,A1, c1) · · · (F,An, cn)
(F,A,

∑
i∈[n] ci)

(Comp)New

• (C-1) vars(A1) = vars(A2) = · · · = vars(An) and Ai �= Aj for i �= j,
• (C-2) A ⊆ Ai for all i ∈ [n],
• (C-3) there exists a resolution refutation of A ∪ F ∪ {Ai | i ∈ [n]}. Such a refutation is

included into the trace and is called an absence of models statement.

Join.

(F1, A1, c1) (F2, A2, c2)
(F1 ∪ F2, A1 ∪ A2, c1 · c2)

(
Join’

)

• (J-1) A1 and A2 are consistent,
• (J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.
Extension.

(F1, A1, c1)
(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

(
Ext’

)

• (E-1) F1 ⊆ F ,
• (E-2) A|vars(F1) = A1,
• (E-3) A satisfies F \ F1.

Figure 2. Inference rules for MICE′.

The rules of MICE′ are Axiom (Ax), Composition (Comp’), Join (Join’) and Extension
(Ext’). They are specified in Fig. 2.

The intuition for the rules (Comp’) and (Join’) are very similar to (Comp) and (Join) from
MICE. The (Ax) rule enables us to derive the claim (∅, ∅, 1) which is trivially true. (Ext’) is
also similar to (Ext) with one important difference: If we use (Ext) in MICE, the assumption
has to assign all variables that are added to the claim. As a result, we extend one model of
the original claim to one new model. In (Ext’) however, this is not necessarily the case. As
long as the new assumption satisfies all added clauses, we are allowed to leave new introduced
variables unassigned in the assumption. Like this we extend every model of the original claim
to a set of new models, one for every possible assignment of these unassigned variables.

Definition 4.1 (Adapted Proof System MICE′). A claim is a triple (F,A, c) with vars(A) ⊆
vars(F ). For such a claim, let ModA(F ) := {α ∈ 〈vars(F )〉 | α |= F ∪A}. The claim is correct
if c = |ModA(F )|. The rules of MICE′ are (Ax), (Comp’), (Join’) and (Ext’). The notions of
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MICE′ traces and MICE′ proofs are defined analogously as for MICE. Furthermore, we use the
same two measures for the proof size s(·) and c(·).

As in the MICE proof system we often omit the count c of claims and assume that no
redundant claims exist in MICE′ proofs, i.e. all claims are connected to the final claim.

We prove that all four derivation rules are sound, i.e. for every derived claim (F,A, c)
holds c = |ModA(F )|. In doing so, we will also provide some intuition on the semantic meaning
of the rules.

Lemma 4.2. The inference rules of MICE′ are sound.

Proof: To prove the soundness of every MICE′ rule, we associate every claim (F,A, c) with
the set ModA(F ). With this interpretation, we can specify how every rule modifies these
models. This way, we can show that the resulting model count is indeed correct for every
MICE′ rule.

The soundness of (Ax) is obvious, since |Mod∅(∅)| = |{∅}| = 1.
To show soundness of (Comp’), let (F,A,

∑
i∈[n] ci) be derived with (Comp’) from correct

claims (F,A1, c1), . . . , (F,An, cn). Then we have

ModA(F )

=
{
α ∈

〈
vars(F )

〉
| α |= F ∪ A

}
=

⊎
i∈[n]

{
α ∈

〈
vars(F )

〉
| α |= F ∪ Ai

}
�
{
α ∈

〈
vars(F )

〉
| α |= F ∪ A ∪

{
Ai | i ∈ [n]

}}

where � denotes the disjoint union. This split of A into those Ai is possible since A ⊆ Ai

(C-2). The sets on the right side of the equation are pairwise disjoint because of (C-1). The
last set is empty, otherwise there would not exist an absence of models statement (C-3). Thus,

ModA(F ) =
⊎
i∈[n]

ModAi(F ).

Using the correctness of all used claims we get
∣∣ModA(F )

∣∣ =
∑
i∈[n]

∣∣ModAi(F )
∣∣ =

∑
i∈[n]

ci.

Next, we show soundness of (Join’). For this, let (F1 ∪ F2, A1 ∪ A2, c1 · c2) be derived with
(Join’) from correct claims (F1, A1, c1) and (F2, A2, c2). We show that

ModA1∪A2(F1 ∪ F2) =
{
α1 ∪ α2 | α1 ∈ ModA1(F1), α2 ∈ ModA2(F2)

}
.

We will prove both subset relations separately in the following.
For ⊆, let α ∈ ModA1∪A2(F1 ∪ F2) be given. Per definition, α satisfies F1 ∪ F2 ∪A1 ∪A2

and in particular α|vars(F1)∪vars(A1) has to satisfy F1 ∪ A1. Because of vars(A1) ⊆ vars(F1),
α|vars(F1) has to satisfy F1 ∪ A1 and therefore, α|vars(F1) ∈ ModA1(F1). Analogously, we get
α|vars(F2) ∈ ModA2(F2). Since α = α|vars(F1) ∪ α|vars(F2), we can choose α1 = α|vars(F1) and
α2 = α|vars(F2) to see the relation.
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For the other direction ⊇, we first have to show that any fixed α1 ∈ ModA1(F1) and
α2 ∈ ModA2(F2) are consistent. Because of (J-2) ensuring vars(F1) ∩ vars(F2) ⊆ vars(Ai) for
both i ∈ {1, 2}, we know that they could only be inconsistent in variables in Ai. With (J-1)
which states that A1 and A2 are consistent, we can conclude that α1 and α2 are consistent. We
know that αi satisfies Fi∪Ai per construction. As a result, α1 ∪α2 satisfies F1 ∪F2 ∪A1 ∪A2
and is therefore in ModA1∪A2(F1 ∪ F2).

The model count for the derived claim follows directly with the correctness of both used
claims,

∣∣ModA1∪A2(F1 ∪ F2)
∣∣ =

∣∣ModA1(F1)
∣∣ · ∣∣ModA2(F2)

∣∣ = c1 · c2.

Finally we have to show that (Ext’) is sound. Assume (F,A, c) is derived with (Ext’) from the
correct claim (F1, A1, c1). We show

ModA(F ) =
{
α ∪ (A \ A1) ∪ β | α ∈ ModA1(F1), β ∈

〈
vars(F ) \

(
vars(F1) ∪ vars(A)

)〉}
.

Similarly to the previous case, we prove both inclusions separately.
For ⊆, let γ ∈ ModA(F ) be given. Per definition, γ satisfies F ∪ A = F1 ∪ (F \ F1) ∪

A1 ∪ (A \A1). This split is possible because of (E-1) and (E-2). We can define α = γ|vars(F1),
β = γ|vars(F )\(vars(F1)∪vars(A)). Then we have γ = α ∪ (A \ A1) ∪ β and get the inclusion.

For ⊇, we fix some α ∈ ModA1(F1), β ∈ 〈vars(F ) \ (vars(F1) ∪ vars(A))〉 and define
γ = α∪(A\A1). As α has to contain the assignment according to A1, we have that γ satisfies
A. With (E-3) follows that γ satisfies F \F1. Since A1 is a model of F1, γ satisfies F1 as well.
As a result, γ satisfies F ∪ A and is therefore in ModA(F ).

The corresponding model count follows immediately with the correctness of (F1, A1, c1),∣∣ModA(F )
∣∣ =

∣∣ModA1(F1)
∣∣ · ∣∣ModA(F \ F1)

∣∣ = c1 · 2|vars(F )\(vars(F1)∪vars(A))|.

As we have shown with the easy semantic arguments above, all rules of MICE′ are sound. �

Corollary 4.3. Let claim I = (F,A) and a model α ∈ ModA(F ) be given.
• If I is derived with (Comp’) using claims (F,A1), . . . , (F,An), then there exists exactly

one i ∈ [n] such that α ∈ ModAi(Fi).
• If I is derived with (Join’) using claims (F1, A1) and (F2, A2), then for both i ∈ [2] we

have α|vars(Fi) ∈ ModAi(Fi).
• If I is derived with (Ext’) using claim (F1, A1), then α|vars(F1) ∈ ModA1(F1).

We introduce an additional rule (SA) which is similar to the construction in Proposi-
tion 3.3.

Definition 4.4 (Satisfying Assumption Rule). Under the condition (S-1): A satisfies F , we
allow to derive

(F,A, 2|vars(F )\vars(A)|) (SA).

This rule is sound and does not make MICE′ proofs much shorter. Therefore, when con-
structing MICE′ proofs, we sometimes use this additional rule as it makes proofs more intuitive
and easier to understand.
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Lemma 4.5. (SA) is sound. Further, if formula ϕ has a MICE′ proof π that can use the
additional rule (SA), then there exists a MICE′ proof π′ of ϕ with s(π′) = s(π) + 1 and
c(π′) = c(π) + 1.

Proof: Assume that we applied (SA) in π to derive claim I = (F,A, 2|vars(F )\vars(A)|). Then
we can derive I without (SA) with two MICE′ steps in the following way. We use (Ax) to
get (∅, ∅, 1) and then (Ext’) to derive I. It is easy to see that conditions (E-1) and (E-
2) are fulfilled. (E-3) follows directly from (S-1). The resulting counts are the same since
1 ·2|vars(F )\(vars(F1))∪vars(A))| = 2|vars(F )\vars(A)|. Since we can simulate (SA) with the other sound
MICE′ rules, (SA) is sound as well. If we replace all applications of (SA) like this, then the
proof size increases at most by one, as we need (Ax) only once in the proof. �

To justify our definition of MICE′ we have to show that it is indeed a proof system for
#SAT.

Theorem 4.6. MICE′ is a sound and complete proof system for #SAT.

Proof: The soundness of MICE′ follows directly from the soundness of the inference rules as
shown in Lemma 4.2.

Next, we show that MICE′ is complete. For this, let an arbitrary formula ϕ be given. We
can derive Iα = (ϕ, α, 1) for every α ∈ Mod(ϕ) with (SA). For all these models together there
is an absence of models statement. Therefore, we can derive (ϕ, ∅, |Mod(ϕ)|) with (Comp’)
from all claims Iα. Note that for unsatisfiable formulas we can derive the final claim with a
single application of (Comp’).

In proof systems, it is also necessary that proofs can be verified in polynomial time. This
is possible in MICE′ since all conditions (C-1), (C-2), (C-3), (J-1), (J-2), (E-1), (E-2) and
(E-3) are easy to check in polynomial time. �

Next, we show some basic properties of MICE′.

Lemma 4.7. Let claim (F1, A1) be used to derive (F,A) (not necessarily in one step). Then

• F1 ⊆ F ,
• if x ∈ vars(F1) ∩ vars(A), then x ∈ vars(A1) and A(x) = A1(x).

Proof: Because every MICE′ rule does not decrease the formula F , the first property is
obvious.

Let ((F1, A1), . . . , (Fn, An) = (F,A)) be a path in this derivation. It is easy to check that
for all four inference rules of MICE′ we have Ai+1|vars(Fi) ⊆ Ai for i ∈ [n− 1]. We can restrict
both sides and get

(Ai+1|vars(Fi))|vars(F1) = Ai+1|vars(Fi)∩vars(F1) = Ai+1|vars(F1) ⊆ Ai|vars(F1).

Therefore,

A|vars(F1) = An|vars(F1) ⊆ An−1|vars(F1) ⊆ · · · ⊆ A1|vars(F1) = A1.

From A|vars(F1) ⊆ A1 the second property follows. �
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Using these properties, we can show that the new proof system MICE′ is polynomially
equivalent to MICE. Note that this result is true for both measures of proof size s(·) and c(·).
To prove this equivalence, we show both simulations separately.

First we show that MICE′ is at least as strong as MICE. This simulation is the more
important one for this paper as it implies that lower bounds for MICE′ do also apply for
MICE.

Proposition 4.8. MICE′ p-simulates MICE.

Proof: Let π = (I1, . . . , Im) be a MICE proof of a given formula ϕ. We assume that vars(F ) ⊆
V for all claims ((F, V ), A) in π which is justified by Lemma 3.6. We will show that for
f(((F, V ), A)) := (F,A|vars(F )) the sequence π′ = (f(I1), . . . , f(Im)) is a correct MICE′ proof
of ϕ.

For this we first prove by induction that (f(I1), . . . , f(Ik)) is a MICE′ proof trace for every
k ∈ {0, . . . ,m}. In the base case k = 0 the empty trace is valid. For the induction step we
assume we have already derived f(I1), . . . , f(Ik−1) and in particular f(I) for all claims I we
used to derive Ik. We distinguish how Ik is derived.
Exactly One Model. Ik = ((F, V ), A) is derived with (1-Mod). Then we can derive f(Ik) =
(F,A|vars(F )) with (SA) since A satisfies F ((O-2) for Ik) and in particular, A|vars(F ) satisfies
F .
Composition. Ik = ((F, V ), A) is derived with (Comp) using absence of models statement ρ
and claims Ii1 , . . . , Iir for ij < k with Iij = ((F, V ), Aij ) and f(Iij ) = (F,Aij |vars(F )). Note
that some f(Iij ) might be duplicates. We can derive f(Ik) = (F,A|vars(F )) with (Comp’) of
claims f(Iij ) after removing all duplicates:

• (C-1). Aij |vars(F ) assign the same variables, since Aij assign the same variables ((C-1)
for Ik). The new assumptions are pairwise inconsistent as we removed all duplicates.

• (C-2). A|vars(F ) ⊆ Aij |vars(F ) follows from A ⊆ Aij ((C-2) for Ik).
• (C-3). There is an absence of models statement ρ ((C-3) for Ik) which is a refutation

of

A ∪ F ∪
{
Aij | j ∈ [r]

}
where we used our assumption vars(F ) ⊆ V . ρ can be adapted to a refutation of

A|vars(F ) ∪ F ∪
{
Aij |vars(F ) | j ∈ [r]

}
,

since we can just remove the variables that are not in vars(F ) from every clause in ρ
and get a valid resolution proof where some resolutions might get weakening steps.

Join. Ik = ((Fi ∪ Fj , Vi ∪ Vj), Ai ∪ Aj) is derived with (Join) using claims Ii and Ij , with
i, j < k. For r ∈ {i, j} let Ir = ((Fr, Vr), Ar) and f(Ir) = (Fr, Ar|vars(Fr)). We can apply
(Join’) to f(Ii) and f(Ij):

• (J-1). Ai|vars(Fi) and Aj |vars(Fj) are consistent since Ai and Aj are consistent ((J-1) for
Ik).

• (J-2). From requirement vars(F ) ⊆ V for every claim follows vars(Fi) ∩ vars(Fj) ⊆
Vi ∩ Vj . Furthermore, for r ∈ {i, j} is Vi ∩ Vj ⊆ vars(Ar) ((J-2) for Ik). Thus, also
vars(Fi) ∩ vars(Fj) ⊆ vars(Ar|vars(Fr)).
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The resulting claim is (Fi ∪ Fj , Ai|vars(Fi) ∪ Aj |vars(Fj)). We will show that

Ai|vars(Fi) ∪ Aj |vars(Fj) = Ai|vars(Fi)∪vars(Fj) ∪ Aj |vars(Fi)∪vars(Fj).

The direction ⊆ follows directly. For the other direction ⊇ we assume that x is in the right set
and show that x is in the left set as well. W.l.o.g. let x ∈ Ai|vars(Fi)∪vars(Fj). If x ∈ vars(Fi), then
x ∈ Ai|vars(Fi). So assume x /∈ vars(Fi), then is x ∈ vars(Fj). Our requirement vars(Fj) ⊆ Vj

implies x ∈ Vj . Per definition of a claim, vars(Ai) ⊆ Vi and therefore, x ∈ Vi. Using (J-
2) we get x ∈ Vi ∩ Vj ⊆ vars(Aj). Since Ai and Aj are consistent ((J-1) for Ik), we have
x ∈ Aj |vars(Fj).

Therefore, the (Join’) application results in the claim

(Fi ∪ Fj , Ai|vars(Fi)∪vars(Fj) ∪ Aj |vars(Fi)∪vars(Fj))

=
(
Fi ∪ Fj , (Ai ∪ Aj)|vars(Fi)∪vars(Fj)

)
= f(Ik).

Extension. Ik = ((F, V ), A) is derived with (Ext) from claim Ij = ((Fj , Vj), Aj) with j < k
and f(Ij) = (Fj , Aj |vars(Fj)). We can derive f(Ik) = (F,A|vars(F )) with (Ext’) of f(Ij):

• (E-1). Fj ⊆ F follows from (E-1) for Ik.
• (E-2). (A|vars(F ))|vars(Fj) = A|vars(F )∩vars(Fj) = A|vars(Fj) since Fj ⊆ F . Using vars(Fj) ⊆
Vj this is equal to A|Vj∩vars(Fj) which we can transform to (A|Vj )|vars(Fj). Finally we can
use A|Vj = Aj ((E-3) for Ik) and get (Aj)|vars(Fj).

• (E-3). A|vars(F ) satisfies F \ Fj since A satisfies F \ Fj ((E-4) for Ik).
This completes the induction. Therefore, π′ is a valid MICE′ trace. Since the final claim is

f(Im) = f(((ϕ, vars(ϕ)), ∅)) = (ϕ, ∅) we have that π′ is a MICE′ proof of ϕ. Per construction,
c(π′) � c(π) + 1 and s(π′) � s(π) + 1. The additional 1 is needed in order to use the (SA)
rule to simulate (1-Mod). Apart from that, the number of claims and the number of clauses
in the resolution refutations do not increase. �

Next we show that MICE′ is not stronger than MICE. Although this result is not needed
for the lower bounds, it is nice to know how our new proof system MICE′ relates to MICE
exactly.

Proposition 4.9. MICE p-simulates MICE′.

Proof: Let π = (I1, . . . , In) with Ii = (Fi, Ai) be a MICE′ proof of a given formula ϕ.
We define I ′i = ((Fi, vars(Fi)), Ai) and show that we can derive I ′k using I ′1, . . . I

′
k−1 with

O(|vars(ϕ)|) MICE steps. We distinguish how Ik is derived.
Axiom. Ik = (∅, ∅) is derived with (Ax). Then we can derive I ′k = ((∅, ∅), ∅) with (1-Mod).

(O-1) and (O-2) are fulfilled since vars(∅) = ∅ and the empty assignment satisfies ∅.
Composition. Ik = (Fk, Ak) is derived with (Comp’) using absence of models statement ρ
and claims Ii1 , . . . , Iir with Iij = (Fk, Aij ) for ij < k. Then we can derive I ′k with (Comp’)
from I ′i1 , . . . , I

′
ir .

(C-1) and (C-2) follow directly from (C-1) and (C-2) for Ik as we do not modify the
assumptions. For (C-3) we can simply use the absence of models statement ρ since it refutes

(Ak)|vars(Fk) ∪ Fk ∪
{
Aij |vars(Fk) | j ∈ [r]

}
= Ak ∪ Fk ∪

{
Aij | j ∈ [r]

}
.

43



O. Beyersdorff et al.

Join. Ik = (Fi∪Fj , Ai∪Aj) is derived with (Join’) applied to Ii = (Fi, Ai) and Ij = (Fj , Aj)
with i, j < k. Then we can derive I ′k with (Join’) using I ′i and I ′j .

(J-1) follows directly from (J-1) for Ik, as we do not modify the assumptions. (J-2) stating
vars(F1) ∩ vars(F2) ⊆ vars(Ak) follows from (J-2) for Ik.
Extension. Ik = (Fk, Ak) is derived with (Ext’) from Ii = (Fi, Ai) with i < k.

We derive

I =
((
∅, vars(Fk) \

(
vars(Fi) ∪ vars(Ak)

))
, ∅

)
with the construction of Proposition 3.3. We can apply (Join) to I and I ′i.

• (J-1). The empty assumption ∅ and Ai are consistent.
• (J-2). (vars(Fk) \ (vars(Fi) ∪ vars(Ak))) ∩ vars(Fi) = ∅ ⊆ vars(Aj).
• (J-3). This follows from Corollary 3.7.

With this (Join’) we receive

I ′ =
((
Fi, vars(Fi) ∪ vars(Fk) \

(
vars(Fi) ∪ vars(Ak)

))
, Ai

)
=

((
Fi, vars(Fi) ∪ vars(Fk) \ vars(Ak)

)
, Ai

)
.

Next, we can apply (Ext) to get
((
Fk, vars(Fk)

)
, Ak

)
= I ′k.

• (E-1). Fi ⊆ Fk follows from (E-1) for Ik. Therefore, we also have vars(Fi) ∪ vars(Fk) \
vars(Ak) ⊆ vars(Fk).

• (E-2). We apply some basic set operations to get vars(Fk) \ (vars(Fi) ∪ (vars(Fk) \
vars(Ak))) ⊆ vars(Fk) \ (vars(Fk) \ vars(Ak)) ⊆ vars(Fk) ∩ vars(Ak) = vars(Ak). For the
last equation we used that (Fk, Ak) is a MICE′ claim and therefore vars(Ak) ⊆ vars(Fk).

• (E-3). We have that Ak|vars(Fi)∪vars(Fk)\vars(Ak) = Ak|vars(Fi) is equal to Ai because of
(E-2) for Ik.

• (E-4). Ak satisfies Fk \ Fi follows from (E-3) for Ik.
• (E-5). This follows from Corollary 3.7.

As a result, we can derive I ′k from I ′1, . . . I
′
k−1 with a single MICE step if Ik is derived

with (Ax), (Comp’) or (Join’). In particular, the resolution proof size of the absence of models
statement in case of (Comp’) does not change. If I ′k is derived with (Ext’), we need one
application of the construction of Proposition 3.3, one (Join) and one (Ext) and therefore in
total O(|vars(ϕ)|) MICE steps.

Since I ′n = ((ϕ, vars(ϕ)), ∅), there is a MICE proof π′ of ϕ that has sizes s(π′) = s(π) ·
O(vars(ϕ)) and c(π′) = c(π) ·O(vars(ϕ)). �

5. Lower Bounds for MICE and MICE’

In this section we investigate the proof complexity of MICE′. Because of the equivalence of
MICE and MICE′ (Proposition 4.8 and Proposition 4.9), all of the proof complexity results for
MICE′ below also apply to MICE. For the analysis we use the two different measures of proof
size.
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First, we consider the proof size s(·). For that, we can easily lift known lower bounds from
propositional resolution and get families of formulas that require MICE′ proofs of exponential
size.

However, one could argue, that this is not the kind of hardness we are interested in. In
the second part we get a stronger result by showing a lower bound for the number of inference
steps c(·), i.e. we ignore the sizes of the absence of models statements.

5.1. Lower Bounds for the Proof Size

In this subsection we only consider the proof size s(·) that counts the number of claims plus
the length of all resolution refutations. If we use MICE′ on unsatisfiable formulas, we have
to prove that the formula has zero models. Hence, we can use MICE′ as proof system for
the language UNSAT as well. We show that MICE′ is precisely as strong as resolution for
unsatisfiable formulas.

Theorem 5.1. MICE′ is polynomially equivalent to Res for unsatisfiable formulas.

Proof: Let ϕ be an arbitrary unsatisfiable formula.
We first show that Res is simulated by MICE′. Suppose πRes is a resolution refutation of

ϕ, then we can use πRes as an absence of models statement and derive the final claim (ϕ, ∅, 0)
with a single application of (Comp’) of zero claims.

Next, we show that MICE′ is simulated by Res. Let a MICE′ refutation π = (I1, . . . , Im)
for ϕ be given with Ii = (Fi, Ai, ci). We define πRes = (ϕ,X1, X2, . . . , Xm) with

Xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if ci �= 0
{Ai} if Ii is derived by (Join’) or (Ext’)
{C ∪ Ai | C ∈ ρ} if Ii is derived by (Comp’) and absence of models

statement ρ.

We show that πRes is a valid resolution trace (with weakening steps). For this we use induction
on m. In the base case for m = 0 the trace only contains the clauses of ϕ and is therefore
valid. For the induction step let (ϕ,X1, . . . , Xk−1) be a valid resolution trace. If ck �= 0, there
is nothing to show. Therefore, we can assume that ck = 0. In particular, Ik is not derived
with (Ax). We distinguish how Ik is derived.

• Ik is derived with (Comp’) from claims Ii1 , . . . , Iir with ij < k using the absence of
models statement ρ which is a resolution derivation

Fk ∪ Ak ∪
{
Aij | j ∈ [r]

}
 �.

In this derivation we can weaken every clause by Ak. Thus Xk is a resolution derivation
of

Fk ∪
{
Aij | j ∈ [r]

}
 Ak.

All clauses of Fk ⊆ ϕ (Observation 3.4) are already in πRes. All clauses Aij are in πRes
as well by induction hypothesis, since cij = 0 for all used claims Ii1 , . . . , Iir to get the
sum ck = 0. Thus, the resolution derivation is correct.

45



O. Beyersdorff et al.

• Ik is derived by (Join’) from claims Ii and Ij with i, j < k. Since ck = 0 = ci · cj ,
w.l.o.g. ci = 0. Therefore, we have already derived Ai by induction hypothesis. Thus
Ak = Ai ∪ Aj = (Ai ∨ Aj) can be derived with a single weakening step.

• Ik is derived by (Ext’) from Ii with i < k. Since ck = ci ·2|vars(Fk)\(vars(Fi)∪vars(Ak))| = 0 we
have ci = 0. Thus Ai has already been derived. We can derive Ak from Ai by weakening
since Ai ⊆ Ak (E-3).

Since cm = 0, the last claim Im is derived with (Comp’), (Join’) or (Ext’). Thus, Xm contains
the clause Am = �. As a result, πRes is a resolution refutation of ϕ since it is a valid deriva-
tion of �. Furthermore, we see that |πRes| = O(s(π)). It is known that any refutation with
resolution and weakening can be transformed into a refutation without weakening efficiently
which proves the claim. �

Many hard families of formulas for resolution are known. One famous example is the
pigeonhole formula family PHP for which an exponential lower bound for resolution was first
shown in [27]. With Theorem 5.1 we can conclude that these hard formulas for resolution are
also hard for MICE′.

Corollary 5.2. Any MICE′ proof π of PHPn has size s(π) = 2Ω(n).

We note that it is also quite straightforward to obtain exponential proof size lower bounds
for satisfiable formulas in MICE′ by forcing the system to refute some exponentially hard CNFs
in absence of models statements.

5.2. Lower Bounds for the Number of Inference Steps

One could argue that unsatisfiable formulas such as PHP are not particularly interesting for
model counting. We also note that they have very simple MICE′ proofs of just one step (as
in the simulation of resolution by MICE′ in Theorem 5.1) and that their hardness for MICE′

stems solely from the fact that they are hard for resolution (and such resolution proofs need
to be included as an absence of models statement). However, we would argue that this does
not tell us much on the complexity of MICE′ proofs.

We therefore now tighten our complexity measure and consider the proof size measure c(·)
that only counts the number of MICE′ inference steps which is exactly the number of claims
a proof π has. This measure disregards the size of the accompanying resolution refutations
and hence formulas such as PHP become easy.

In our main result we present a family of formulas that is exponentially hard with respect
to this sharper measure of counting inference steps. Such hard formulas need to have many
models as the following upper bound shows.

Observation 5.3. Every formula ϕ has a MICE′ proof π with c(π) = |Mod(ϕ)| + 2.

Proof: The MICE′ proof that we used to show the completeness in Theorem 4.6 needs one
(Ax) step, |Mod(ϕ)| applications of (Ext’), and one application of (Comp’). �

Therefore, to show exponential lower bounds to the number of steps we will need formulas
with 2Ω(n) models. Next, we show that MICE′ proofs for such formulas do not require claims
with c = 0. In particular, we can assume that there are no such claims in the proofs.
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Lemma 5.4. Let ϕ ∈ SAT and π be a MICE′ proof of ϕ. Then there is a MICE′ proof π′ of
ϕ that has no claim with count c = 0 such that s(π′) = O(s(π)2) and c(π′) � c(π).

Proof: Assume that in π some claim I = (F,A) is derived with (Comp’) from claims I1, . . . , In
with Ii = (F,Ai, ci) and cn = 0 using some absence of models statement ρ. Because of
Theorem 5.1 we can construct a resolution refutation ρn of F ∪ An that has size O(|π|).
Therefore, we can derive I with (Comp’) from I1, . . . , In−1 as well: (C-1) and (C-2) are still
satisfied. For (C-3) we need an absence of models statement that refutes F ∪ A ∪ {Ai | i ∈
[n − 1]}. For this we can first derive An from F with ρn and then apply ρ. Like this, we
can remove claim In. We repeat this for every claim with c = 0 that is used for (Comp’).
Afterwards, we remove all claims that became redundant. Let π′ be the resulting proof.

Per construction, π′ is a valid MICE′ proof for ϕ. We will show that π′ has no claims with
c = 0. Assume otherwise claim I with c = 0 is in π′. Since I is not redundant, there is a path
to the final claim with c > 0. In this path there have to be claims I1 with c1 = 0 and I2 with
c2 > 0 such that I2 is directly derived from I1 with one of the four MICE′ rules.

• Obviously this is not possible with (Ax).
• Per construction, it is impossible with (Comp’), because otherwise I1 would not be

in π′.
• It is not possible with (Join’) nor (Ext’) as c2 would be a product with one factor c1 = 0

leading to c2 = 0.

Hence, π′ has no claim with c = 0. Furthermore, c(π′) � c(π) since we only removed claims.
For every claim with c = 0 that was used for (Comp’), we have to add a resolution proof of
size O(s(π)) leading to s(π′) = O(s(π)2). �

Next, we introduce the family of formulas (XOR-PAIRSn)n∈N. They consist of variables xi
and zij for i, j ∈ [n] and are satisfied exactly if (zij = xi ⊕ xj) for every pair i, j ∈ [n].

Definition 5.5. The formula XOR-PAIRSn consists of the clauses

C1
ij = (xi ∨ xj ∨ zij), C2

ij = (xi ∨ xj ∨ zij),

C3
ij = (xi ∨ xj ∨ zij), C4

ij = (xi ∨ xj ∨ zij)

for i, j ∈ [n].

Theorem 5.6. Any MICE′ proof π of XOR-PAIRSn requires size c(π) = 2Ω(n).

We start with some observations and lemmas and prove the lower bound at the end of
this section.

The idea of the proof is the following: The final claim has a large count. In order to get a
large count with a small number of MICE′ steps, we have to use (Ext’) or (Join’) such that the
previous counts get multiplied. However, we show that one factor of any such multiplication
is always 1. As a result, the only way to increase the count is with (Comp’). We start with
applications of (Ax) with count 1 and can only sum up those counts with (Comp’). As a
result, we need an exponential number of summands.

Observation 5.7. XOR-PAIRSn has 2n models.
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Proof: We can set xi arbitrarily for all i ∈ [n] and have a unique assignment for the remaining
z variables to satisfy XOR-PAIRSn. �

For the following arguments we will only consider MICE′ proofs of XOR-PAIRSn without
redundant claims (i.e. all claims are connected to the final claim) and without claims with
c = 0 (this is possible by Lemma 5.4). Our next lemma states that if we have some clause
Cij in a claim, then all missing clauses Cij have to be satisfied by the assumption.

Lemma 5.8. Let (F,A) be an arbitrary claim in a MICE′ proof of XOR-PAIRSn. If there are
i, j ∈ [n] such that {xi, xj , zij} ⊆ vars(F ), then A has to satisfy every clause Ck

ij for k ∈ [4]
that is not in F .

Proof: We fix variables i, j ∈ [n] such that {xi, xj , zij} ⊆ vars(F ) and a clause C = Ck
ij /∈ F

for some k ∈ [4]. We consider only the path from (F,A) to (XOR-PAIRSn, ∅) which has to
exist, because otherwise (F,A) is redundant. There have to be claims I1 = (F1, A1) and
I2 = (F2, A2) directly adjacent in this path with F ⊆ F1 ⊆ F2 ⊆ ϕ, C /∈ F1, C ∈ F2, i.e. I1
is the last claim in the path that does not contain C. I2 is directly derived from I1 with one
of the four MICE′ steps.

• I2 is obviously not derived with (Ax) nor (Comp’), since F1 �= F2.
• Assume I2 is derived with (Join’) of I1 and some I3 = (F3, A3). Since C /∈ F1 and
C ∈ F2 = F1 ∪ F3 is C ∈ F3. In particular {xi, xj , zij} ⊆ vars(F3). Together with
{xi, xj , zij} ⊆ vars(F ) ⊆ vars(F1) we get {xi, xj , zij} ⊆ vars(F1) ∩ vars(F3) ⊆ vars(A1)
and {xi, xj , zij} ⊆ vars(A3) where we used (J-2). Since A1 and A3 are consistent (J-1),
xi, xj , zij have to be assigned in the same way in A1 and A3. Because of Lemma 4.7
those variables have to be set in A as well and in particular with the same polarities.
Assume A does not satisfy C. Then, A3 does not satisfy C either, since all variables
of C are set as in A. Hence, (F3, A3) has no models leading to c3 = 0 which contra-
dicts our assumption that there are no claims with count zero for satisfiable formulas
(Lemma 5.4). Therefore, A has to satisfy C.

• Assume, I2 is derived with (Ext’) from I1. Then A2 has to satisfy C ∈ F2 \ F1 by
condition (E-3). Because of Lemma 4.7, A has to assign xi, xj , zij in the same way as
A2. Hence A satisfies C as well.

Therefore, I2 can only be derived if A satisfies C leading to the lemma. �

The following lemma is similar in spirit. It shows that if all clauses Cij are missing in a
claim, then xi and xj have to be set in the assumption.

Lemma 5.9. Let a MICE′ proof of XOR-PAIRSn be given and let (F,A) be an arbitrary claim
in the proof. If there are i, j ∈ [n] such that {xi, xj} ⊆ vars(F ) and zij /∈ vars(F ), then
{xi, xj} ⊆ vars(A).

Proof: We fix indices i, j ∈ [n] such that {xi, xj} ⊆ vars(F ) and zij /∈ vars(F ). Since
zij /∈ vars(F ) we have Ck

ij /∈ F for all k ∈ [4]. We consider only the path from (F,A) to
(XOR-PAIRSn, ∅) which has to exist, because otherwise (F,A) is redundant. There have to
be claims I1 = (F1, A1) and I2 = (F2, A2) directly adjacent in this path with Ck

ij /∈ F1 for all
k ∈ [4] and Cs

ij ∈ F2 for at least one s ∈ [4]. That means, I1 is the last claim in this path which
contains none of the four clauses Cij . Towards a contradiction, let us assume xi /∈ vars(A)
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(the argument for xj is analogous). By Lemma 4.7, also xi /∈ vars(A1) and xi /∈ vars(A2). The
claim I2 is directly derived from I1 by one of the four MICE′ rules.

• I2 is not derived with (Ax) nor (Comp’), since F1 �= F2.
• I2 is not derived with (Join’). Assume otherwise, then I2 is the result of (Join’) of I1

with some other claim I3 = (F3, A3). Since Cs
ij /∈ F1 and Cs

ij ∈ F2 = F1 ∪ F3 we
have Cs

ij ∈ F3 and in particular xi ∈ vars(F3). Together with xi ∈ vars(F ) ⊆ vars(F1)
we get a contradiction with (J-2) because xi ∈ vars(F1) ∩ vars(F3) ⊆ vars(A1), but
xi /∈ vars(A1).

• I2 is not derived with (Ext’) from I1. Otherwise, A2 has to satisfy F2\F1 by condition (E-
3). Since F1 does not contain any clause Cij , A2 has to satisfy all clauses Cij that are
in F2. By Lemma 5.8, A2 has to satisfy all clauses Cij that are not in F2 as well. In
order to satisfy all four clauses of Cij , all three variables xi, xj and zij have to be set
in A2, in particular xi ∈ vars(A2) which is a contradiction.

As a result, I2 cannot be derived from I1 which implies that our assumption xi /∈ vars(A) was
false. �
Using the previous two lemmas, we show that the two inference rules that multiply counts,
i.e. (Join’) and (Ext’), do not affect the count at all for the XOR-PAIRS formulas.

Lemma 5.10. Let a MICE′ proof of XOR-PAIRSn be given. If the proof contains a (Join’) of
two claims (F1, A1, c1) and (F2, A2, c2), then min(c1, c2) = 1.

Proof: Suppose otherwise, c1 � 2 and c2 � 2.
Assume that all x variables occurring in vars(F1) are assigned in A1. Since c1 � 2,

vars(F1) \ vars(A1) �= ∅. In particular, there has to be a zij ∈ vars(F1) \ vars(A1) such that
there is at least one model of F1 and A1 with zij = 0 and one with zij = 1. Then we have
{xi, xj} ⊆ vars(F1) and {xi, xj} ⊆ vars(A1). As a result, A1 has to satisfy all clauses Ck

ij

that are in F1. Because of Lemma 5.8, A1 has to satisfy the clauses Ck
ij that are not in F1

as well. Thus, A1 has to satisfy all four clauses Ck
ij , which is only possible if zij ∈ vars(A1).

This contradicts the choice of zij . Similarly, we also see that there is at least one x variable
in vars(F2) \ vars(A2).

Hence, we can fix xi ∈ vars(F1) \ vars(A1) and xj ∈ vars(F2) \ vars(A2). Condition (J-2)
implies xi /∈ vars(F2), xj /∈ vars(F1) and in particular i �= j. Because of vars(A1) ⊆ vars(F1)
and xj /∈ vars(F1) we get xj /∈ vars(A1) and therefore also xj /∈ vars(A1 ∪ A2). The joined
claim is (F,A) = (F1 ∪ F2, A1 ∪ A2) with {xi, xj} ⊆ vars(F ) and Ck

ij /∈ F for all k, implying
zij /∈ vars(F ). With Lemma 5.9 we get the contradiction xj ∈ vars(A) = vars(A1 ∪ A2).

Therefore, our assumption c1 � 2 and c2 � 2 was false. �
Using this lemma we can show, that w.l.o.g. any MICE′ proof of XOR-PAIRSn does not

use (Join’).

Lemma 5.11. Let π be a MICE′ proof of XOR-PAIRSn. Then there is a MICE′ proof π′ that
does not use (Join’) with c(π′) � 2 · c(π).

Proof: Using π we construct a MICE′ proof π′ that does not use (Join’).
For this suppose that in π, the claim I = (F1 ∪ F2, A1 ∪ A2) is derived with (Join’) of

(F1, A1, c1) and (F2, A2, c2). Because of Lemma 5.10 we can assume that c2 = 1. Thus, there
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is a unique assignment α such that vars(A2)∩vars(α) = ∅, vars(A2∪α) = vars(F2) and A2∪α
satisfies F2. Then, we can apply (Ext’) to (F1, A1) resulting in (F1 ∪ F2, A1 ∪ A2 ∪ α). We
check the conditions to apply (Ext’).

• (E-1). F1 ⊆ F1 ∪ F2 holds.
• (E-2). We see that (A1 ∪ A2 ∪ α)|vars(F1) = A1|vars(F1) ∪ A2|vars(F1) ∪ α|vars(F1) = A1. In

the last equation we used three facts:
A1|vars(F1) = A1 is a direct consequence of vars(A1) ⊆ vars(F1).
A2|vars(F1) ⊆ A1 follows from vars(A2|vars(F1)) ⊆ vars(F2) ∩ vars(F1) ⊆ vars(A1) by (J-2)
and the fact that A1 and A2 are consistent by (J-1).
α|vars(F1) = ∅. Assume otherwise that x ∈ vars(α) ∩ vars(F1). Then x ∈ vars(α) ∩
vars(F1) ⊆ vars(F2) ∩ vars(F1) ⊆ vars(A2) by (J-2). Thus, x ∈ vars(A2) ∩ vars(α)
contradicting the construction of α.

• (E-3). A1 ∪A2 ∪ α satisfies (F1 ∪ F2) \ F1 ⊆ F2 as A2 ∪ α satisfies F2 by construction.

Applying (Comp’) on the claim (F1 ∪ F2, A1 ∪A2 ∪ α) we get (F1 ∪ F2, A1 ∪A2). In this
way we can remove every (Join’) application with one application of each (Ext’) and (Comp’).
Let π′ be the resulting MICE′ proof of XOR-PAIRSn that does not use (Join’). The number of
claims in the proof increases at most by a factor of two. �

Lemma 5.12. Let a MICE′ proof of XOR-PAIRSn be given. Any claim (F,A, c) in the proof
that is derived with (Ext’) from (F1, A1, c1) satisfies c = c1.

Proof: Suppose c �= c1. Since c = c1 · 2|vars(F )\(vars(F1)∪vars(A))| there is a variable v ∈ vars(F )
with v /∈ vars(F1) ∪ vars(A). Variable v occurs in some clause Ck

ij ∈ F \ F1. Therefore,
{xi, xj , zij} ⊆ vars(F ). A has to satisfy all clauses of Cij that occur in F \ F1 because of
(E-3). Furthermore, A has to satisfy all clauses of Cij that do not occur in F as well due
to Lemma 5.8. Since, v /∈ vars(F1), there is no Cij ∈ F1. Therefore, A has to satisfy all
four clauses Cij . For this, xi, xj and zij have to be set in A. Since v occurs in Cij , we have
v ∈ vars(A) which contradicts the choice of v. �

Now we have all ingredients to finally prove that the XOR-PAIRS formulas require proofs
with an exponential number of MICE′ steps.
Proof of Theorem 5.6: Note that with Observation 5.7, Lemma 5.10 and Lemma 5.12 we
can infer immediately that any tree-like MICE′ proof of XOR-PAIRSn, i.e. any proof that uses
every claim except the axiom at most one time, has at least size 2n + 2. However, in general
(dag-like) MICE′ proofs, any claim can be used multiple times. General dag-like MICE′ might
be exponentially stronger than the tree-like version. Therefore, the lower bound is not shown
yet.

To prove the lower bound in the general case, let π be an arbitrary MICE′ proof of
XOR-PAIRSn. Let π′ be a MICE′ proof of XOR-PAIRSn that does not use (Join’) with c(π′) �
2 · c(π) which has to exist because of Lemma 5.11.

We consider an arbitrary fixed path κ in π′ from the axiom to the final claim. Since π′

does not use (Join’), we can only enlarge the formula with (Ext’). Because of Lemma 5.12,
we have to assign all newly introduced variables when we use (Ext’), i.e. every variable is in
at least one assumption in κ. The only rule that can remove variables from the assumption
is (Comp’).

Since the final claim has the empty assumption, we have to remove all variables from the
assumption in κ. Therefore, in κ there has to be at least one application of (Comp’) where we
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remove a variable xi from the assumption for some i ∈ [n]. Let Iκ1 = (F κ
1 , A

κ
1) be the claim

that was used for the first such (Comp’) in κ to derive Iκ2 = (F κ
2 , A

κ
2).

Let X be the set of all x variables: X := {x1, . . . , xn}. We show

X ⊆ vars
(
F κ

1
)
.

Let xi be a variable that is removed from the assumption by applying (Comp’) to Iκ1 , i.e.
xi /∈ vars(Aκ

2). Suppose, there is a j ∈ [n] such that xj /∈ vars(F κ
1 ) and in particular Cs

ij /∈ F κ
1

for all s ∈ [4], implying zij /∈ vars(F κ
1 ). Let Iκr = (F κ

r , A
κ
r ) be the first claim in κ with

zij ∈ vars(F κ
r ) and therefore {xi, xj , zij} ⊆ vars(F κ

r ). Iκr has to be derived with (Ext’). Because
of condition (E-3), Aκ

r has to satisfy all clauses Cs
ij in F κ

r . Furthermore, Aκ
r has to satisfy all

clauses Cs
ij that are not in F κ

r because of Lemma 5.8. Hence, Aκ
r has to satisfy Cs

ij for all
s ∈ [4]. To do so, we have to assign all three variables xi, xj and zij in Aκ

r . In particular,
we have xi ∈ vars(Aκ

r ). Since xi /∈ vars(Aκ
2), Lemma 4.7 states xi /∈ vars(Aκ

r ). With this
contradiction we see that such an xj with xj /∈ vars(F κ

1 ) cannot exist.
Since X ⊆ vars(F κ

1 ), all variables in X were introduced and assigned in the assumption
with (Ext’) in Iκ1 or previously in κ. Per construction there are no other (Comp’) applications
before Iκ1 in κ that remove variables in X. Therefore, we have

X ⊆ vars
(
Aκ

1
)
.

We show that for every α ∈ Mod(XOR-PAIRSn) there is a path κ in π′ with α|X = Aκ
1 |X .

Assume that for some fixed model α there is no such path. Since π′ does not use (Join’) and
α ∈ Mod∅(XOR-PAIRSn), Corollary 4.3 implies that there is a path κ from axiom to the final
claim, such that every claim (F,A) in κ fulfills α|vars(F ) ∈ ModA(F ). In particular,

α|vars(Fκ
1 ) ∈ ModAκ

1

(
F κ

1
)
.

If we restrict both sides on the variables in X and use X ⊆ vars(F κ
1 ), we get

α|X ∈
{
β|X | β ∈ ModAκ

1

(
F κ

1
)}
.

Since X ⊆ vars(Aκ
1), all models β ∈ ModAκ

1
(F κ

1 ) have β|X = (Aκ
1)|X . Therefore, the right set

has only one element which is (Aκ
1)|X , leading to α|X = (Aκ

1)|X . Hence, κ is a path with the
claimed property for α.

Since XOR-PAIRSn has 2n models, there are (at least) 2n paths in π′ and in particular 2n
claims Iκ1 . Because every model of XOR-PAIRSn assigns the x variables differently, all these
claims Iκ1 are pairwise different. Therefore, π′ has at least 2n claims.

Finally, we see that the arbitrarily chosen MICE′ proof π has size c(π) � 1
2 · c(π′) � 2n−1

leading to the lower bound. �

6. Connection Between MICE’ and Decision DNNFs

In this section we show that there is a tight connection between MICE′ proofs and decision
DNNFs. That is, we show in Section 6.1. that we can extract a decision DNNF for some
formula ϕ efficiently from a MICE′ proof of ϕ. By exploiting this connection we immediately
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get further lower bounds for MICE′. Finally, in Section 6.2. we use this connection in order
to provide an alternative proof that XOR-PAIRS requires MICE′ proofs of exponential size.

Let us first review the concept of DNNFs (Decomposable Negation Normal Form) and
focus on the special case of decision DNNFs [21] which are widely used in knowledge compi-
lation. Formally, a decision DNNF D with variables V is a directed acyclic graph with the
following conditions. It has exactly one node with in-degree 0 which is called source. The
nodes with outdegree 0 are labelled with 0 or 1 and are called sinks. All other nodes have
out-degree 2 and are either decision nodes or And nodes. A decision node is labelled with a
variable x ∈ V . One outgoing edge is labelled with 0 and the other with 1. On any path in D
the variable x can be decided at most once. An And node is labelled with ∧ and has to satisfy
the decomposability property. That is, the sets of variables that occur in the subcircuits of
the two children have to be disjoint.

Let N be any node in D, then DN denotes the subcircuit of D with root N . Under a
given assignment α ∈ 〈V 〉, D evaluates to D(α) which is defined recursively as follows.

• Let N be a sink of D with label 0, then DN (α) = 0. If its label is 1, then DN (α) = 1.
• Let N be a decision node deciding variable x ∈ V and let N0 be the child node for
x = 0, N1 for x = 1. Then,

DN (α) =
{
DN0(α), if x is assigned to false in α

DN1(α), if x is assigned to true in α.

• Let N be an And node with children N0 and N1. Then, DN (α) = DN0(α) ∧DN1(α).
A decision DNNF represents some formula ϕ if D evaluates to 1 for exactly the models of ϕ.
The size of a decision DNNF is the number of its nodes.

6.1. Efficient Extraction of a Decision DNNF from a MICE’ Proof

We will show, that we can extract decision DNNFs from MICE′ proofs efficiently, i.e. the size
of the resulting decision DNNF is not much larger than the number of MICE′ steps.

Theorem 6.1. Let ϕ be a formula with MICE′ proof π with n steps. Then there exists a
decision DNNF of size at most n · (1 + |vars(ϕ)|) + 1 representing ϕ.

Proof: Let π = I1, . . . , In be a MICE′ proof with Ik = (Fk, Ak) for every k ∈ [n]. Our goal
is to construct from π a decision DNNF for ϕ. W.l.o.g. the first claim of π is (∅, ∅, 1) derived
with (Ax) and all other claims are not derived with (Ax). We use the notation Modϕ(F ) :=
{α ∈ 〈vars(ϕ)〉 | α |= F}. Inductively, we construct a decision DNNF Ck for every k ∈ [n]
such that:

• (IH1) Ck evaluates to one on exactly all assignments from Modϕ(Fk[Ak]) and
• (IH2) Ck contains only variables from Fk[Ak].
For the base case k = 1, I1 = (∅, ∅, 1) is derived with (Ax). Therefore, we set C1 to a

circuit that only contains one sink labelled with 1.
For the induction step we distinguish how Ik is derived.
Join. Ik is derived with (Join) of claims Ii and Ij . Per induction hypothesis, we have

already derived decision DNNFs Ci and Cj representing Modϕ(Fi[Ai]) and Modϕ(Fj [Aj ]). We
define Ck to be an And gate with the two children Ci and Cj . Because of (J-2) we have
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vars(Fi) ∩ vars(Fj) ⊆ vars(Ai) ∩ vars(Aj). Together with (IH2) we get vars(Ci) ∩ vars(Cj) ⊆
vars(Fi[Ai]) ∩ vars(Fj [Aj ]) = ∅. Therefore, the And is indeed decomposable. Furthermore,
(IH1) and (IH2) are satisfied:

Modϕ
(
Fk[Ak]

)
= Modϕ

(
(Fi ∪ Fj)[Ai ∪ Aj ]

)
= Modϕ

(
Fi[Ai ∪ Aj ] ∪ Fj [Ai ∪ Aj ]

)
= Modϕ

(
Fi[Ai] ∪ Fj [Aj ]

)
= Modϕ

(
Fi[Ai]

)
∩ Modϕ

(
Fj [Aj ]

)
and

vars(Ck) = vars(Ci) ∪ vars(Cj)

⊆ vars
(
Fi[Ai]

)
∪ vars

(
Fj [Aj ]

)
⊆ vars

(
(Fi ∪ Fj)[Ai ∪ Aj ]

)
= vars

(
Fk[Ak]

)
where we used that Ai, Aj are consistent (J-1). Further, in the third step, we use that if there
is some variable v ∈ vars(Fi) ∩ vars(Aj), then also v ∈ vars(Fi) ∩ vars(Fj) ⊆ vars(Ai) (J-2).

Composition. Ik is derived with (Comp) from claims Ii1 , . . . , Iir . If r = 0, then Ck only
contains one node labelled with 0 and the induction hypothesis is fulfilled. Otherwise, let
V = vars(Ai1)\ vars(Ak). (Remember, that all assumptions Aij have the same set of variables
because of (C-1)). We build a complete binary decision tree T with variables in V . For every
claim Iij for j ∈ [r] there is exactly one leaf in T that is consistent with the assumption of
Iij . We replace this leaf with the corresponding decision DNNF Cij . Afterwards, we replace
all remaining leaves with the 0 sink. Furthermore, we remove every decision gate where both
decisions lead to the 0 sink node as long as such nodes exist. We set Ck to be the resulting
circuit. Note, that Ck has at most n paths from the root to some claim and every such path
has at most |vars(ϕ)| decision nodes.

Per construction, Ck contains exactly the models of Fk[Ak] and Ck contains only variables
from Fk[Ak].

Extension. Ik is derived with (Ext) from Ii. Then we can set Ck = Ci. To see this, we use
that Ak satisfies Fk \ Fi by (E-3) and Ak|vars(Fi) = Ai by (E-2):

Fk[Ak] = Fi[Ak]
= Fi[Ak|vars(Fi)]
= Fi[Ai].

Therefore, Modϕ(Fk[Ak]) = Modϕ(Fi[Ai]).
This completes the induction. Since In = (ϕ, ∅), Cn computes Modϕ(ϕ). Thus, Cn repre-

sents ϕ and is a decision DNNF by construction.
To estimate the size, we observe that every claim becomes a node in Cn. Further, there

are at most |vars(ϕ)| ·n additional decision nodes for the (Comp’) constructions. We may also
need one additional sink labelled with 0. In total, we get |Cn| � n · (1 + |vars(ϕ)|) + 1. �
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As a direct consequence of Theorem 6.1, lower bounds for decision DNNFs also apply for
MICE′.

Corollary 6.2. If formula ϕ requires a decision DNNF of size d, then any MICE′ proof for
ϕ has size at least (d− 1) · (|vars(ϕ)| + 1)−1.

However, the resulting lower bounds are only of interest if the formulas admit short
CNF representations. Therefore, in order to obtain relevant lower bounds for MICE′, we need
formulas that separate CNF from decision DNNFs. In fact, a few such formulas are known in
the literature [4,5,11,12], which by Corollary 6.2 yield additional MICE′ lower bounds.

6.2. An Alternative Proof of the Lower Bound

Here, we provide an alternative proof to our direct MICE′ lower bound for XOR-PAIRS (The-
orem 5.6). By Corollary 6.2, to show the lower bound it suffices to show that XOR-PAIRS
require decision DNNFs of exponential size. In fact, we show the even stronger result, that
all DNNFs for XOR-PAIRS have exponential size.

For the DNNF size lower bound we use a technique from communication complexity
similar to [12]. To do so, we have to introduce some notions from communication complexity.
Let V be a set of variables. A (combinatorial) rectangle over V is a set R ⊆ 〈V 〉 such that
there exists a partition V = V1�V2 and two sets of assignments r1 ⊆ 〈V1〉, r2 ⊆ 〈V2〉 satisfying
R = {α1 ∪ α2 | α1 ∈ r1, α2 ∈ r2}. A rectangle is called balanced if its underlying partition is
balanced, i.e. |V |

3 � |V1| � 2·|V |
3 . A finite set of balanced rectangles {Ri} over variables vars(ϕ)

is called rectangle cover of ϕ if
⋃

i Ri = Modϕ.
The following result provides a powerful technique to prove lower bounds for DNNF size

(and thus also for MICE′ proof size).

Theorem 6.3 ([12]). Let C be a DNNF computing a function ϕ. Then, ϕ has a balanced
rectangle cover of size at most |C|.

Therefore, we only have to prove that any rectangle cover of XOR-PAIRS has exponential
size. For that, we show that any rectangle in such a cover cannot be too large.

Lemma 6.4. Any balanced rectangle for XOR-PAIRSn has size at most 2 73
74 ·n for large

enough n.

Proof: Let n be large enough and R be a balanced rectangle from some arbitrary rectangle
cover for XOR-PAIRSn. Let V = V1 � V2 be the underlying balanced partition. We say that
a pair (i, j) is split if xi, xj and zi,j do not all occur in the same set V1 or V2. Further, two
pairs (i, j) and (k, l) intersect if {i, j} ∩ {k, l} �= ∅.

First, we show that R contains at least n2

37 pairs that are split. For that we distinguish
two cases.

Case 1. Assume that both sets V1 and V2 contain at least n
6 different xi variables each.

Then (i, j) is split, if xi ∈ V1 and xj ∈ V2. Thus, R has at least (n6 )2 = n2

36 split pairs.
Case 2. Otherwise we assume that V2 has w.l.o.g. at most n

6 different xi variables. Since
V1 has at least 5·n

6 different xi variables, there are (5·n
6 )2 = 25·n2

36 different zij variables that
would need to be in V1 such that V1 does not contain a split pair. However, as R is balanced,
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we have |V1| � 2
3 · |V | = 2

3 · (n2 + n). Therefore, these zij variables do not all fit in V1 and for
every such variable zij that is put in V2 instead, we obtain a split pair (i, j). In this way, by
making V1 as large as allowed, we still get 25·n2

36 − 2
3 · (n2 + n) = n2

36 − 2·n
3 � n2

37 (for n large
enough) split pairs.

Next, we have a closer look at these n2

37 split pairs. Since every pair (i, j) only intersects
with at most 2 · n other pairs, R has to contain at least n2/37

2·n = n
74 split pairs that are

pairwise-disjoint.
Let (i, j) be one of these pairwise disjoint pairs. For the two variables xi and xj there are

four possibilities to assign them. We can show that at most two of these assignments lie in
our rectangle R. For that we distinguish two cases.

Case 1. xi and xj are in two different sets of V1 and V2. W.l.o.g. we assume that xi ∈ V1,
xj ∈ V2 and zij ∈ V2. Then, the value of xi has to be fixed in R. Otherwise, R would contain
two assignments that assign xj and zij in the same way but xi differently. As R contains only
assignments that satisfy XOR-PAIRSn this is impossible because it contradicts zij = xi ⊕ xj .

Case 2. xi and xj are in the same set. W.l.o.g. we assume that xi ∈ V1 and xj ∈ V1. Since
(i, j) is split, we have zij ∈ V2. With the same argument used in case 1, we see that the value
of xi ⊕ xj has to be constant in R. So there are at most two of the four assignments for x1
and x2 in R.

Now, we can finally argue about the maximum size R can have. As XOR-PAIRSn has 2n
models, it cannot be larger than that. However, for every pairwise-disjoint pair in R, the
rectangle can only contain two of the four possible assignments. Therefore, |R| � 2n− n

74 =
2 73

74 ·n. �
For XOR-PAIRSn we have to cover all 2n models with rectangles which cannot be larger

than 2 73
74 ·n. Therefore, any cover has at least size 2 n

74 . With Theorem 6.3, we obtain the DNNF
size lower bound.

Corollary 6.5. Any DNNF computing XOR-PAIRSn has size at least 2 n
74 for large enough n.

Finally, by applying Theorem 6.1, we get the MICE′ lower bound as well.

Corollary 6.6. Any MICE′ proof of XOR-PAIRSn has size 2Ω(n).

7. Conclusion

We performed a proof-complexity study of the #SAT proof system MICE, exhibiting hard
formulas, both in terms of unsatisfiable CNFs, where their complexity in MICE matches their
resolution complexity, and for highly satisfiable CNFs with many models. As Fichte et al.
[24] show that MICE proofs can be extracted from solver runs for sharpSAT [35], DPDB [25]
and D4 [30], this implies a number of hard instances for these #SAT solvers.

We believe that the ideas for the lower bound for our formula XOR-PAIRS can be extended
to show hardness of further CNFs with many models. A natural problem for future research
is to construct stronger #SAT proof systems (and #SAT solvers) where formulas such as
XOR-PAIRS become easy.

It would also be interesting to determine the exact relations between the systems MICE,
MICE′ and the two other #SAT proof systems kcps(#SAT) [16], based on certified decision
DNNFs, and CPOG [13].
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