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Abstract
We give an analogue of the Riis Complexity Gap Theorem in Resolution for Quantified

Boolean Formulas (QBFs). Every first-order sentence φ without finite models gives rise to
a sequence of QBFs whose minimal refutations in tree-like QBF Resolution systems are
either of polynomial size (if φ has no models) or at least exponential in size (if φ has some
infinite model). However, we show that this gap theorem is sensitive to the translation
and different translations are needed for different QBF resolution systems. For tree-like
Q-Resolution, the translation to QBF must be given additional structure in order for the
polynomial upper bound to hold. This extra structure is not needed in the system tree-like
∀Exp+Res, where we see the complexity gap on a natural translation to QBF.
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1. Introduction

The Complexity Gap Theorem [23] considers a translation of a first-order sentence φ to a
sequence of propositional formulas, and states that the complexity of refuting these proposi-
tional formulas in tree-like Resolution depends on whether φ has any [in]finite models. The
nth member of the sequence of propositional formulas is satisfiable if and only if φ has a
model of size n. When φ has an infinite model but no finite models then all tree-like Resolu-
tion refutations of related propositional formulas are exponential in size. When φ also has no
infinite model then there must exist polynomial-size tree-like Resolution refutations of the
propositional formulas.

Quantified Boolean logic is an extension of propositional logic in which variables may be
existentially or universally quantified. Determining the truth value of a quantified Boolean
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formula (QBF) naturally extends the satisfiability problem (SAT) on propositional formulas,
and the success of SAT solving algorithms has motivated the development of QBF solvers and
proof systems [12]. Recent research has sought to understand which proof-theoretic techniques
lift to the QBF setting [1,7,8] as well as developing QBF specific techniques [2,4,6,13].

We investigate whether the Complexity Gap Theorem holds in various QBF resolution
systems [5,18,19,24]. We first introduce a method to translate a first-order sentence φ to
a sequence of QBFs, which echoes similar translations of quantified constraint satisfaction
problems (QCSPs) to QBFs that have appeared in [16,17]. The translation will ensure that
the nth member of the sequence has size at most polynomial in n, and is true precisely when
φ has a model of size n.

We demonstrate that tree-like Q-Resolution [19] will always require exponential size to
refute the nth member of the sequence of QBFs when φ has an infinite model but no finite
model. However, unlike the propositional case, there exist formulas with no models but requir-
ing exponential sized tree-like Q-Resolution refutations for the nth member of the sequence.
We show that if the first-order formula φ is embellished with additional structure (precisely
defined in Section 6) to obtain a formula φ∗ before applying the translation then tree-like
Q-Resolution is able to refute the nth member of the sequence in polynomial time precisely
when φ has no models. Our main result is:

Theorem 1. Let φ be a first-order sentence without finite models, φ∗ its embellishment and
〈Φ∗

i 〉i∈N the corresponding sequence of QBFs. If φ has no models, then there exist tree-like
Q-Resolution refutations of 〈Φ∗

i 〉i∈N of size O(ik), where k depends only on φ. If φ has some
(infinite) model, then all tree-like Q-Resolution refutations of 〈Φ∗

i 〉i∈N must have size Ω(2εi),
where ε depends only on φ.

Thus we obtain, à la Riis, a gap between polynomial and exponential in which certain
growth behaviours (e.g. subexponential 2

√
i) are forbidden.

We prove that the same phenomenon holds in the system of tree-like QU-Resolution [24],
which extends tree-like Q-Resolution. In contrast, in the QBF resolution system of tree-like
∀Exp+Res from [18], modelling QBF expansion solving, the gap holds naturally, that is
without the embellishment. In this sense, ∀Exp+Res does not possess the same deficiency as
tree-like Q-Resolution.

2. Preliminaries

We restrict attention to QBFs in closed prenex conjunctive normal form, Ψ = Qψ, where
ψ is a propositional formula (in CNF). The prefix Q takes the form Q1x1Q2x2 . . . Qkxkψ
where Qi ∈ {∀,∃}, xi are distinct Boolean variables. In closed formulas, all the variables in
ψ must appear in Q. The prefix also enforces a partial order on the variables. If Qi = Qi+1
we say xi and xi+1 are in the same quantifier level in the prefix. If xi and xj are not in the
same quantifier level and i < j, then we say that xj has higher quantification level than xi.
Variables in the same level may be reordered arbitrarily to create another logically equivalent
QBF, but otherwise changing the order that variables appear in the prefix may not preserve
the truth value of Ψ. Where convenient to do so we write the quantifier once per level rather
than for each variable.
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Q-Resolution consists of a resolution rule and universal reduction. The resolution rule is

C ∨ x D ∨ ¬x
C ∨D

where C and D are clauses and x is an existentially quantified variable, and for all variables
y �= x that appear in C, the negation of y does not appear in D. We call x the pivot of this
resolution step.

The universal reduction rule is

C ∨ x
C

where x is universally quantified and belongs to the inner-most quantifier level of all variables
appearing in C.

A QBF is false if and only if it is possible to derive the empty clause by application of
these rules. A Q-Resolution refutation of Ψ is a sequence of clauses C1 . . . Cn such that every
Ci is either a clause from ψ, derived by resolution from Cj and Ck (j, k < i) or derived by
∀-reduction from Cj (j < i). A Q-Resolution proof has an underlying DAG structure, with
edges denoting inference either by resolution or reduction. In a tree-like Q-Resolution proof
this graph must be a tree. Each derived clause can therefore only be used once in the proof.

QU-Resolution [24] is similar to Q-Resolution except that the pivot of a resolution step
is also permitted to be universally quantified.

Finally, ∀Exp+Res [18] describes an alternative approach to QBF solving in which ex-
istentially quantified variables are expanded according to different possible Boolean assign-
ments to the universal variables. This produces an entirely existential formula that can be
refuted by propositional Resolution. When an axiom is downloaded into a ∀Exp+Res proof,
some complete assignment μ to the universal variables is implicitly being considered. For C
a clause in ψ, the assignment will be one which does not automatically satisfy the clause
(i.e. if universal literal u appears in C then μ will set u = 0). The universal literals in C are
falsified by the assignment and so are removed, and each existential variable x in C is anno-
tated with μ, to show which part of the expanded formula it relates to. Because x can only
depend on universal variables that appear in an earlier level than x in the quantifier prefix,
μ is truncated for each existential literal in C to only reference the part of the assignment
that is relevant for this literal.

If μ and ω are distinct assignments to universal variables appearing before x in the prefix,
then xμ and xω are distinct, existentially quantified variables, and μ and ω are referred to
as annotations of xμ and xω. Every clause in a ∀Exp+Res refutation is either introduced in
this way as an axiom, or is the result of a propositional resolution step between some xμ and
¬xμ.

3. Rendering a First-Order Sentence as a Sequence of QBFs

We now give a method to translate a first-order sentence φ to a sequence 〈Φi〉i∈N of QBFs.
We consider first-order logic to be relational and possibly with constants. Functions can be
encoded as relations in the standard way. The method is inspired by the encoding of φ into
propositional formulas in conjunctive normal form (CNF) previously given by Riis [23], and is
similar to other translations used to encode QCSP instances as QBF in [16]. A more succinct
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“binary” or “logarithmic” form of encoding is discussed in [17] but for our purposes, since φ
is fixed, the benefit of this more succinct encoding is not important.

We begin with a first-order sentence

φ := Q1x1 . . . . . . QkxkD1(x1 . . . , xk) ∧ · · · ∧ Dr(x1, . . . , xk)

with Qj ∈ {∀,∃}, and where each Dl is a disjunction of the form

R1
l (x1, . . . , xk) ∨ · · · ∨Rs

l (x1, . . . , xk).

We do not lose significant generality by assuming all extensional relations to be of arity k
and all disjunctions to be of width s. We refer to the set of existentially quantified variables
by {xj |Qj = ∃}, or to the relevant indices by {j|Qj = ∃}.

Each first-order variable x becomes n Boolean variables x1, . . . , xn. If xi is made true this
indicates that x is evaluated as the ith element in a model of size n. We introduce existentially
quantified variables associated with each instantiation of a relational predicate Rj

i (λ1, . . . , λk)
indicating that the tuple (λ1, . . . , λk) is in the relation Rj

i .
In the original sentence a variable x can only take on one value at a time, and must be

given some value. We introduce clauses so that if any existential variable is not given exactly
one value the QBF is falsified, and if any universal variable is not given exactly one value then
the QBF is made true. Let [n] := {1, . . . , n}. ∑i∈[n] x

i = 1 asserts that precisely one of the xi

is true, i.e. it is an abbreviation for (
∨

i∈[n] x
i)∧∧

j �=i∈[n](¬xi∨¬xj). Similarly ¬(
∑n

i=1 x
i = 1)

is shorthand for the conjunction of clauses (¬xi ∨∨
j �=i x

j).
We can now build our sequence of QBFs

φn := ∃λ1,...,λk∈[n]R
1
1(λ1, . . . , λk) . . . Rs

r(λ1, . . . , λk)

Q1x
1
1 . . . x

n
1 . . . Qkx

1
k . . . x

n
k∧

{i|Qi=∃}

(∑
j∈[n]

xji = 1
)

∧
[ ∧
{i|Qi=∀}

(∑
j∈[n]

xji = 1
)

→
( ∧
i∈[r]λ1,...,λk∈[n]

(
xλ1

1 ∧ · · · ∧ xλk
k

)
→ Di(λ1, . . . , λk)

)]
,

where the notation ∃λ1,...,λk∈[n]R
1
1(λ1, . . . , λk) . . . Rs

r(λ1, . . . , λk) indicates that we existentially
quantify over all propositional variables of the form Ri

j(λ1, . . . , λk) for all tuples λ1, . . . , λk ∈
[n]. Where constants were involved the corresponding λis are fixed to those constants.

By construction, φn is true if and only if φ has a model of size n (the size of the domain).
The quantifier-free part of φn can be expanded to CNF and this expansion is not of size larger
than polynomial in n. If the disjuncts Di contain equality relationships between variables then
these can be enforced by restriction of the λ1, . . . , λk ∈ [n]; indeed, if the disjuncts only involve
some subset of x1, . . . , xk then plainly only those need be mentioned. We call Boolean variables
of the form Rj

i (λ1, . . . , λk), always existentially quantified outermost, relational variables.
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Example. Recall the pigeonhole principle (e.g. see [23]), which states that given sets A and
B with |B| > |A|, there does not exist an injective function f : A �→ B. We consider a first
order formula that makes an opposing (false) claim that given two sets A = B = {1, . . . , n},
there is an injective function such that 1 is not in the image. We represent the function f by
relation P (where P (i, j) is true if and only if f(a) = b).

• Every member of A must have some image in B: ∀x∃wP (x,w).
• No member of A is mapped to 1 ∈ B: ∀x¬P (x, 1).
• Injectivity: ∀x, y, zP (x, z) ∧ x �= y → ¬P (y, z).
Together, these give φPHP:

∀x, y, z∃wP (x,w) ∧ ¬P (x, 1) ∧
(
¬P (x, z) ∨ ¬P (y, z) ∨ x = y

)
,

stating that the relation P contains the graph of a total injective function f from dom(f) to
dom(f) \ {1}. Clearly, φPHP has no finite models.

The translation to QBF gives us

∃i,j∈[n]P (i, j)∀i∈[n]x
i, yi, zi∃i∈[n]w

i

(∑
i∈[n]

wi = 1
)
∧
((∑

i∈[n]
xi = 1 ∧

∑
i∈[n]

yi = 1 ∧
∑
i∈[n]

zi = 1
)
→

xi ∧ w� → P (i, �) i, � ∈ [n]
xi → ¬P (i, 1) i ∈ [n]
xi ∧ yj ∧ zk →

[
¬P (i, k) ∨ ¬P (j, k)

]
i �= j, k ∈ [n])

Note that, for the sake of readability, the indices expressed by λ1, . . . λk in the general form
are here denoted by i, j, k, l. This QBF can be written explicitly in prenex conjunctive
normal form as

∃i,j∈[n]P (i, j)∀i∈[n]x
i, yi, zi∃i∈[n]w

i

∧
i�=j∈[n]

(
¬wi ∨ ¬wj

)
∧
(
w1 ∨ · · · ∨ wn

)

∧
∧

i,j,k,l∈[n]

(
¬xi ∨

∨
i′ �=i

xi
′ ∨ ¬yj ∨

∨
j′ �=j

yj
′ ∨ ¬zk ∨

∨
k′ �=k

zk
′ ∨ ¬wl ∨ P (i, l)

)

∧
∧

i,j,k∈[n]

(
¬xi ∨

∨
i′ �=i

xi
′ ∨ ¬yj ∨

∨
j′ �=j

yj
′ ∨ ¬zk ∨

∨
k′ �=k

zk
′ ∨ ¬P (i, 1)

)

∧
∧

i�=j,k∈[n]

(
¬xi ∨

∨
i′ �=i

xi
′ ∨ ¬yj ∨

∨
j′ �=j

yj
′ ∨ ¬zk ∨

∨
k′ �=k

zk
′ ∨ ¬P (i, k) ∨ ¬P (j, k)

)
.

4. The Lower Bound

In this section we lift Riis’ proof to show the following result.
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Theorem 2. Let φ be a first-order sentence which has an infinite model but no finite model.
Then any tree-like Q-resolution refutation of QBF Φn, representing the statement that there
is a model for φ of size n, has size at least 2Ω(n).

We use the game of [9] for tree-like Q-Resolution, which we now recall. The game proceeds
between a Prover and Delayer, who build a partial assignment to the variables of a QBF Φ.
The game starts with the empty assignment and ends when the current assignment falsifies
the matrix of Φ. Each round of the game has the following phases:

1. Setting universal variables: Prover can assign a value to any number of universal vari-
ables provided that every existential variable with a higher quantification level is cur-
rently unassigned.

2. Declare Phase: Delayer can assign values to any number of unassigned existential
variables of his choice.

3. Query Phase: Prover queries the value of one existential variable x that is currently
unassigned. Delayer replies with weights p0 � 0 and p1 � 0 such that p0 + p1 = 1.
Prover assigns x = b with b ∈ {0, 1} and Delayer scores lg( 1

pb
) points. (If pb = 0 then

Delayer scores ∞ many points, thus forcing Prover not to play x = b.)
4. Forget Phase: Prover can choose any number of assigned variables (without regard to

how they are quantified) to lose their assigned values.
Intuitively, the points scored by Prover correspond to the depth of the proof, and for full

binary trees, the tree size is exponential in the depth of the tree. Thus exhibiting good Delayer
strategies that score many points will lead to lower bounds for proof size. This is the intuition
of the original Prover–Delayer game from [22]. Using the more refined version of the game with
weights as described above (originating from [9,11]) the game exactly characterises tree-like
Q-Resolution size. An example for a Delayer strategy for propositional tree-like Resolution
on the pigeonhole formulas is contained in [10]. More examples for tree-like Q-Resolution can
be found in [9].

Assignments made in the query phase correspond to branching points in the tree. In
particular, if there exists a strategy and some choice of weighting, such that Delayer is guar-
anteed at least p points in a game on Φ, regardless of how Prover behaves, then any tree-like
Q-Resolution refutation of Φ must have size at least 2p. We give such a strategy for Delayer
on any QBF generated through the above translation, for which the underlying first-order
formula has an infinite model.

For QBF Φn, representing the (false) statement that the original first-order sentence φ
has a model of size n, Delayer’s strategy is stated in terms of the set of models that satisfy
the original first-order sentence. Let M be the set of all models of φ. Delayer cannot win
this game since Φn is false, but he can guarantee Ω(n) points, meaning that the tree-like
Q-Resolution proof must have size 2Ω(n).

4.1. Delayer’s Strategy

At any point in the game some set of relational, existential, and universal variables have
values assigned. We say that a model M agrees with this assignment if a) the relations do
hold between the indicated constants in the relational variables, and b) the relations between
values selected for universal and existential variables may hold.

For example, let S(x, y) be the successor function, which is represented in Φn by relational
variables S(i, j) and in the conditions xi∧yj → S(i, j). If S(i, j) = 1 then all models agreeing
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with this assignment must have that the jth constant cj in our universe is a successor of the
ith constant ci. If xi = 1 and yj = 1 all models agreeing with this assignment must not have
that cj cannot be the successor of ci. Here, this is equivalent to requiring that the models
have cj as a successor of ci. However, if xi = 1 but y has not been assigned any value, then
a model agreeing with this assignment must have some value cj such that cj is not forbidden
from being the successor of ci and yj �= 0. It is permitted for this cj to be outside of the n
elements referenced by the QBF. This is the distinction between does hold and may hold –
the latter may involve variables that are unassigned. At each point in the game we consider
the subset M̃ ⊆ M of models that agree with the current assignment.

Delayer has an opportunity to declare any existential variables and should assign values
wherever all M ∈ M̃ agree. For any existential variable, setting xi = 1 immediately implies
that xj = 0 for all j �= i, so these values should also be set in the declare phase.

Prover can then query the value of any existential or relational variable. This query either
asks “is the value of w equal to ci?” or “does relationship r hold between these constants?”
Since we have already assigned variables for which all models agree, we know that the models
differ on the answer to this question. Set p0 = p1 = 1

2 and let Prover decide on the assignment.
Delayer scores 1 point.

No existential variable will be given more than one value at a time. If Prover declares two
values for some universal variable x, i.e. xi = 1 and xj = 1 for i �= j, treat this as if x has
no value assigned. Prover cannot win the game with this assignment, and will be forced to
re-assign x at some point, so this strategy does not damage Delayer. By ignoring the invalid
assignment it is not possible for it to advantage Prover during the game and so we can assume
that each variable has only one value at any moment.

Lemma 3. Using this strategy, Delayer can only lose the game by violating a clause stating
that, for some set of existential variables {wi}ni=1, exactly one must be set to true.

Proof: Because we are following models that satisfy the original sentence, each such model
must satisfy every clause of the QBF, except where the QBF makes a direct statement about
the size of the model. The statements that reference the size of the model are those stating
that exactly one variable from each set {wi}ni=1 must be true (i.e. that the assignment to
variable w in the original sentence must correspond to one of the n elements in the universe).
For the same reason, the clause will be violated because all variables are assigned 0, never
because more than one is assigned 1. There are still infinite models that agree with everything
stated so far, and for which w has some value, but that value falls outside of the n elements
permitted by the QBF. �

We call this set {wi}ni=1 of existential variables the failed witness. As a result, at least n
variables in the QBF must be assigned a value in order for Delayer to lose the game, and in
particular these variables must between them reference all n of the elements in the universe.

Φn says that φ has a model of size n, and each variable in the QBF makes reference to
some subset of those n elements: relational variables state that some relation holds between
certain values; existential and universal variables state that the corresponding variables in φ
take a certain value. A constant is mentioned during the query phase of the game if it is either
a) referenced by a relational variable that is set during in the query phase or b) referenced
by a main variable that is assigned true at the end of the query phase. Recall that k is the
number of variables in the first-order sentence φ, which is a constant since φ is fixed.
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Lemma 4. At least n−k of the universe’s n elements are mentioned during the query phase
of the game.

Proof: Let the set {wi}ni=1 be the failed witness. Part way through the game, k′ � k of the
main variables have been assigned, and they are set to c1 . . . ck′ . Consider some cj with j > k′

and suppose that none of the variables assigned during the query phase have referenced cj .
As a result, there is no information known about cj to distinguish it from other elements in
an infinite universe.

By construction, there is at least one infinite model that agrees with the choices made so
far and (since w will be the failed witness) assigns w a value that is outside of the n elements
allowed by Φn. cj cannot be distinguished from this value, so there is also a model that assigns
cj to w. Therefore the game cannot end yet and Prover is forced to make another query.

This demonstrates that all cj with j > k′ must have been mentioned during the query
phase at some point in the game. �

Lemma 5. Delayer scores Ω(n) points by the given strategy.

Proof: All relations have arity bounded above by k and at most k values can be set in the
main variables so at most k constants can be mentioned in any one query. (Note that while a
query can only mention one propositional variable, one such variable can refer to more than
one element in the first-order model, e.g. by querying a propositional variable corresponding
to the value of a relation. But the number of elements in the model to which a propositional
variable may refer is bounded by k.)

With Lemma 4 this shows that at least n−k
k queries are made during the game, with each

scoring one point. �

5. A Surprising Lower Bound

Proposition 6. Let θ := ∀x∃y∀z∃u∀v∃wR(x, y, z)∧¬R(u, v, w) and 〈Θn〉n∈N be the sequence
of QBFs expressing that θ has a model of size n. Although θ has no models, any tree-like Q-
Resolution refutation of Θn must have size Ω(2n).

Proof: We show a strategy that allows Delayer to score Ω(n) points. Delayer uses the rules
below for responding to Prover queries.

1. No existentially quantified variable may have two values assigned simultaneously.
2. If x = c and ¬R(c, d, e), for some d, e then answer y �= d.
3. If x = c then answer u �= c.
4. If R(c, d, e) for some d and e then answer u �= c.
5. If u = c and v = d and R(c, d, e) for some e, then answer w �= e.
6. If x = c and y = d, then answer R(c, d, e), for each e.
7. If u = c and v = d and w = e, then answer ¬R(c, d, e).
8. When none of the above rules apply, Delayer gives weights 1/2 to both assignments

(and will score one point whichever assignment Prover makes).

In items 1 to 7 Delayer forces Prover to answer according to his wish by setting weights 0
and 1 (Delayer’s preferred choice gets weight 1), but Delayer will not score any points. Thus
Delayer only scores a point when item 8 applies.
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There are three ways that the QBF can become false. First, by having simultaneously
that x = c, y = d, z = e and ¬R(c, d, e). This cannot happen because if x = c and y = d
then R(c, d, e) is made true by rule 6, and if x = c and ¬R(c, d, e) then y cannot be given
the value d due to rule 2. x cannot be set after y by the rules of Q-Resolution. Second, the
QBF could be made false by having simultaneously that u = c, v = d, w = e and R(c, d, e)
and similarly this is not possible according to rules 4, 5 and 7. Third, the QBF may become
false by failing to assign exactly one value to some existentially quantified variable. The first
rule ensures that at most one value is given to each existential variable. Therefore the QBF
must become false by failing to assign any value to some existential.

Now we need to show that Delayer scores linearly many points before all possible values
are excluded for any existentially quantified variable. We consider the cases when u, w or y
is the subject of the conflict.

Values for u are excluded by rules 3 or 4, or may have been excluded directly by a Prover
choice scoring one point. Rule 3 can only exclude one value for u at a time. For rule 4 to
exclude a value we must have one of the R variables assigned positively, and it must be a
different variable for each excluded value of u. Either this was done in a Prover choice (scoring
one point) or it was forced by rule 6, but then y must have been assigned its value by a Prover
choice (since Delayer rules only exclude values for y). For rule 6 to force R variables that
would be able to exclude different values for u it would be necessary to change the assignment
to x, which requires forgetting and re-querying y. Therefore, if the game ends by ruling out
all values of u then Delayer has scored at least n− 1 points.

If instead it is w that has every value excluded then for each of these values we have
either that it was set in a Prover choice and Delayer scores one point, or else it was forced
through rule 5. Rules 3 and 4 ensure that it is not possible to have simultaneously u = c
and R(c, d, e) unless R(c, d, e) was assigned in a Prover choice, and a different R assignment
would be needed for each excluded value of w. If the game ends by exhausting all possible
assignments to w then Delayer has scored at least n points.

Finally, if the game ends because no value is assigned to y then for each of the possible
values either it was excluded in a choice made by Prover or it was excluded by rule 2. A
different R variable would be needed for each excluded value of y, and they could only have
been forced by rule 7 requiring a new assignment to v and so a new positive assignment to
w for each one. In this case Delayer scores at least n points before the game ends.

Because Delayer must score Ω(n) points by the end of the game we have that any tree-like
Q-Resolution proof of Θn has size Ω(2n). �

This lower bound is surprising because if the result of [23] lifted directly to Q-Resolution
on this natural translation to QBF then we would expect a formula without any models to
yield a sequence of QBFs with polynomial size Q-Resolution proofs. We would expect these
short proofs to use the refutation of the first-order formula itself as a basis, similar to the
methods used in [14,23]. We briefly discuss why this approach fails for Q-Resolution.

Consider the tableau refutation in Fig. 1. The unification that closes the tableau suggests
a strategy for Prover, which is to query u and set x accordingly, then query y and set v
accordingly, then query w and set z to match, at which point the contradiction is immediate.
However, the strategy does not respect the order of the quantifier prefix. In the game repre-
senting tree-like Q-Resolution all existential assignments at a higher level must be forgotten
in order to make a universal assignment at a lower level. Therefore it is not possible for Prover
to set x matching u. Disobeying this rule in the game corresponds to using ∀-reduction while
existential variables with a higher quantification level remain in the clause and is not sound
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Figure 1. Universal variables are replaced by free variables (lower case with indices), existential
variables are written as functions (upper case) over those free variables. The tableau is closed by
the unification Unif : x2 ← U1(x1, z1), v1 ← Y2(x2), z2 ← W1(x1, z1, v1). Through this substitution
we have twin atoms R(U1(x1, z1), Y2(x2),W1(x1, z1, v1)) and ¬R(U1(x1, z1), Y2(x2),W1(x1, z1, v1))
which resolve to a contradiction. For more details on these tableau refutations please see [20].

in general. Our strategy for Delayer shows that this problem cannot be overcome in tree-like
Q-Resolution with the proposed translation from the first-order formula to QBF. Instead, we
will modify the translation to provide Prover with a mechanism for ‘remembering’ choices
that have previously been made, while still respecting the rules of the game. Finally, we show
that ∀Exp+Res is able to use the unification to construct a valid strategy and a short proof
on the first, more natural, translation to QBF.

6. Embellishing the QBFs

Continuing with the same example, expand the formula by introducing a side condition

∀x∃y∀z∃u∀v∃wR(x, y, z) ∧ ¬R(u, v, w)

∧ ∀x′′y′′z′′u′′S
(
x′′, y′′, z′′, u′′

)
→

(
∀v∃wR

(
x′′, y′′, z′′

)
∧ ¬R

(
u′′, v, w

))
∧ ∀x′′y′′z′′u′′¬S

(
x′′, y′′, z′′, u′′

)
→

(
∃v′∀w′¬R

(
x′′, y′′, z′′

)
∨R

(
u′′, v′, w′)).

The new S relations record whether, given some values for x, y, z, u, the original formula
is true or false. As such, their addition does not affect the models of the formula (notwith-
standing the interpretation of S).

We put this expanded formula into prenex form:

∀x′′y′′z′′u′′∀x∃y∀z∃u∃v′∀v∃w∀w′

R(x, y, z) ∧ ¬R(u, v, w)

∧ S
(
x′′, y′′, z′′, u′′

)
→

(
R
(
x′′, y′′, z′′

)
∧ ¬R

(
u′′, v, w

))
∧ ¬S

(
x′′, y′′, z′′, u′′

)
→

(
¬R

(
x′′, y′′, z′′

)
∨R

(
u′′, v′, w′))
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and apply the original translation to it. The S relations become existential variables in the
outermost quantifier block.

The idea is that when the existential variable u is queried and given the value a, Prover
can then ask Delayer to identify some specific sub-problem with u = a that evaluates to
true. If Delayer refuses to do this, their choice of u in the original formula quickly generates
a contradiction, and otherwise x can be set based on the S variable that was made true. In
this way, the S variables act as a memory of Delayer’s choices.

We describe the decision tree for this formula. Recall that the QBF is constructed so
that if all of the existential variables {xi}ni=1 are assigned 0 then the formula is immediately
falsified; similarly no universal set {yi}ni=1 may have more than one value given at a time,
else the formula is immediately satisfied.

1. Set x = α, z = γ arbitrarily. Query ui for i = 1 . . . n until u is given a value. That
is, branch on u1. If u1 = 0 branch on u2. If all ui = 0 we have a contradiction. Now
consider the subtree with ua = 1.

2. Query S(α, ∗, γ, a), for ∗ = 1 . . . n, until some S is set to true. If all such S are made
false, skip to line 8. Suppose S(α, β, γ, a) = 1. Forget u.

3. Set x = a since S(α, β, γ, a) = 1. Set also x′′ = α, y′′ = β, z′′ = γ, u′′ = a.
4. Query y. Suppose y = b. Set v = b to match.
5. Query w. Suppose w = c.
6. Since S(α, β, γ, a) = 1 we now have R(α, β, γ) = 1 and, importantly, R(a, b, c) = 0

forced. Forget w
7. x = a and y = b are still set, and R(a, b, c) = 0 prompts setting z = c for a

contradiction.
8. Suppose instead that S(α, ∗, γ, a) = 0 for all values of ∗. Query R(α, ∗, γ) for ∗ =

1 . . . n.
9. If all R(α, ∗, γ) are made false then with x = α, query y for a contradiction.

10. If some R(α, β, γ) = 1, set x′′ = α, y′′ = β, z′′ = γ, u′′ = a and since S(α, β, γ, a) = 0
we have ∃v′∀w′R(a, v′, w′). Query v′. Suppose v′ = d.

11. Now R(a, d, 1) . . . R(a, d, n) = 1. This contradicts the original choice to set u = a, so
return to the main formula and set v = d, and query w for a contradiction.

For each instance of an existential variable e in the unification closing the tableau refu-
tation, the decision tree has branched once on either e, or e′, as well as branching once on
the n variables S(α, ∗, γ, a).

This motivating example shows how additional structure derived from the original sen-
tence can aid Prover in the resulting sequence of QBFs. To generalise this method we will
introduce new relational variables for each level of the quantifier prefix.

We are now more interested in blocks of variables than individual variables, so represent
our general formula with slightly different notation to emphasise this. Take the first-order
sentence

φ := ∀X1∃Y1 . . .∀Xk∃YkD1(X1, Y1, . . . , Xk, Yk) ∧ · · · ∧ Dr(X1, Y1, . . . , Xk, Yk)

with atoms

R1
i (X1, Y1, . . . , Xk, Yk) ∨ · · · ∨Rs

i (X1, Y1, . . . , Xk, Yk)

where Xi and Yi are mutually disjoint sets of variables.
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It is modified to include new relations Sk, S
′
k, . . ., S1, S′

1. The following statement is
conjoined to the original.

∀X ′′
1 , Y

′′
1 , . . . , X

′′
k , Y

′′
k ¬Sk(X ′′

1 , Y
′′
1 , . . . , X

′′
k , Y

′′
k ) ∨∧

i∈[r] Di(X ′′
1 , Y

′′
1 , . . . , X

′′
k , Y

′′
k )

∀X ′′
1 , Y

′′
1 , . . . , X

′′
k , Y

′′
k Sk(X ′′

1 , Y
′′
1 , . . . , X

′′
k , Y

′′
k ) ∨∨

i∈[r] ¬Di(X ′′
1 , Y

′′
1 , . . . , X

′′
k , Y

′′
k )

∀X ′′
1 , Y

′′
1 , . . . , X

′′
k ¬S′

k(X ′′
1 , Y

′′
1 , . . . , X

′′
k ) ∨ ∃Yk

∧
i∈[r] Di(X ′′

1 , Y
′′
1 , . . . , X

′′
k , Yk)

∀X ′′
1 , Y

′′
1 , . . . , X

′′
k S′

k(X ′′
1 , Y

′′
1 , . . . , X

′′
k ) ∨ ∀Y ′

k

∨
i∈[r] ¬Di(X ′′

1 , Y
′′
1 , . . . , X

′′
k , Y

′
k)

...
...

∀X ′′
1 , Y

′′
1 ¬S1(X ′′

1 , Y
′′
1 ) ∨ ∀X2∃Y2 . . .∀Xk∃Yk

∧
i∈[r] Di(X ′′

1 , Y
′′
1 , . . . , Xk, Yk)

∀X ′′
1 , Y

′′
1 S1(X ′′

1 , Y
′′
1 ) ∨ ∃X ′

2∀Y ′
2 . . .∃X ′

k∀Y ′
k

∨
i∈[r] ¬Di(X ′′

1 , Y
′′
1 , . . . , X

′
k, Y

′
k)

∀X ′′
1 ¬S′

1(X ′′
1 ) ∨ ∃Y1∀X2∃Y2 . . .∀Xk∃Yk

∧
i∈[r] Di(X ′′

1 , Y1, . . . , Xk, Yk)
∀X ′′

1 S′
1(X ′′

1 ) ∨ ∀Y ′
1∃X ′

2∀Y ′
2 . . .∃X ′

k∀Y ′
k

∨
i∈[r] ¬Di(X ′′

1 , Y
′
1 , . . . , X

′
k, Y

′
k)

The sets X ′
i and X ′′

i are copies of the set Xi. Since the sets X ′
i and Xi do not appear together

in any Di, there is some flexibility in how this additional statement may be converted to
prenex form. We perform the prenexing such that:

• X ′′
i , Y ′′

i are outermost
• X ′

i is immediately before Xi

• Yi is immediately before Y ′
i

Now the conjunction of the two parts can be returned to the form required for our original
translation. This embellished sentence φ∗ is syntactically ugly but enjoys the same models as
φ up to reduction to the original signature σ; thus, the semantic change is slight.

The models are essentially unchanged by the proposed modification, the number of vari-
ables has only increased polynomially, and the arity of the new S relations is still bounded
above by the number of variables in the original first-order sentence. Therefore, the proof of
the exponential lower bound in the case that φ (and so φ∗) has an infinite model still applies
exactly as given in Section 4.

Theorem 7. Let φ be a first-order sentence without any models, and φ∗ be its embellishment.
Then the sequence of QBFs 〈Φ∗

n〉 enjoy refutations in tree-like Q-Resolution of size nO(1).

Proof: Taking an analytic tableau refutation [20] of a logical contradiction φ, we explain
how to generate a decision tree for Φn. The unification that closes the tableau shows how to
determine universal assignments from choices made for the existential variables. Follow the
unification in order, expanding existential variables with a branching factor of n. When it is
necessary to set a universal variable (unless this can be done within the rules for ∀-reduction),
first use the S relations to find a specific sub-problem claimed to be correct for the variables
that have been assigned so far. Once in a position to derive R variables (recall these are
outermost and existential in our QBF), we do so.

Let ζi (resp. ηi) range over all assignments to variables in the block Xi (resp. Yi). If
all S(ζ1, η1, . . . , ζj , ηj) (similarly S′(ζ1, η1, . . . , ζj)) are set to false, we work through the sub-
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sentence

S(ζ1, η1, . . . , ζj , ηj) ∨ ∃X ′
j+1∀Xj+1∃Yj+1∀Y ′

j+1 . . .∃X ′
k∀Xk∃Yk∀Y ′

k∨
i∈[r]

¬Di

(
ζ1, η1, . . . , ζj , ηj , X

′
j+1, Y

′
j+1, . . . , X

′
k, Y

′
k

)

∧
∧
i∈[r]

Di(ζ1, η1, . . . , ζj , ηj , Xj+1, Yj+1, . . . , Xk, Yk).

Note the quantifier order of this sentence means that the universal variables can simply copy
the choice made for the immediately preceding existential, and so a contradiction is reached in
polynomial expansion of size O(nb), where b is the total number of variables in the first-order
sentence.

If instead some S(ζ1, η1, . . . , ζi, ηi) is set true, then any remaining S(ζ1, η1, . . . , ζi, ηi) do
not need to be considered in this branch. The assignments to relational variables (S and R)
are never changed on a given branch, and they will form a memory during backtracking, when
later existential assignments need to be forgotten in order to make universal assignments.

Let m be the number of Skolem functions in the unification, b the number of variables
in the original first-order sentence, n the size of model being searched for. The decision tree
branches m times on existential variables, with a branching factor of n. Up to b sets of S
variables have been added, each with up to nb members, and we may branch on any of these
sets, once only. The size of the decision tree refutation is therefore O(nm · nb2). �

7. Extension to QU-Resolution

Although stated in terms of tree-like Q-Resolution, our result also holds for tree-like QU-
Resolution, in which the Resolution rule may be applied to universally, as well as existentially,
quantified variables.

Since QU-Resolution contains Q-Resolution, our upper bound immediately transfers. For
the exponential lower bound, we note that the game description of tree-like Q-Resolution can
be extended to describe QU-Resolution by allowing Prover to query universally quantified
variables as well as existentially quantified [9]. This may shorten the refutation, since it offers
a way for Prover to set universal variables after existential variables that are later in the
prefix have already been assigned. However, it does not affect the crux of our argument, that
Ω(n) values must be considered in a free choice at some point during the game, and only
constantly many values can be considered in each free choice. Thus, the analogous version of
Theorem 1 holds for QU-Resolution as well.

QU-Resolution is exponentially stronger than Q-Resolution in the DAG-like case. This is
demonstrated in [24] via the formulas of Kleine Büning, Karpinski and Flögel [19]. It is not
known whether a separation exists between the tree-like variants. Our results here mean that
such a separation – if it exists – cannot be shown by using translations of first-order formulas
as considered here.

8. A Polynomial Upper Bound for ∀Exp+Res

Our observation of the behaviour of tree-like Q-Resolution on the initial translation of these
formulas reveals a weakness in the proof system, which can be understood in the game descrip-
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tion as Prover lacking memory of previous answers. We show that tree-like ∀Exp+Res does
not share this weakness and enjoys short proofs for QBFs generated by our first translation
whenever the underlying first-order formula has no models. Thus we have given both a specific
example and a schema of QBFs separating tree-like ∀Exp+Res from tree-like Q-Resolution.

Theorem 8. Let φ be a first-order sentence without any models. Then the sequence of QBFs
〈Φn〉 have tree-like refutations in ∀Exp+Res of size nO(1).

Proof: The idea is to use the unification witnessing that φ is false to structure the ∀Exp+Res
proof. The unification is made up of assignments from the value of a Skolem function to a
universal variable. The Skolem function represents an existential variable x and is evaluated
for a setting of (a subset of) the universal variables prior x in the quantifier prefix.

We can mimic this process in ∀Exp+Res using the game description for Resolution [11]
over annotated variables. Prover queries the value of x with an annotation α. If a variable in
the domain of the Skolem function is appearing in the unification for the first time it can be
set arbitrarily in α. Otherwise it is given the value already specified earlier in the unification.
Because x has been split into x1 . . . xn by the translation to QBF Prover will in fact query
some or all of the xi,α until one of them is made true. Then all other xi,α would be forced to
false so Prover can move on to the next assignment in the unification.

Once the assignments for the unification have been made Prover can query relational
variables to quickly reach a contradiction. Each branch of the tableau contains two entries
that are directly contradictory under (part of) the assignment given by the unification. For
each branch in turn Prover queries the relations(s) that close the branch using the assignments
determined in the first stage of the game. By construction, any sequence of Delayer answers
results in an immediate contradiction, in particular some clause of the form (¬xλ1

1 ∨ · · · ∨
xλk
k ∨ Di(λ1, . . . , λk)) is falsified.

We need to show that Delayer scores O(lg(n)) points. The number of queries of the
relational variables does not depend on n. For each query Prover can select the value that gives
Delayer the lowest score so each choice has a maximum value of 1 point (when p0 = p1 = 1

2).
There are also constantly many Skolem functions in the unification, but each of these

requires (up to) n queries to assign a value to an (annotated) existential variable. The number
of points remains limited to lg(n) points.

To assign a value to xα Prover first queries x1,α. Delayer responds with weights p0 and p1.
If p1 < 1/n then set x1,α = 1 so Delayer scores lg(n) points. Otherwise set x1,α = 0. p0 < n−1

n
so Delayer scores lg( n

n−1) points.
Over xi,α for i = 1, . . . , j Delayer has either scored lg(n) points and some xi,α = 1 or has

scored lg(n)− lg(n− j) points and all xi,α = 0. If some xi,α = 1 then we are done and Prover
does not need to query xj+1,α. Otherwise Delayer sets p0 and p1, if p1 <= 1

n−j then Prover
sets xj+1,α = 1. Delayer scores at most lg(n− j) points for this, so a total of lg(n) points. If
p1 > 1

n−j then Prover sets xj+1,α = 0 and Delayer scores at most lg( n−j
n−j−1) points for this,

giving a total of lg(n) − lg(n− j − 1) points.
In total Delayer has scored O(lg(n)) points, so the proof size is nO(1). �

9. Conclusion

We have demonstrated a translation from first-order formulas to QBF families for which a
complexity gap exists in tree-like Q-Resolution. Our translation is not as natural as that
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used in Riis’ original translation to propositional logic, due to an inherent constraint in Q-
Resolution that ∀-reduction must respect the order of variables in the prefix. This manifests
when trying to construct short tree-like Q-Resolution proofs. Section 5 shows that this is in
general not possible for the original FO translations, which is why we need to add additional
structure to the translation (the embellishment of Section 6). This bypasses the constraint on
∀-reduction in this setting so that short proofs can be achieved where the original formula had
no models. We have also noted that in this setting, tree-like QU-Resolution and Q-Resolution
coincide, with the additional power of QU-Resolution providing at most a polynomial im-
provement in the proof length.

It is not currently known whether there are any situations in which tree-like QU-
Resolution is exponentially stronger than tree-like Q-Resolution, the separation of these two
systems has only been demonstrated in the DAG-like variant. Generating a series of QBFs
from the unsatisfiable first-order formula ∀x∃y∀z∃u∀v∃wR(x, y, z) ∧ ¬R(u, v, w), that has
short proofs in tree-like ∀Exp+Res but exponential sized proofs in tree-like Q-Resolution
and in fact tree-like QU-Resolution, we have exhibited new formulas that separate the two
systems.

Finally, we remark that tree-like Resolution systems – both propositionally and for QBF –
are rather weak calculi (which in particular are not strong enough to model solving paradigms
such as (Q)CDCL [3,21]). It would be very interesting to explore whether similar gap theorems
as shown here and previously in [14,23] can be obtained for stronger calculi, with dag-like
(Q)-Resolution being a very interesting case. However, presently we only have quite limited
knowledge on this (cf. [15] for some results on dag-like Resolution) with the case of general
dag-like Q-Resolution completely unexplored.
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