

mengel@cril.fr

No Efficient Disjunction or Conjunction of Switch-Lists

Stefan Mengel

Université d'Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL) Lens France

Abstract

It is shown that disjunction of two switch-lists can blow up the representation size exponentially. Since switch-lists can be negated without any increase in size, this shows that conjunction of switch-lists also leads to an exponential blow-up in general.

KEYWORDS: Switch-lists, knowledge compilation

Submitted 28 October 2020; revised 19 January 2022; accepted 14 March 2022

1. Introduction

Switch-lists are a representation language for Boolean functions introduced in [1], strongly related to interval representations [7]. The idea is to write the values of a Boolean function f on all lexicographically ordered inputs in a value table. Then, to encode f, it suffices to remember the value of f on the first input and the inputs at which the value of f changes from that of its predecessor. The resulting data structure is called a *switch-list* representation of f. Clearly switch list representations can be far more succinct than truth tables, e.g. for constant functions.

To systematically understand the properties of switch-lists beyond this, Chromý and Čepek [2] analyzed them in the context of the so-called *knowledge compilation map*. This framework, introduced in the ground-breaking work of Darwiche and Marquis [3] gives a list of standard properties which should be analyzed for languages used in the area of knowledge compilation along different axes: succinctness, queries and transformations. The idea of the knowledge compilation map has had a huge influence and the approach of [3] is widely applied in knowledge compilation, see e.g. [4–6] for a very small sample.

Chromý and Čepek [2] analyzed switch-lists along the properties of the knowledge compilation map and got a nearly complete picture. It turns out that switch-lists, while being generally much more succinct than truth tables, have many of their good properties. In particular, all of the queries in [3] (e.g. consistency, entailement and counting) can be answered in polynomial time on switch-lists and nearly all of the transformation can be performed efficiently. The only exception is that [2] leaves open if switch-lists are closed under bounded disjunction and bounded conjunction, i.e., given two Boolean functions f_1 and f_2 represented by switch-lists, can one compute a switch-list representation of $f_1 \vee f_2$, resp. $f_1 \wedge f_2$, in polynomial time. It is shown here that this is not the case: there are Boolean functions f_1 and f_2 . This completes the analysis of switch-lists along the criteria of the knowledge compilation map and shows that (bounded) disjunction and conjunction are the only "bad" transformations of switch-lists, as there is no hope for a polynomial-time procedure in this case.

1574-0617 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

2. Preliminaries

Let f be a Boolean function in the n variables $\{x_1, \ldots, x_n\}$. Fix an order π of $\{1, \ldots, n\}$. Then, the assignment $a : \{x_1, \ldots, x_n\} \to \{0, 1\}$ can be identified with the number $b(a) \in \{0, \ldots, 2^n - 1\}$ by identifying a with $b(a) := \sum_{i=1}^n a(x_{\pi(i)})2^{i-1}$. This allows to write $a \prec a'$ if and only if b(a) < b(a'). The intuition behind all this is that the assignments are written in lexicographical order with respect to π and then $a \prec a'$ if and only if a appears before a'.

A switch of the function f with respect to π is a number $b \in \{1, \ldots, 2^n - 1\}$ such that $f(b) \neq f(b-1)$ (note that here the identification of numbers and assignments to $\{x_1, \ldots, x_n\}$ depending on the order π is used). The *switch-list* representation of f with respect to π consist of the value f(0) and an ordered list of all switches of f with respect to π . Note that, for fixed π the switch-list representation uniquely determines f and f uniquely determines the switch-list representation.

The *size* of a switch-list representation is defined as n times the number of switches which corresponds roughly to the natural encoding size.¹ Note that the size depends strongly on the order π .

Following Darwiche and Marquis [3], switch-lists are said to satisfy bounded disjunction (resp. bounded conjunction) if there is a polynomial-time algorithm that, given two switch-list representations of functions f_1, f_2 , computes a switch-list representation of $f_1 \vee f_2$ (resp. $f_1 \wedge f_2$). Chromý and Čepek [2] also considered the restricted version of bounded disjunction (resp. conjunction) in which one assumes that the involved functions f_1, f_2 depend on the same set of variables.

3. The Proof

Let $n \in \mathbb{N}$ be even. Consider the functions $f_1(x_1, \ldots, x_n) := (\bigwedge_{i=1}^{n/2} x_i) \vee (\bigwedge_{i=1}^n \neg x_i)$ and $f_2(x_1, \ldots, x_n) := (\bigwedge_{i=n/2+1}^n x_i) \vee (\bigwedge_{i=1}^n \neg x_i).$

Observation 1. There are switch-list representations for f_1 and f_2 with at most two switches.

Proof: Only give the argument for f_1 is given as that for f_2 is completely analogous. Fix any order π in which the variables $x_1, \ldots, x_{n/2}$ come before those in $x_{n/2+1}, \ldots, x_n$. An assignment is a model of f_1 if and only if it maps all variables to 0 or it maps $x_1, \ldots, x_{n/2}$ to 1. So all models different from 0 lie in the interval $[\sum_{j=n/2+1}^n 2^{j-1}, \sum_{j=1}^n 2^{j-1}]$. Note that this interval lies at the end of the order of all assignments. So for these models, f_1 only has one switch at the beginning of the interval. To represent f_1 with a switch-list one only needs one additional switch directly after 0.

Proposition 1. The function $f_1 \vee f_2$ needs at least $2^{n/2+1} - 3$ switches in any switch-list representation.

Proof: Let $X_1 := \{x_1, \ldots, x_{n/2}\}$ and $X_2 := \{x_{n/2+1}, \ldots, x_n\}$. Fix any variable order π of $X_1 \cup X_2$ and let \leq denote the lexicographical order with respect to π . The last variable of π is either in X_1 or in X_2 . Without loss of generality, assume that it is in X_2 and that the last variable in π is x_n .

¹We do not take into account the size of an encoding of π in this since it is the same for all switchlists in *n* variables and thus would only complicate the notion without giving any insights.

For every assignment a to X_1 , two extensions $e_0(a)$ and $e_1(a)$ to $X_1 \cup X_2$ are constructed as follows: on X_1 , the assignments $e_0(a)$ and $e_1(a)$ are both identical to a; all variables in $X_2 \setminus \{x_n\}$ are assigned 1 and x_n is assigned 0 in $e_0(a)$ and 1 in $e_1(a)$. Let π_1 be the order π restricted to X_1 and let \preceq_1 be the order of the assignments to X_1 with respect to π_1 . Then for two assignments $e_i(a_1)$ and $e_j(a_2)$ it holds that $e_i(a_1) \prec e_j(a_2)$ if and only if $a_1 \prec_1 a_2$; or $a_1 = a_2$ and i < j. Note that none of the assignments of the form $e_i(a)$ is the constant 0-assignment, so $e_i(a)$ satisfies $f_1 \lor f_2$ if and only if it satisfies $(\bigwedge_{i=1}^{n/2} x_i) \lor (\bigwedge_{i=n/2+1}^n x_i)$.

Now let $a_1, \ldots, a_{2^{n/2}-1}$ be the assignments to X_1 different from constant 1-assignment given in the order \leq_1 . Then the resulting sequence

$$e_0(a_1), e_1(a_1), \dots, e_0(a_{2^{n/2}-1}), e_1(a_{2^{n/2}-1})$$
(1)

is in lexicographical order as well. Note that because none of the a_i is the constant 1assignment, it holds that for every $i \in [2^{n/2} - 1]$ that $e_1(a_i)$ is a model of $f_1 \vee f_2$ while $e_0(a_i)$ is not. Thus there must be switches between each pair of consecutive elements of the sequence (1). So there must be at least $2 \times (2^{n/2} - 1) - 1 = 2^{n/2+1} - 3$ switches in the switch-list representation of $f_1 \vee f_2$ with respect to the order π .

The main result of this paper follows directly.

Theorem 1. Switch-lists satisfy neither bounded disjunction nor bounded conjunction. This remains true when the functions to be disjoined (resp. conjoined) are on the same set of variables.

Proof: For disjunction, this follows directly from Observation 1 and Proposition 1 since the outcome of any polynomial-time algorithm would in particular be of polynomial size.

For conjunction, let us define $f'_1 = \neg f_1$ and $f'_2 = \neg f_2$. Observe that a switch-list of f can be negated in constant time by simply flipping the value f(0) (keeping the same permutation of variables). Clearly $f'_1 \wedge f'_2 = \neg f_1 \wedge \neg f_2 = \neg(f_1 \vee f_2)$ and the lower bound for $f_1 \vee f_2$ from Proposition 1 is of course valid also for $\neg(f_1 \vee f_2)$. This gives us an identical lower bound for the size of any switch list representing $f'_1 \wedge f'_2$.

4. Conclusion

I was shown that switch-lists neither satisfy bounded disjunction nor bounded conjunction. This even remains true if both inputs depend on the same set of variables. This completes the analysis of switch-lists in the framework of the knowledge compilation map.

Let us remark that for practical applicability of switch-lists, this is rather bad news. Many classical approaches to practical knowledge compilation use so-called bottom-up compilation: given a conjunction of clauses, or more generally constraints, $F = \bigwedge_{i=1}^{m} C_i$, one first computes representations $R(C_i)$ of individual constraints C_i . Then one uses efficient conjunction to iteratively conjoin the $R(C_i)$ to get a representation of F. Since conjunction of even two switch-lists is hard in general, this approach is ruled out by our results.

To better understand when switch-lists are useful, it would be interesting to find classes of functions for which small switch-list representations can be computed efficiently, either theoretically or with heuristic approaches.

Acknowledgements

This work has been partly supported by the PING/ACK project of the French National Agency for Research (ANR-18-CE40-0011).

References

- O. Čepek and R. Hušek, Recognition of tractable DNFs representable by a constant number of intervals, *Discret. Optim.* 23 (2017), 1–19. doi:10.1016/j.disopt.2016.11.002.
- M. Chromý and O. Čepek, Properties of switch-list representations of Boolean functions, J. Artif. Intell. Res. 69 (2020), 501-529. doi:10.1613/jair.1.12199.
- [3] A. Darwiche and P. Marquis, A knowledge compilation map, J. Artif. Intell. Res. 17 (2002), 229–264. doi:10.1613/jair.989.
- [4] H. Fargier and P. Marquis, Disjunctive closures for knowledge compilation, Artif. Intell. 216 (2014), 129–162. doi:10.1016/j.artint.2014.07.004.
- [5] H. Fargier, P. Marquis and A. Niveau, Towards a knowledge compilation map for heterogeneous representation languages, in: *IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence*, Beijing, China, August 3–9, 2013, F. Rossi, ed., IJCAI/AAAI, 2013, pp. 877–883, https://www.ijcai.org/Proceedings/13/Papers/ 135.pdf.
- [6] K. Pipatsrisawat and A. Darwiche, New compilation languages based on structured decomposability, in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13–17, 2008, D. Fox and C.P. Gomes, eds, AAAI Press, pp. 517–522, http://www.aaai.org/Library/AAAI/2008/aaai08-082.php.
- [7] B. Schieber, D. Geist and A. Zaks, Computing the minimum DNF representation of Boolean functions defined by intervals, *Discret. Appl. Math.* 149(1-3) (2005), 154–173. doi:10.1016/j.dam.2004.08.009.