
Journal on Satisfiability, Boolean Modeling and Computation 13 (2022) 1–4

No Efficient Disjunction or Conjunction of Switch-Lists

Stefan Mengel mengel@cril.fr
Université d’Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL)
Lens
France

Abstract
It is shown that disjunction of two switch-lists can blow up the representation size

exponentially. Since switch-lists can be negated without any increase in size, this shows
that conjunction of switch-lists also leads to an exponential blow-up in general.

Keywords: Switch-lists, knowledge compilation

Submitted 28 October 2020; revised 19 January 2022; accepted 14 March 2022

1. Introduction

Switch-lists are a representation language for Boolean functions introduced in [1], strongly
related to interval representations [7]. The idea is to write the values of a Boolean function f
on all lexicographically ordered inputs in a value table. Then, to encode f , it suffices to
remember the value of f on the first input and the inputs at which the value of f changes
from that of its predecessor. The resulting data structure is called a switch-list representation
of f . Clearly switch list representations can be far more succinct than truth tables, e.g. for
constant functions.

To systematically understand the properties of switch-lists beyond this, Chromý and
Čepek [2] analyzed them in the context of the so-called knowledge compilation map. This
framework, introduced in the ground-breaking work of Darwiche and Marquis [3] gives a list
of standard properties which should be analyzed for languages used in the area of knowledge
compilation along different axes: succinctness, queries and transformations. The idea of the
knowledge compilation map has had a huge influence and the approach of [3] is widely applied
in knowledge compilation, see e.g. [4–6] for a very small sample.

Chromý and Čepek [2] analyzed switch-lists along the properties of the knowledge com-
pilation map and got a nearly complete picture. It turns out that switch-lists, while being
generally much more succinct than truth tables, have many of their good properties. In par-
ticular, all of the queries in [3] (e.g. consistency, entailement and counting) can be answered
in polynomial time on switch-lists and nearly all of the transformation can be performed
efficiently. The only exception is that [2] leaves open if switch-lists are closed under bounded
disjunction and bounded conjunction, i.e., given two Boolean functions f1 and f2 represented
by switch-lists, can one compute a switch-list representation of f1 ∨ f2, resp. f1 ∧ f2, in
polynomial time. It is shown here that this is not the case: there are Boolean functions f1,
f2 such that any switch list representation of f1 ∨ f2 is exponentially larger than those of
f1 and f2. This completes the analysis of switch-lists along the criteria of the knowledge
compilation map and shows that (bounded) disjunction and conjunction are the only “bad”
transformations of switch-lists, as there is no hope for a polynomial-time procedure in this
case.

1574-0617 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/


S. Mengel

2. Preliminaries

Let f be a Boolean function in the n variables {x1, . . . , xn}. Fix an order π of {1, . . . , n}.
Then, the assignment a : {x1, . . . , xn} → {0, 1} can be identified with the number b(a) ∈
{0, . . . , 2n − 1} by identifying a with b(a) :=

∑n
i=1 a(xπ(i))2i−1. This allows to write a ≺ a′ if

and only if b(a) < b(a′). The intuition behind all this is that the assignments are written in
lexicographical order with respect to π and then a ≺ a′ if and only if a appears before a′.

A switch of the function f with respect to π is a number b ∈ {1, . . . , 2n − 1} such that
f(b) �= f(b−1) (note that here the identification of numbers and assignments to {x1, . . . , xn}
depending on the order π is used). The switch-list representation of f with respect to π
consist of the value f(0) and an ordered list of all switches of f with respect to π. Note that,
for fixed π the switch-list representation uniquely determines f and f uniquely determines
the switch-list representation.

The size of a switch-list representation is defined as n times the number of switches which
corresponds roughly to the natural encoding size.1 Note that the size depends strongly on
the order π.

Following Darwiche and Marquis [3], switch-lists are said to satisfy bounded disjunction
(resp. bounded conjunction) if there is a polynomial-time algorithm that, given two switch-list
representations of functions f1, f2, computes a switch-list representation of f1 ∨ f2 (resp. f1 ∧
f2). Chromý and Čepek [2] also considered the restricted version of bounded disjunction
(resp. conjunction) in which one assumes that the involved functions f1, f2 depend on the
same set of variables.

3. The Proof

Let n ∈ N be even. Consider the functions f1(x1, . . . , xn) := (
∧n/2

i=1 xi) ∨ (
∧n

i=1 ¬xi) and
f2(x1, . . . , xn) := (

∧n
i=n/2+1 xi) ∨ (

∧n
i=1 ¬xi).

Observation 1. There are switch-list representations for f1 and f2 with at most two switches.

Proof: Only give the argument for f1 is given as that for f2 is completely analogous. Fix any
order π in which the variables x1, . . . , xn/2 come before those in xn/2+1, . . . , xn. An assignment
is a model of f1 if and only if it maps all variables to 0 or it maps x1, . . . , xn/2 to 1. So all
models different from 0 lie in the interval [

∑n
j=n/2+1 2j−1,

∑n
j=1 2j−1]. Note that this interval

lies at the end of the order of all assignments. So for these models, f1 only has one switch at
the beginning of the interval. To represent f1 with a switch-list one only needs one additional
switch directly after 0. �

Proposition 1. The function f1 ∨ f2 needs at least 2n/2+1 − 3 switches in any switch-list
representation.

Proof: Let X1 := {x1, . . . , xn/2} and X2 := {xn/2+1, . . . , xn}. Fix any variable order π of
X1 ∪X2 and let 	 denote the lexicographical order with respect to π. The last variable of π
is either in X1 or in X2. Without loss of generality, assume that it is in X2 and that the last
variable in π is xn.

1We do not take into account the size of an encoding of π in this since it is the same for all switchlists
in n variables and thus would only complicate the notion without giving any insights.

2



No Efficient Disjunction or Conjunction of Switch-Lists

For every assignment a to X1, two extensions e0(a) and e1(a) to X1 ∪X2 are constructed
as follows: on X1, the assignments e0(a) and e1(a) are both identical to a; all variables in
X2 \ {xn} are assigned 1 and xn is assigned 0 in e0(a) and 1 in e1(a). Let π1 be the order π
restricted to X1 and let 	1 be the order of the assignments to X1 with respect to π1. Then
for two assignments ei(a1) and ej(a2) it holds that ei(a1) ≺ ej(a2) if and only if a1 ≺1 a2;
or a1 = a2 and i < j. Note that none of the assignments of the form ei(a) is the constant
0-assignment, so ei(a) satisfies f1 ∨ f2 if and only if it satisfies (

∧n/2
i=1 xi) ∨ (

∧n
i=n/2+1 xi).

Now let a1, . . . , a2n/2−1 be the assignments to X1 different from constant 1-assignment
given in the order 	1. Then the resulting sequence

e0(a1), e1(a1), . . . , e0(a2n/2−1), e1(a2n/2−1) (1)

is in lexicographical order as well. Note that because none of the ai is the constant 1-
assignment, it holds that for every i ∈ [2n/2 − 1] that e1(ai) is a model of f1 ∨ f2 while
e0(ai) is not. Thus there must be switches between each pair of consecutive elements of the
sequence (1). So there must be at least 2×(2n/2−1)−1 = 2n/2+1−3 switches in the switch-list
representation of f1 ∨ f2 with respect to the order π. �

The main result of this paper follows directly.

Theorem 1. Switch-lists satisfy neither bounded disjunction nor bounded conjunction. This
remains true when the functions to be disjoined (resp. conjoined) are on the same set of
variables.

Proof: For disjunction, this follows directly from Observation 1 and Proposition 1 since the
outcome of any polynomial-time algorithm would in particular be of polynomial size.

For conjunction, let us define f ′
1 = ¬f1 and f ′

2 = ¬f2. Observe that a switch-list of f can
be negated in constant time by simply flipping the value f(0) (keeping the same permutation
of variables). Clearly f ′

1 ∧ f ′
2 = ¬f1 ∧ ¬f2 = ¬(f1 ∨ f2) and the lower bound for f1 ∨ f2 from

Proposition 1 is of course valid also for ¬(f1 ∨ f2). This gives us an identical lower bound for
the size of any switch list representing f ′

1 ∧ f ′
2. �

4. Conclusion

I was shown that switch-lists neither satisfy bounded disjunction nor bounded conjunction.
This even remains true if both inputs depend on the same set of variables. This completes
the analysis of switch-lists in the framework of the knowledge compilation map.

Let us remark that for practical applicability of switch-lists, this is rather bad news. Many
classical approaches to practical knowledge compilation use so-called bottom-up compilation:
given a conjunction of clauses, or more generally constraints, F =

∧m
i=1 Ci, one first computes

representations R(Ci) of individual constraints Ci. Then one uses efficient conjunction to
iteratively conjoin the R(Ci) to get a representation of F . Since conjunction of even two
switch-lists is hard in general, this approach is ruled out by our results.

To better understand when switch-lists are useful, it would be interesting to find classes
of functions for which small switch-list representations can be computed efficiently, either
theoretically or with heuristic approaches.

3



S. Mengel

Acknowledgements

This work has been partly supported by the PING/ACK project of the French National
Agency for Research (ANR-18-CE40-0011).

References

[1] O. Čepek and R. Hušek, Recognition of tractable DNFs representable by a constant num-
ber of intervals, Discret. Optim. 23 (2017), 1–19. doi:10.1016/j.disopt.2016.11.002.

[2] M. Chromý and O. Čepek, Properties of switch-list representations of Boolean functions,
J. Artif. Intell. Res. 69 (2020), 501–529. doi:10.1613/jair.1.12199.

[3] A. Darwiche and P. Marquis, A knowledge compilation map, J. Artif. Intell. Res. 17
(2002), 229–264. doi:10.1613/jair.989.

[4] H. Fargier and P. Marquis, Disjunctive closures for knowledge compilation, Artif. Intell.
216 (2014), 129–162. doi:10.1016/j.artint.2014.07.004.

[5] H. Fargier, P. Marquis and A. Niveau, Towards a knowledge compilation map for hetero-
geneous representation languages, in: IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China, August 3–9, 2013, F. Rossi, ed.,
IJCAI/AAAI, 2013, pp. 877–883, https://www.ijcai.org/Proceedings/13/Papers/
135.pdf.

[6] K. Pipatsrisawat and A. Darwiche, New compilation languages based on structured de-
composability, in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2008, Chicago, Illinois, USA, July 13–17, 2008, D. Fox and C.P. Gomes,
eds, AAAI Press, pp. 517–522, http://www.aaai.org/Library/AAAI/2008/aaai08-
082.php.

[7] B. Schieber, D. Geist and A. Zaks, Computing the minimum DNF representation of
Boolean functions defined by intervals, Discret. Appl. Math. 149(1–3) (2005), 154–173.
doi:10.1016/j.dam.2004.08.009.

4

https://doi.org/10.1016/j.disopt.2016.11.002
https://doi.org/10.1613/jair.1.12199
https://doi.org/10.1613/jair.989
https://doi.org/10.1016/j.artint.2014.07.004
https://www.ijcai.org/Proceedings/13/Papers/135.pdf
https://www.ijcai.org/Proceedings/13/Papers/135.pdf
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
https://doi.org/10.1016/j.dam.2004.08.009

	Introduction
	Preliminaries
	The Proof
	Conclusion
	Acknowledgements
	References

