No Efficient Disjunction or Conjunction of Switch-Lists

Stefan Mengel
mengel@cril.fr
Université d'Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL)
Lens
France

Abstract

It is shown that disjunction of two switch-lists can blow up the representation size exponentially. Since switch-lists can be negated without any increase in size, this shows that conjunction of switch-lists also leads to an exponential blow-up in general.

KEYWORDS: Switch-lists, knowledge compilation
Submitted 28 October 2020; revised 19 January 2022; accepted 14 March 2022

1. Introduction

Switch-lists are a representation language for Boolean functions introduced in [1], strongly related to interval representations [7]. The idea is to write the values of a Boolean function f on all lexicographically ordered inputs in a value table. Then, to encode f, it suffices to remember the value of f on the first input and the inputs at which the value of f changes from that of its predecessor. The resulting data structure is called a switch-list representation of f. Clearly switch list representations can be far more succinct than truth tables, e.g. for constant functions.

To systematically understand the properties of switch-lists beyond this, Chromý and Čepek [2] analyzed them in the context of the so-called knowledge compilation map. This framework, introduced in the ground-breaking work of Darwiche and Marquis [3] gives a list of standard properties which should be analyzed for languages used in the area of knowledge compilation along different axes: succinctness, queries and transformations. The idea of the knowledge compilation map has had a huge influence and the approach of [3] is widely applied in knowledge compilation, see e.g. [4-6] for a very small sample.

Chromý and Čepek [2] analyzed switch-lists along the properties of the knowledge compilation map and got a nearly complete picture. It turns out that switch-lists, while being generally much more succinct than truth tables, have many of their good properties. In particular, all of the queries in [3] (e.g. consistency, entailement and counting) can be answered in polynomial time on switch-lists and nearly all of the transformation can be performed efficiently. The only exception is that [2] leaves open if switch-lists are closed under bounded disjunction and bounded conjunction, i.e., given two Boolean functions f_{1} and f_{2} represented by switch-lists, can one compute a switch-list representation of $f_{1} \vee f_{2}$, resp. $f_{1} \wedge f_{2}$, in polynomial time. It is shown here that this is not the case: there are Boolean functions f_{1}, f_{2} such that any switch list representation of $f_{1} \vee f_{2}$ is exponentially larger than those of f_{1} and f_{2}. This completes the analysis of switch-lists along the criteria of the knowledge compilation map and shows that (bounded) disjunction and conjunction are the only "bad" transformations of switch-lists, as there is no hope for a polynomial-time procedure in this case.

2. Preliminaries

Let f be a Boolean function in the n variables $\left\{x_{1}, \ldots, x_{n}\right\}$. Fix an order π of $\{1, \ldots, n\}$. Then, the assignment $a:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ can be identified with the number $b(a) \in$ $\left\{0, \ldots, 2^{n}-1\right\}$ by identifying a with $b(a):=\sum_{i=1}^{n} a\left(x_{\pi(i)}\right) 2^{i-1}$. This allows to write $a \prec a^{\prime}$ if and only if $b(a)<b\left(a^{\prime}\right)$. The intuition behind all this is that the assignments are written in lexicographical order with respect to π and then $a \prec a^{\prime}$ if and only if a appears before a^{\prime}.

A switch of the function f with respect to π is a number $b \in\left\{1, \ldots, 2^{n}-1\right\}$ such that $f(b) \neq f(b-1)$ (note that here the identification of numbers and assignments to $\left\{x_{1}, \ldots, x_{n}\right\}$ depending on the order π is used). The switch-list representation of f with respect to π consist of the value $f(0)$ and an ordered list of all switches of f with respect to π. Note that, for fixed π the switch-list representation uniquely determines f and f uniquely determines the switch-list representation.

The size of a switch-list representation is defined as n times the number of switches which corresponds roughly to the natural encoding size. ${ }^{1}$ Note that the size depends strongly on the order π.

Following Darwiche and Marquis [3], switch-lists are said to satisfy bounded disjunction (resp. bounded conjunction) if there is a polynomial-time algorithm that, given two switch-list representations of functions f_{1}, f_{2}, computes a switch-list representation of $f_{1} \vee f_{2}$ (resp. $f_{1} \wedge$ f_{2}). Chromý and Čepek [2] also considered the restricted version of bounded disjunction (resp. conjunction) in which one assumes that the involved functions f_{1}, f_{2} depend on the same set of variables.

3. The Proof

Let $n \in \mathbb{N}$ be even. Consider the functions $f_{1}\left(x_{1}, \ldots, x_{n}\right):=\left(\bigwedge_{i=1}^{n / 2} x_{i}\right) \vee\left(\bigwedge_{i=1}^{n} \neg x_{i}\right)$ and $f_{2}\left(x_{1}, \ldots, x_{n}\right):=\left(\bigwedge_{i=n / 2+1}^{n} x_{i}\right) \vee\left(\bigwedge_{i=1}^{n} \neg x_{i}\right)$.

Observation 1. There are switch-list representations for f_{1} and f_{2} with at most two switches.
Proof: Only give the argument for f_{1} is given as that for f_{2} is completely analogous. Fix any order π in which the variables $x_{1}, \ldots, x_{n / 2}$ come before those in $x_{n / 2+1}, \ldots, x_{n}$. An assignment is a model of f_{1} if and only if it maps all variables to 0 or it maps $x_{1}, \ldots, x_{n / 2}$ to 1 . So all models different from 0 lie in the interval [$\sum_{j=n / 2+1}^{n} 2^{j-1}, \sum_{j=1}^{n} 2^{j-1}$]. Note that this interval lies at the end of the order of all assignments. So for these models, f_{1} only has one switch at the beginning of the interval. To represent f_{1} with a switch-list one only needs one additional switch directly after 0 .

Proposition 1. The function $f_{1} \vee f_{2}$ needs at least $2^{n / 2+1}-3$ switches in any switch-list representation.

Proof: Let $X_{1}:=\left\{x_{1}, \ldots, x_{n / 2}\right\}$ and $X_{2}:=\left\{x_{n / 2+1}, \ldots, x_{n}\right\}$. Fix any variable order π of $X_{1} \cup X_{2}$ and let \preceq denote the lexicographical order with respect to π. The last variable of π is either in X_{1} or in X_{2}. Without loss of generality, assume that it is in X_{2} and that the last variable in π is x_{n}.

[^0]
No Efficient Disjunction or Conjunction of Switch-Lists

For every assignment a to X_{1}, two extensions $e_{0}(a)$ and $e_{1}(a)$ to $X_{1} \cup X_{2}$ are constructed as follows: on X_{1}, the assignments $e_{0}(a)$ and $e_{1}(a)$ are both identical to a; all variables in $X_{2} \backslash\left\{x_{n}\right\}$ are assigned 1 and x_{n} is assigned 0 in $e_{0}(a)$ and 1 in $e_{1}(a)$. Let π_{1} be the order π restricted to X_{1} and let \preceq_{1} be the order of the assignments to X_{1} with respect to π_{1}. Then for two assignments $e_{i}\left(a_{1}\right)$ and $e_{j}\left(a_{2}\right)$ it holds that $e_{i}\left(a_{1}\right) \prec e_{j}\left(a_{2}\right)$ if and only if $a_{1} \prec_{1} a_{2}$; or $a_{1}=a_{2}$ and $i<j$. Note that none of the assignments of the form $e_{i}(a)$ is the constant 0 -assignment, so $e_{i}(a)$ satisfies $f_{1} \vee f_{2}$ if and only if it satisfies $\left(\bigwedge_{i=1}^{n / 2} x_{i}\right) \vee\left(\bigwedge_{i=n / 2+1}^{n} x_{i}\right)$.

Now let $a_{1}, \ldots, a_{2^{n / 2}-1}$ be the assignments to X_{1} different from constant 1 -assignment given in the order \preceq_{1}. Then the resulting sequence

$$
\begin{equation*}
e_{0}\left(a_{1}\right), e_{1}\left(a_{1}\right), \ldots, e_{0}\left(a_{2^{n / 2}-1}\right), e_{1}\left(a_{2^{n / 2}-1}\right) \tag{1}
\end{equation*}
$$

is in lexicographical order as well. Note that because none of the a_{i} is the constant 1 assignment, it holds that for every $i \in\left[2^{n / 2}-1\right]$ that $e_{1}\left(a_{i}\right)$ is a model of $f_{1} \vee f_{2}$ while $e_{0}\left(a_{i}\right)$ is not. Thus there must be switches between each pair of consecutive elements of the sequence (1). So there must be at least $2 \times\left(2^{n / 2}-1\right)-1=2^{n / 2+1}-3$ switches in the switch-list representation of $f_{1} \vee f_{2}$ with respect to the order π.

The main result of this paper follows directly.
Theorem 1. Switch-lists satisfy neither bounded disjunction nor bounded conjunction. This remains true when the functions to be disjoined (resp. conjoined) are on the same set of variables.

Proof: For disjunction, this follows directly from Observation 1 and Proposition 1 since the outcome of any polynomial-time algorithm would in particular be of polynomial size.

For conjunction, let us define $f_{1}^{\prime}=\neg f_{1}$ and $f_{2}^{\prime}=\neg f_{2}$. Observe that a switch-list of f can be negated in constant time by simply flipping the value $f(0)$ (keeping the same permutation of variables). Clearly $f_{1}^{\prime} \wedge f_{2}^{\prime}=\neg f_{1} \wedge \neg f_{2}=\neg\left(f_{1} \vee f_{2}\right)$ and the lower bound for $f_{1} \vee f_{2}$ from Proposition 1 is of course valid also for $\neg\left(f_{1} \vee f_{2}\right)$. This gives us an identical lower bound for the size of any switch list representing $f_{1}^{\prime} \wedge f_{2}^{\prime}$.

4. Conclusion

I was shown that switch-lists neither satisfy bounded disjunction nor bounded conjunction. This even remains true if both inputs depend on the same set of variables. This completes the analysis of switch-lists in the framework of the knowledge compilation map.

Let us remark that for practical applicability of switch-lists, this is rather bad news. Many classical approaches to practical knowledge compilation use so-called bottom-up compilation: given a conjunction of clauses, or more generally constraints, $F=\bigwedge_{i=1}^{m} C_{i}$, one first computes representations $R\left(C_{i}\right)$ of individual constraints C_{i}. Then one uses efficient conjunction to iteratively conjoin the $R\left(C_{i}\right)$ to get a representation of F. Since conjunction of even two switch-lists is hard in general, this approach is ruled out by our results.

To better understand when switch-lists are useful, it would be interesting to find classes of functions for which small switch-list representations can be computed efficiently, either theoretically or with heuristic approaches.

Acknowledgements

This work has been partly supported by the PING/ACK project of the French National Agency for Research (ANR-18-CE40-0011).

References

[1] O. Čepek and R. Hušek, Recognition of tractable DNFs representable by a constant number of intervals, Discret. Optim. 23 (2017), 1-19. doi:10.1016/j.disopt.2016.11.002.
[2] M. Chromý and O. Čepek, Properties of switch-list representations of Boolean functions, J. Artif. Intell. Res. 69 (2020), 501-529. doi:10.1613/jair.1.12199.
[3] A. Darwiche and P. Marquis, A knowledge compilation map, J. Artif. Intell. Res. 17 (2002), 229-264. doi:10.1613/jair. 989.
[4] H. Fargier and P. Marquis, Disjunctive closures for knowledge compilation, Artif. Intell. 216 (2014), 129-162. doi:10.1016/j .artint. 2014.07.004.
[5] H. Fargier, P. Marquis and A. Niveau, Towards a knowledge compilation map for heterogeneous representation languages, in: IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, F. Rossi, ed., IJCAI/AAAI, 2013, pp. 877-883, https://www.ijcai.org/Proceedings/13/Papers/ 135.pdf.
[6] K. Pipatsrisawat and A. Darwiche, New compilation languages based on structured decomposability, in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, D. Fox and C.P. Gomes, eds, AAAI Press, pp. 517-522, http://www.aaai.org/Library/AAAI/2008/aaai08082 . php.
[7] B. Schieber, D. Geist and A. Zaks, Computing the minimum DNF representation of Boolean functions defined by intervals, Discret. Appl. Math. 149(1-3) (2005), 154-173. doi:10.1016/j.dam. 2004.08.009.

[^0]: ${ }^{1}$ We do not take into account the size of an encoding of π in this since it is the same for all switchlists in n variables and thus would only complicate the notion without giving any insights.

