
Journal on Satisfiability, Boolean Modeling and Computation 14 (2023) 1–15

An Isomorphism-Invariant Distance Function on Propositional
Formulas in CNF

Evgeny Dantsin edantsin@roosevelt.edu
Alexander Wolpert awolpert@roosevelt.edu
Department of Computer Science, Roosevelt University, IL, USA

Abstract
We define a distance function on propositional formulas in CNF as a measure of non-

isomorphism of formulas: the larger the distance between two formulas is, the further
they are from being isomorphic. This distance induces a metric on isomorphism classes of
formulas. We show how this distance can be used for SAT solving, namely for per-instance
algorithm selection where there is a “portfolio” of SAT solvers and there is a “meta-solver”
that chooses a solver from the portfolio for a given input formula.

Keywords: Distance on CNF formulas, isomorphism invariants, per-instance algorithm
selection

Submitted 4 October 2021; revised 9 May 2022; accepted 28 June 2022

1. Introduction

Two propositional formulas in CNF are isomorphic if one of them can be obtained from
the other by renaming variables and flipping literals. It is natural to view isomorphism as
“similarity” of formulas, but this similarity measure is all or nothing: any two formulas are
similar or not. How can we modify this measure to make it gradual? In this paper, we define
a distance functions on formulas such that the smaller the distance between two formulas is,
the closer they are to being isomorphic. This distance function is a pseudometric on formulas
and, thereby, it induces a metric on isomorphism classes of formulas.

Application to SAT Solving. Before we describe the distance function and its properties, we
briefly note how this distance can be used for SAT solving, see more details in this section
below and a formal description in Sections 5 and 6. We consider the following variant of
per-instance algorithm selection [11]. There are a “dataset” D of formulas and a “portfolio”
P of SAT algorithms such that for every formula φ ∈ D, at least one algorithm in P performs
fast on φ. There is a “meta-algorithm” S that takes a formula ψ as input and tries to select
an algorithm from P that performs fast on ψ. How does S work?

Under certain conditions on D and P (we specify these conditions in Section 6), if an
algorithm from P performs fast on a formula φ ∈ D then this algorithm performs fast on
any formula close to φ. This suggests that S finds a formula φ ∈ D closest to ψ and selects
an algorithm A ∈ P that performs fast on φ. If the distance between ψ and φ is small
enough, then A performs fast on ψ as well. Otherwise (D contains no formula close to ψ),
the meta-algorithm S gives up and returns “can’t select”.

Distance Function. Precise definitions are given in Sections 2 and 3; here we give the main
idea. The distance between two formulas is defined by combining isomorphism of formulas and
symmetric difference of sets. Let φ1 and φ2 be propositional formulas in CNF (φ1 and φ2 are

1574-0617 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/

E. Dantsin and A. Wolpert

sets of clauses). The distance between them, denoted δ(φ1, φ2), is the minimum cardinality
of the symmetric differences of formulas φ′

1 and φ′
2, where the minimum is taken over all

formulas φ′
1 and φ′

2 such that they are isomorphic to φ1 and φ2 respectively. This definition
has two equivalent forms:

• δ(φ1, φ2) is the minimum number of clauses that can be removed from φ1 and φ2 so
that the remaining subformulas are isomorphic to each other;

• δ(φ1, φ2) is the minimum number of clauses that can be added to φ1 and φ2 so that
the resulting superformulas are isomorphic to each other.

By definition, δ is preserved under isomorphism: if φ1, φ′
1 and φ2, φ′

2 are pairs of isomorphic
formulas, then

δ(φ1, φ2) = δ
(
φ′

1, φ
′
2
)
.

In Section 3, we show that δ is a pseudometric on formulas. This pseudometric induces a
metric on isomorphism classes of formulas.

Note that this approach to defining a distance function is essentially a replica of the
approach used by Gromov in the definition of the Gromov–Hausdorff distance on metric
spaces [5,10]. The Gromov–Hausdorff distance between metric spaces M1 and M2 is the
minimum Hausdorff distance between the images of M1 and M2 under distance-preserving
functions f1 and f2 from these spaces to a metric space M , where the minimum is taken over
all M , f1, and f2.

Computing the Distance. In Section 4 we address the problem of computing the distance
function δ. Although it is NP-hard to compute δ(φ1, φ2) in general, it is easier to determine
whether this distance is “small”. Namely, for every integer d, the problem of verifying the
equality δ(φ1, φ2) = d is Turing reducible to the graph isomorphism problem. The latter can
be solved in quasi-polynomial time [4] and, in practice, it is often solved efficiently using
Nauty tools [14].

What distance is computed in the per-instance algorithm selection approach described
above? The meta-algorithm determines whether the dataset contains a formula lying within a
small distance from the input formula ψ. Assuming that a “small distance” means a constant
distance, this can be done by a polynomial-time oracle algorithm with an oracle for graph
isomorphism.

Per-Instance Algorithm Selection. Section 6 shows how the distance δ can be used for per-
instance algorithm, see the brief sketch above. The meta-algorithm S defined in this section
is called the fixed-distance selector. Taking a formula ψ and an integer d as input, S checks
whether the dataset D contains a formula φ such that δ(φ, ψ) � d. If so, S selects an algorithm
A ∈ P that performs fast on φ and returns it. Otherwise, S says “can’t select”. We formulate
conditions on D and P that guarantee fast performance of A on the input formula ψ.

The key point of this approach is that every algorithm A ∈ P has the following property:

If A performs fast on a formula φ, then A performs fast on any formula close to φ.

To formalize this property, we define a class of parameters of formulas that we call parameters
of constant variation (Section 5). By a parameter we mean any computable function from
the set of formulas to the non-negative integers. A parameter π is a parameter of constant
variation if the following holds:

2

Distance on Formulas

• π is preserved under isomorphism;
• for every formula φ, a slight variation of φ can cause only a slight change of π(φ): the

addition of one clause to φ can change π(φ) by only a constant value that does not
depend on φ.

The class of constant-variation parameters includes incidence treewidth, maximum deficiency,
and many other parameters π such that the parameterized problem SAT(π) is fixed-parameter
tractable [15]. This class can be characterized in terms of the distance δ. Namely, π is a
parameter of constant variation if and only if

∣∣π(φ1) − π(φ2)
∣∣ � c · δ(φ1, φ2)

for some number c and all formulas φ1 and φ2. This characterization connects the running
time of parameterized algorithms from the portfolio P with the distance δ.

Extension to CSP Instances. In Section 7 we briefly discuss an extension of the distance
function δ from CNF formulas to instances of the constraint satisfaction problem.

2. Formulas and Isomorphism

Propositional Formulas in CNFs. A literal is a propositional variable or its negation; each of
them is the complement of the other. The complement of a literal a is denoted by ¬a. A clause
is a nonempty finite set of literals that contains no pair of complements. A propositional
formula in Conjunctive Normal Form, called a formula or CNF formula for short, is a finite
set of clauses.

Let φ be a formula. We write |φ| to denote the number of clauses of φ and we write
var(φ) to denote the set of variables appearing in φ (with or without negation). The width
of a clause C is the number of literals in C. If ψ is a formula such that φ ⊆ ψ, we call φ a
subformula of ψ.

An assignment for a formula φ is a function from var(φ) to {0, 1}. Let α be such an
assignment and x ∈ var(φ). We say that x is true under α if α(x) = 1; otherwise x is false
under α. Symmetrically, we say that ¬x is true under α if α(x) = 0; otherwise ¬x is false
under α. A clause is thought of as the disjunction of its literals; we say that α satisfies a
clause C ∈ φ if at least one literal in C is true under α. A formula is thought of as the
conjunction of its clauses; if α satisfies all clauses of φ then we say that α satisfies φ and
call α a satisfying assignment for φ. The empty formula, denoted by �, is considered to be
satisfied by any assignment. The number of satisfying assignments for φ is denoted by #φ
[9].

We write SAT to denote the satisfiability problem for propositional formulas in CNF:
given a formula, does it have a satisfying assignment? The counting version of SAT, denoted
by #SAT, is the following function problem: given a formula φ, find #φ.

Isomorphisms. Informally, two formulas are isomorphic if one of them can be obtained from
the other by renaming variables and flipping literals. A more formal definition is given below.

Let φ1 and φ2 be formulas. Let L1 and L2 be the sets of literals defined by

L1 = var(φ1) ∪
{
¬x | x ∈ var(φ1)

}
L2 = var(φ2) ∪

{
¬x | x ∈ var(φ2)

}
3

E. Dantsin and A. Wolpert

Let f be a bijection from L1 to L2. We call f an isomorphism from φ1 to φ2 if the following
holds:

• f and its inverse preserve the complement relation, which means that for all literals
a, b ∈ L1,

a is the complement of b ⇔ f(a) is the complement of f(b);

• f and its inverse preserve the clauses, which means that for all literals a1, . . . , ak ∈ L1,

{a1, . . . , ak} is a clause of φ1 ⇔
{
f(a1), . . . , f(ak)

}
is a clause of φ2.

Formulas φ1 and φ2 are isomorphic, written as φ1 � φ2, if there is an isomorphism from φ1
to φ2. For every formula φ, we write [φ] to denote the isomorphism class of φ, i.e., the set
of all formulas isomorphic to φ. Thus, [φ] can be viewed as φ up to isomorphism. Note that
an isomorphism between formulas is sometimes defined using renamings only [3], yet in this
paper we adhere to the more general version.

3. Distance Function on Formulas

Let X be a set. A function d from X×X to R�0 is a distance function if d(x, y) = d(y, x) and
d(x, x) = 0 for all x, y ∈ X. Consider the following two conditions on d: for all x, y, z ∈ X,

(1) if d(x, y) = 0 then x = y;
(2) d(x, y) � d(x, z) + d(z, y) (triangle inequality).

The distance function d is a metric on X if d satisfies both (1) and (2). If d satisfies (2), but
not necessarily (1), then d is a pseudometric on X.

To define a distance function on formulas, we recall the notation for the symmetric dif-
ference operation. The symmetric difference of sets A and B is denoted by A�B:

A�B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

Definition 1. Let δ be the following function that maps pairs of CNF formulas to nonnegative
integers:

δ(φ1, φ2) = min
φ′
1,φ

′
2

∣∣φ′
1�φ′

2
∣∣

where the minimum is taken over all formulas φ′
1 and φ′

2 such that φ′
1 � φ1 and φ′

2 � φ2.

Proposition 1. The distance function δ is a pseudometric.

Proof: Consider the distance function d� on finite sets defined as follows: for all finite sets
A and B,

d�(A,B) = |A�B|.

It is well known that d� is a metric. Indeed, we have

(A�B)�(B�C) = A�C

4

Distance on Formulas

and, hence, the triangle inequality for d� holds. Now the triangle inequality for δ follows
from the triangle inequality for d�. �
Suprema and Infima. We say that a formula φ is embedded into a formula ψ if φ is isomorphic
to some subformula of ψ. A formula ψ is called a supremum of formulas φ1 and φ2 if the
following holds:

• both φ1 and φ2 are embedded into ψ;
• for every formula ψ′ such that both φ1 and φ2 are embedded into ψ′, we have |ψ| � |ψ′|.

Similarly, we say that a formula θ is an infimum of formulas φ1 and φ2 if

• θ is embedded into both φ1 and φ2;
• for every formula θ′ such that θ is embedded into both φ1 and φ2, we have |θ| � |θ′|.

Proposition 2. Let ψ and θ be respectively a supremum and an infimum of formulas φ1 and
φ2. Then

δ(φ1, φ2) = |ψ| − |θ|; (1)

δ(φ1, φ2) = 2|ψ| − |φ1| − |φ2|; (2)

δ(φ1, φ2) = |φ1| + |φ2| − 2|θ|. (3)

Proof: It straightforwardly follows from the definition of δ and properties of the symmetric
difference. �
Induced Metric on Isomorphism Classes. It follows from the definition of δ that if φ1 � φ′

1
and φ2 � φ′

2, then

δ(φ1, φ2) = δ
(
φ′

1, φ
′
2
)
.

Thus, δ induces a distance function on isomorphism classes of formulas: this function, denoted
by Δ, is defined by

Δ
(
[φ1], [φ2]

)
= δ(φ1, φ2).

Proposition 1 implies that Δ is a metric on the set of isomorphism classes.

Example. Let φ1 and φ2 be the following formulas:

φ1 =
{
{x1,¬x4}, {x2,¬x3}, {¬x1,¬x2, x4}

}
;

φ2 =
{
{y1,¬y2, y3}, {¬y1, y2}, {y3, y4,¬y5}, {¬y4}

}
.

Consider the following subformula of φ1:

θ =
{
{x1,¬x4}, {¬x1,¬x2, x4}

}
.

The formula θ is isomorphic to the following subformula of φ2:
{
{y1,¬y2, y3}, {¬y1, y2}

}
5

E. Dantsin and A. Wolpert

(this isomorphism is given by x1
→ ¬y1, x2
→ ¬y3, x4
→ ¬y2). Thus, θ is embedded into
both φ1 and φ2. It is easy to check that no formula with more than two clauses is embedded
into φ1 and φ2. Hence, θ is an infimum of φ1 and φ2. Using Proposition 2, namely equality
(3), we can find the distance between φ1 and φ2:

δ(φ1, φ2) = |φ1| + |φ2| − 2|θ| = 3 + 4 − 2 · 2 = 3.

The distance can also be found using a supremum. Consider the following formula that
contains φ2 as a subformula:

ψ =
{
{y1,¬y2, y3}, {¬y1, y2}, {y3, y4,¬y5}, {¬y4}, {¬y3,¬y4}

}
.

The formula φ1 is embedded into ψ with the isomorphism given by x1
→ ¬y1, x2
→ ¬y3,
x3
→ y4, x4
→ ¬y2. Since φ1 and φ2 cannot be embedded into a formula with less than five
clauses, φ is a supremum of φ1 and φ2. By equality (2), we have

δ(φ1, φ2) = 2|ψ| − |φ1| − |φ2| = 2 · 5 − 3 − 4 = 3.

4. Distance Computation

Given formulas φ1 and φ2, how hard is it to compute δ(φ1, φ2)? We show that the problem of
computing the distance δ is at least as hard as the hardest problems in NP. On the positive
side, this general problem can be restricted to a more tractable case: determine whether the
distance δ(φ1, φ2) is “small”, where “small” means a constant not depending on the input
formulas.

To make these claims more precise and to prove them, we consider the following compu-
tational problems:

• The embedding problem: given formulas φ1 and φ2, determine whether φ1 is embedded
into φ2.

• The distance verification problem: given formulas φ1, φ2, and an integer d, determine
whether δ(φ1, φ2) = d.

• The distance computation problem: given formulas φ1 and φ2, find the distance δ(φ1, φ2).

Proposition 3. The embedding problem is NP-complete.

Proof: It is obvious that the embedding problem is in NP. To prove the completeness, we
reduce the Hamiltonian path problem to the embedding problem. Without loss of generality,
we can assume that instances of the Hamiltonian path problem are graphs without isolated
vertices.

In our reduction, every graph G without isolated vertices is represented by a formula
denoted by φG and defined as follows. Let G be a graph on vertices v1, . . . , vn and with edges
e1, . . . , em. The formula φG has n + m variables

x1, . . . , xn, y1, . . . , ym

where each xi represents the vertex vi and each yk represents the edge ek. Using these vari-
ables, we form m clauses of φG: for each edge ek with endpoints vi and vj , there is the clause

6

Distance on Formulas

{yk, xi, xj}. Note that the map G
→ φG has the following property: for all graphs G and H
without isolated vertices, H is isomorphic to a subgraph of G if and only if φH is embedded
into φG.

Now we define a reduction of the Hamiltonian path problem to the embedding problem
as follows. Let G be a graph with n vertices (all of them are non-isolated) and m edges. Let
H be a Hamiltonian path on n vertices: a graph on vertices u1, . . . , un with edges between ui

and ui+1 where i = 1, . . . , n− 1. The reduction maps G to the pair (φH , φG). It is easy to see
that G has a Hamiltonian path if and only if H is isomorphic to a subgraph of G. Therefore,
G has a Hamiltonian path if and only if φH is embedded into φG. It remains to note that the
pair (φH , φG) can be computed from G in polynomial time. �

Proposition 4. The distance verification problem is NP-hard.

Proof: We show that the embedding problem is reducible to the distance verification prob-
lem. The reduction is a polynomial-time algorithm that takes an instance (φ1, φ2) of the
embedding problem as input and outputs the equality

δ(φ1, φ2) = |φ2| − |φ1|. (4)

If φ1 is embedded into φ2 then δ(φ1, φ2) = |φ2| − |φ1| by Proposition 2 and, hence, (4) holds.
Conversely, suppose that (4) holds. By Definition 1,

δ(φ1, φ2) =
∣∣φ′

1�φ′
2
∣∣

for some formulas φ′
1 and φ′

2 such that φ′
1 � φ1 and φ′

2 � φ2. Hence, using (4), we obtain
∣∣φ′

1�φ′
2
∣∣ =

∣∣φ′
1
∣∣− ∣∣φ′

2
∣∣.

By properties of the symmetric difference, the latter equality holds only if φ′
1 is a subformula

of φ′
2. Therefore, φ1 is embedded into φ2, which completes the proof. �

Corollary 5. The distance computation problem is at least as hard as the hardest problems
in NP.

Proof: There is a trivial polynomial-time Turing reduction of the distance verification prob-
lem (shown to be NP-hard) to the distance computation problem. �

Proposition 6. The distance verification problem can be solved by an oracle algorithm A
with the following properties:

• the oracle of A answers questions of whether two given formulas are isomorphic;
• there exists a polynomial p such that on every instance (φ1, φ2, d), the running time of

A is at most p(s) ·Md, where s is the size of the instance and M = max(|φ1|, |φ2|).

Proof: The distance verification problem can be solved using the equivalent definitions of
δ given by Proposition 2. For instance, we can use equality (3) that expresses δ in terms of
infima:

δ(φ1, φ2) = |φ1| + |φ2| − 2|θ|

7

E. Dantsin and A. Wolpert

where θ is an infimum of φ1 and φ2. In fact, this definition shows that distance verification
is equivalent to “infimum verification”:

δ(φ1, φ2) = d ⇔ |θ| = |φ1| + |φ2| − d

2

That is, instead of verifying whether δ(φ1, φ2) = d, we can verify whether φ1 and φ2 have an
infimum θ that contains k clauses where

k = |φ1| + |φ2| − d

2 .

The algorithm A takes (φ1, φ2, d) as input and uses brute force to check whether such an
infimum exists. Namely, A takes the following two steps.

First, A enumerates pairs (θ1, θ2), where θ1 is a k-subset of φ1 and θ2 is a k-subset of φ2.
For each such pair, A asks the oracle whether θ1 and θ2 are isomorphic. If the oracle’s answer
is positive, an infimum of cardinality at least k exists. The number of queries to the oracle is
estimated by

(
|φ1|
k

)
·
(
|φ2|
k

)
=

(
|φ1|

|φ1| − k

)
·
(

|φ2|
|φ2| − k

)

� M |φ1|−k ·M |φ2|−k = M |φ1|+|φ2|−2k = Md.

Second, in a similar way, A checks whether there exist a (k + 1)-subset of φ1 and a (k + 1)-
subset of φ2 such that these subsets are isomorphic. If no such subsets exist, there is an
infimum of cardinality k. The total number of queries to the oracle in the two steps does not
exceed 2Md, and each query is processed in polynomial time. Therefore, the overall running
time is at most p(s) ·Md for some polynomial p. �

The algorithm in Proposition 6 uses an oracle for deciding the formula isomorphism
problem (given two formulas, are they isomorphic?). It is well known that this problem is
polynomially equivalent to the graph isomorphism problem [3]. It is easy to modify the
algorithm A so that its oracle for the formula isomorphism problem can be replaced with an
oracle for the graph isomorphism problem. Let AG be the modified algorithm; the running
time of AG remains the same as up to a polynomial factor.

The complexity class GI consists of problems that have polynomial-time Turing reduction
to the graph isomorphism problem, see for example [12]. It is known that the graph isomor-
phism problem can be solved in quasi-polynomial time [4] and, in practice, it is often solved
efficiently using Nauty tools [14].

Proposition 7. For every integer d, the restriction of the distant verification problem to
instances (φ1, φ2, d) is in GI.

Proof: For each restriction, the algorithm AG described above is a polynomial-time Turing
reduction to the graph isomorphism problem. �

8

Distance on Formulas

5. Parameters of Constant Variation

By a parameter of formulas we mean any computable function from the set of formulas to
the non-negative integers. Natural examples of parameters are the number of clauses, the
number of variables, and the number of satisfying assignments. In this section we define a
class of parameters of constant variation. This type of parameters is needed for the next
section where we describe how the distance δ can be used for SAT solving. We give only
two examples of constant-variation parameters, namely incidence treewidth and maximum
deficiency, but many parameters for which the corresponding parameterized version of SAT
is fixed-parameter tractable are parameters of constant variation.

Definition 2 (parameter of constant variation). We say that a parameter π is a parameter
of constant variation if it has the following two properties:

• for all formulas φ1 and φ2, if φ1 � φ2 then π(φ1) = π(φ2);
• there exists a number c such that for every formula φ and every formula φ′ obtained

from φ by adding one clause, we have

∣∣π(φ′)− π(φ)
∣∣ � c. (5)

The number c is called a bound on the change.

Thus, π is a parameter of constant variation if it is preserved under isomorphism and
the addition of one clause to φ can change π(φ) by only a constant value that does not
depend on φ. The number of clauses in a formula is a trivial example of parameters of
constant variation. As for the number of variables, it is not a parameter of constant variation.
Indeed, consider formulas φ and φ′ where φ′ is obtained from φ by adding one clause with
arbitrarily many new variables. Then there is no constant upper bound on the difference
between | var(φ′)| and | var(φ)|.

For more illustration of the notion of constant-variation parameters, we give two examples:
incidence treewidth and maximum deficiency. Both parameters are well known in connection
with fixed-parameter tractability of SAT.

Incidence Treewidth. For every formula φ, the incidence graph of φ is a bipartite graph G
defined as follows. The set of vertices of G is partitioned into two subsets: one of them is the
set of variables of φ and the other is the set of clauses of φ. There are only edges between
variables and clauses: a variable x is connected by an edge with a clause C if and only if
x ∈ var(C). The treewidth of the incidence graph of φ is called the incidence treewidth of φ
and is denoted by tw(φ).

There are various algorithms that solve SAT and #SAT when an input formula is given
along with a tree decomposition of its incidence graph. For example, the algorithm from
[16] solves #SAT in time 2w · poly(l) where w is the width of the input tree decomposition
and l is the size of the input. Also there are algorithms that build a tree decomposition of
a given graph. One of such algorithm is given in [1]: it approximates a tree decomposition
with the minimum width. The combination of these two algorithms solves #SAT in time
23.7·tw(φ) · poly(l).

Proposition 8. Incidence treewidth is a parameter of constant variation.

9

E. Dantsin and A. Wolpert

Proof: If two formulas are isomorphic then their incidence graphs are isomorphic too and,
therefore, incidence treewidth is preserved under isomorphism. We prove that incidence
treewidth has the second property from Definition 2 with c = 1: for every formula φ and
every formula φ′ obtained from φ by adding one clause, we have tw(φ′) − tw(φ) � 1.

Consider a tree decomposition of the incidence graph of φ: a labeled tree T in which every
vertex is labeled by a bag of vertices. We show how to extend it to a tree decomposition of the
incidence graph of φ′. Let C be the “new” clause added to φ and let x1, . . . , xk be the “new”
variables, i.e., the variables appearing in C and not occurring in φ. These “new” elements
must be added to T . The variables x1, . . . , xk are added in a simple way: (1) select any leaf
of T , (2) connect it with k new vertices, and (3) assign one-element bags {x1}, . . . , {xk} to
the new vertices. Finally, we extend all bags (including the bags of new vertices) by adding
the clause C.

It is easy to see that the result of our extension, the labeled tree T ′, is a tree decomposition
of the incidence graph of φ′. Moreover, by our construction, we have w′ − w = 1 where w
and w′ are the width of T and the width of T ′ respectively. Taking the tree decomposition T
such that w = tw(φ) and using the obvious inequality tw(φ′) � w′, we obtain

tw
(
φ′)− tw(φ) � w′ − w = 1,

which completes the proof. �

Maximum Deficiency. The parameter of formulas called maximum deficiency was intro-
duced in [8]; it relates satisfiability of a formula with matchings in its incidence graph.

Let φ be a formula and let M be a matching in its incidence graph. For each edge in M
that connects a variable x and a clause C, we can assign x a truth value that makes C true.
Therefore, if all clauses of φ are matched by M then φ is satisfiable. The maximum deficiency
of a formula φ, denoted by md(φ), is the number of clauses unmatched by a maximum
matching in the incidence graph of φ (this number remains the same whatever maximum
matching is taken). Since a maximum matching can be found in polynomial time, md(φ)
is computable in polynomial time. Equivalently, due to Hall’s marriage theorem, maximum
deficiency can be defined as follows:

md(φ) = max
φ′⊆φ

(∣∣φ′∣∣− ∣∣var
(
φ′)∣∣)

where the maximum is taken over all subformulas of φ. Note that md(φ) � 0 for all φ
because � is a subformula of every formula. The satisfiability problem parameterized by
maximum deficiency is fixed-parameter tractable: the algorithms in [7,17] solve SAT in time
2md(φ) · poly(l) where l is the size of φ.

Proposition 9. Maximum deficiency is a parameter of constant variation.

Proof: First, maximum deficiency is preserved under isomorphism. Second, it is obvious that
the addition of one clause to a formula φ can increase md(φ) by at most one and, therefore,
the second property from Definition 2 holds with c = 1. �

10

Distance on Formulas

Characterization in Terms of Distance. The proposition below gives an equivalent definition
of parameters of constant variation in terms of the distance δ.

Proposition 10. The following two statements are equivalent:
(1) A parameter π is a parameter of constant variation and c is a bound on the change.
(2) Let π be a parameter and let c be a number such that for all formulas φ1 and φ2,∣∣π(φ1) − π(φ2)

∣∣ � c · δ(φ1, φ2). (6)

Proof: First, suppose that (6) holds. Then δ(φ1, φ2) = 0 implies π(φ1) = π(φ2), which means
that π is preserved under isomorphism. If φ2 is obtained from φ1 by adding one clause, then
δ(φ1, φ2) = 1 and, therefore, we have the second property from Definition 2:

∣∣π(φ2) − π(φ1)
∣∣ � c.

Second, suppose that π is a parameter of constant variation and c is a bound on the
change. Let φ1 and φ2 be arbitrary formulas. By the definition of δ and Proposition 2, there
exist four formulas φ′

1, φ′
2, ψ, θ such that

• φ1 � φ′
1 and φ2 � φ′

2;
• θ is subformula of both φ′

1 and φ′
2;

• both φ′
1 and φ′

2 are subformulas of ψ;
• δ(φ1, φ2) = |ψ| − |θ|.

Thus, ψ is obtained from θ by the addition of δ(φ1, φ2) clauses. Since the addition of one
clause can change π(θ) by at most c, we have inequality (6). �

Note that inequality (6) is the same as in the definition of Lipschitz functions (also called
Lipschitz continuous functions or Lipschitz maps) [5]. Thus, loosely speaking, π is a parameter
of constant variation if and only if π is a Lipschitz function.

6. Fixed-Distance Selector

There are many techniques for designing a “meta-algorithm” that solves SAT using a given
“portfolio” of SAT algorithms [11]. We show how the distance δ can be used in a variant
of the per-instance algorithm selection technique. Namely, we describe an incomplete meta-
algorithm, called a fixed-distance selector, that takes a formula ψ as input and tries to select
an algorithm from the portfolio that performs fast on ψ. Then we formulate conditions on
portfolios and prove that if the conditions are met then the selected algorithm indeed performs
efficiently on ψ.
Datasets and Portfolios. We consider algorithms that take formulas as inputs, for example,
algorithms that solve SAT, or #SAT, or MAXSAT. Let D be a finite set of formulas called
a dataset. With every formula φ ∈ D, we associate a non-empty finite set Eφ of algorithms
that perform fast on φ (we do not define here what “fast” means, this will be done in the
conditions formulated below). Note that sets Eφ associated with different formulas may or
may not overlap. Given a dataset D, the set

P =
⋃
φ∈D

Eφ

11

E. Dantsin and A. Wolpert

of algorithms is called the portfolio corresponding to D. Thus, for every formula φ ∈ D, there
is at least one algorithm A ∈ P that performs fast on φ. Likewise, every algorithm in the
portfolio performs fast on at least one formula from the dataset.
Fixed-Distance Selection. We call the following simple meta-algorithm the fixed-distance
selector and denote it by S. The algorithm uses a dataset D and the corresponding portfolio P.
Let ψ be a formula and let d be a non-negative integer. Taking ψ and d as input, the selector
S either outputs an algorithm A ∈ P or returns “can’t select”:

(1) Find a formula φ ∈ D such that δ(φ, ψ) � d and δ(φ, ψ) is the minimum over all
formulas φ ∈ D. If there is no such formula φ, return “can’t select”.

(2) Select any algorithm A from Eφ and return it.
We do not specify how to find the formulas of D closest to ψ and how to choose one of them.
The straightforward way of finding φ is exhaustive search: for r = 0, 1, . . . , d, enumerate
all formulas φ ∈ D and verify whether δ(φ, ψ) = r (the distance verification problem). It
follows from Proposition 6 that each verification can be done using a polynomial-time oracle
algorithm with an oracle for graph isomorphism. Thus, this exhaustive search requires at
most (d + 1)N runs of the oracle algorithm where N is the cardinality of the dataset.

What is the role of the input number d, should it be small or large? Proposition 11 gives
an upper bound on the running time of the selected algorithm A on ψ. This bound depends
on d: the smaller d is, the faster A is. On the other hand, assuming that N is fixed, if d is
too small, this increases the chance that S returns “can’t select”. Thus, a good tradeoff for
choosing d is needed.
Algorithms Matching with Parameters. An efficient performance of an algorithm A on a
given class of formulas is typically due to the fact that A makes use of some “hidden struc-
ture” of formulas of this class. Different algorithms exploit different hidden structures and,
thereby, they are successful on different classes of formulas. Hidden structures can be utilized
explicitly or implicitly. For example, the fixed-parameter tractable algorithms mentioned in
Section 5 make explicit use of certain properties of the incidence graph: the existence of a
tree decomposition with a small treewidth and a small maximum deficiency. The CDCL SAT
solvers in [2,13] can be viewed as examples of implicit use of community structures.

A hidden structure is often characterized by a parameter π such that the value π(ψ)
determines how fast an algorithm A runs on ψ: the smaller π(ψ) is, the faster A on ψ is.
For the most of such parameters, the running time of A on ψ is exponential in π(ψ) and
polynomial in the size of ψ [6,15]. We say that A matches with π if there exist a number b
and a polynomial q such that for every formula ψ, the running time of A on ψ is at most
bπ(ψ) · q(lψ) where lψ is the size of ψ.

Note two differences between an algorithm A matching with a parameter π and a fixed-
parameter algorithm. First, the input to A is a formula, while the input to a fixed-parameter
algorithm is a formula along with a value of the parameter. Second, the upper bound for A
has the exponential factor bπ(ψ) instead of an arbitrary function f(π(ψ)) as in the case of a
fixed-parameter algorithm.
Conditions on Datasets and Portfolios. Let D be a dataset and P be the corresponding
portfolio. Let a, b, and c be numbers and let q be a polynomial. We say that the tuple
(a, b, c, q) is a bound for D and P if for every formula φ ∈ D and every algorithm A ∈ Eφ,
there exists a parameter π such that the following three conditions are met:

• Condition 1. π(φ) � a.

12

Distance on Formulas

• Condition 2. The algorithm A matches with π and the corresponding base and polyno-
mial are bounded from above by b and q respectively: for every formula ψ, the running
time of A on ψ does not exceed bπ(ψ) · q(lψ) where lψ is the size of ψ.

• Condition 3. The parameter π is a parameter of constant variation and the correspond-
ing bound on the change is less than or equal to c.

Proposition 11. Let D be a dataset and P be the corresponding portfolio used by the fixed-
distance selector S described above. Suppose that numbers a, b, c, and a polynomial q are
bounds for D and P. Given a formula ψ and an integer d as input, let A ∈ P be the algorithm
returned by S on this input. Then the running time of A on ψ is at most ba+cd · q(lψ) where
lψ is the size of ψ.

Proof: Let φ ∈ D be the formula chosen by S as a formula closest to the input formula ψ.
By Conditions 2 and 3, there is a parameter π such that

• π is a parameter of constant variation;
• A runs on ψ in time at most bπ(ψ) · q(lψ).

By Proposition 10 we have π(ψ) � π(φ) + c · δ(φ, ψ). By Condition 1 we have π(φ) � a.
Therefore, π(ψ) � a + cd. �

Thus, A performs efficiently on ψ: assuming that d in the bound is fixed, there exists a
polynomial p(l) = ba+cd · q(l) such that the running time of A on ψ does not exceed p(lψ).

7. Concluding Remarks: Possible Extensions

Isomorphism of Formulas. There are several equivalent definitions of the distance δ (Propo-
sition 2) and all of them use isomorphism of formulas as the central notion. On the other hand,
these definitions do not require exactly our notion of isomorphism: two formulas are isomor-
phic if one of them can be obtained from the other by renaming variables and flipping literals.
For example, we could define φ1 � φ2 based on only renaming, or only flipping, or another
equivalence relation on formulas. In fact, we could define the distance relative to any equiv-
alence relation on formulas: if I is such an equivalence relation, then δI is the corresponding
distance function on formulas. This distance δI could be of interest for SAT solving if, first,
the satisfiability status is preserved under I and, second, the problem of I-equivalence testing
is “easier” than the problem of satisfiability testing (like the graph isomorphism problem is
supposedly easier than the satisfiability problem).
Extension to CSP Instances. The main definitions and results of this paper can be extended
from formulas in CNF to instances of the constraint satisfaction problem (CSP instances). The
adjustments are obvious: clauses are replaced with constraints and isomorphism of formulas
is replaced with isomorphism of CSP instances.

There are several variants of isomorphism of CSP instances; we describe the most common
one. Let V be a finite set of variables that take values from a finite domain D. A constraint
of arity k is a pair (�x,R), where �x is a k-ary tuple of variables from V and R is a k-ary
relation on D. A CSP instance is a triple (V,D, C) where C is finite set of constraints over V
and D. Two CSP instances (V1, D1, C1) and (V2, D2, C2) are isomorphic if there are bijections
f : V1 → V2 and g : D1 → D2 such that the set C2 of constraints is obtained from C1
by replacing each variable x ∈ V1 and each value a ∈ D1 with their images f(x) and g(a)
respectively.

13

E. Dantsin and A. Wolpert

Using this variant of isomorphism, the definitions and propositions of Section 3 are easily
carried over from formulas in CNF to CSP instances. Thus, the distance between two CSP
instances Φ1 and Φ2 is the minimum number of constraints that can be removed from Φ1 and
Φ2 so that the remaining sub-instances are isomorphic to each other. Or, equivalently, this
distance is the minimum number of constraints that can be added to Φ1 and Φ2 so that the
resulting “super-instances” are isomorphic to each other. The definitions and propositions
regarding parameters of constant variation, their characterization in terms of the distance,
and fixed-distance selection are carried over to CSP instances as well.

Acknowledgement

We thank the anonymous reviewers for their targeted comments that helped us significantly
improve the manuscript.

References

[1] E. Amir, Approximation algorithms for treewidth, Algorithmica 56(4) (2010), 448–479.
doi:10.1007/s00453-008-9180-4.

[2] C. Ansótegui, M.L. Bonet, J. Giráldez-Cru and J. Levy, Structure features for SAT
instances classification, Journal of Applied Logic 23 (2017), 27–39. doi:10.1016/j.jal.
2016.11.004.

[3] G. Ausiello, F. Cristiano, P. Fantozzi and L. Laura, Syntactic isomorphism of CNF
Boolean formulas is graph isomorphism complete, in: Proceedings of the 21st Italian Con-
ference on Theoretical Computer Science, 2020, CEUR Workshop Proceedings, Vol. 2756,
CEUR-WS.org, 2020, pp. 190–201.

[4] L. Babai, Graph isomorphism in quasipolynomial time [extended abstract], in: Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, ACM, 2016, pp. 684–697.

[5] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies
in Mathematics, Vol. 33, American Mathematical Society, 2001.

[6] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk
and S. Saurabh, Parameterized Algorithms, Springer, 2015.

[7] H. Fleischner, O. Kullmann and S. Szeider, Polynomial-time recognition of minimal
unsatisfiable formulas with fixed clause-variable difference, Theoretical Computer Science
289(1) (2002), 503–516. doi:10.1016/S0304-3975(01)00337-1.

[8] J.V. Franco and A.V. Gelder, A perspective on certain polynomial-time solvable classes
of satisfiability, Discrete Applied Mathematics 125(2–3) (2003), 177–214. doi:10.1016/
S0166-218X(01)00358-4.

[9] C.P. Gomes, A. Sabharwal and B. Selman, Model counting, in: Handbook of Satisfiability,
2nd edn, Frontiers in Artificial Intelligence and Applications, Vol. 336, IOS Press, 2021,
pp. 993–1014, Chapter 25.

14

https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1016/j.jal.2016.11.004
https://doi.org/10.1016/j.jal.2016.11.004
https://doi.org/10.1016/S0304-3975(01)00337-1
https://doi.org/10.1016/S0166-218X(01)00358-4
https://doi.org/10.1016/S0166-218X(01)00358-4

Distance on Formulas

[10] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Progress
in Mathematics, Vol. 152, Birkhäuser, 1999, Based on the 1981 French original.

[11] H.H. Hoos, F. Hutter and K. Leyton-Brown, Automated configuration and selection of
SAT solvers, in: Handbook of Satisfiability, 2nd edn, Frontiers in Artificial Intelligence
and Applications, Vol. 336, IOS Press, 2021, pp. 481–507, Chapter 12.

[12] J. Köbler, U. Schöning and J. Torán, The Graph Isomorphism Problem: Its Structural
Complexity, Progress in Theoretical Computer Science, Birkhäuser/Springer, 1993.

[13] C. Li, J. Chung, S. Mukherjee, M. Vinyals, N. Fleming, A. Kolokolova, A. Mu and
V. Ganesh, On the hierarchical community structure of practical Boolean formulas, in:
Proceedings of the 24th International Conference on Theory and Applications of Satis-
fiability Testing, SAT 2021, Lecture Notes in Computer Science, Vol. 12831, Springer,
2021, pp. 359–376. doi:10.1007/978-3-030-80223-3_25.

[14] B.D. McKay and A. Piperno, Practical graph isomorphism, II, Journal of Symbolic Com-
putation 60 (2014), 94–112. doi:10.1016/j.jsc.2013.09.003.

[15] M. Samer and S. Szeider, Fixed-parameter tractability, in: Handbook of Satisfiability,
2nd edn, Frontiers in Artificial Intelligence and Applications, Vol. 336, IOS Press, 2021,
pp. 693–736, Chapter 17.

[16] F. Slivovsky and S. Szeider, A faster algorithm for propositional model counting param-
eterized by incidence treewidth, in: Proceedings of the 23rd International Conference on
Theory and Applications of Satisfiability Testing, SAT 2020, Lecture Notes in Computer
Science, Vol. 12178, Springer, 2020, pp. 267–276. doi:10.1007/978-3-030-51825-7_19.

[17] S. Szeider, Minimal unsatisfiable formulas with bounded clause-variable difference are
fixed-parameter tractable, Journal of Computer and System Sciences 69(4) (2004),
656–674. doi:10.1016/j.jcss.2004.04.009.

15

https://doi.org/10.1007/978-3-030-80223-3_25
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/978-3-030-51825-7_19
https://doi.org/10.1016/j.jcss.2004.04.009

	Introduction
	Formulas and Isomorphism
	Distance Function on Formulas
	Distance Computation
	Parameters of Constant Variation
	Fixed-Distance Selector
	Concluding Remarks: Possible Extensions
	Acknowledgement
	References

