
Journal on Satisfiability, Boolean Modeling and Computation 12 (2020) 1–15

Backdoors into Two Occurrences

Jan Johannsen jan.johannsen@ifi.lmu.de
Institut für Informatik
Ludwig-Maximilians-Universität München, Germany

Abstract
Backdoor sets for the class CNF(2) of CNF-formulas in which every variable has at most

two occurrences are studied in terms of parameterized complexity. The question whether
there exists a CNF(2)-backdoor set of size k is hard for the class W[2], for both weak and
strong backdoors, and in both cases it becomes fixed-parameter tractable when restricted
to inputs in d-CNF for a fixed d.

Besides that, it is shown that the problem of finding weak backdoor sets is
W[2]-complete, for certain tractable cases. These are the first completeness results in lower
levels of the W-hierarchy for any backdoor set problems.

Keywords: Backdoor set, fixed-parameter tractability, parameterized complexity, com-
pleteness, formulas with two variable occurrences

Submitted August 2016; revised November 2017; published February 2020

1. Introduction

Despite the theoretical hardness of the SAT problem, being the canonical NP-complete prob-
lem [1] and conjectured to not be solvable in sub-exponential time [6], state-of-the-art SAT
solvers have become very efficient, and routinely solve instances arising from applications
with hundreds of thousands of variables and millions of clauses. Even though there are lots of
known tractable cases of SAT, i.e., classes of formulas that can be solved in polynomial time,
the efficiently solvable instances arising in practice usually do not belong to these tractable
classes, and thus the existence of these classes does not suffice to explain this apparent dis-
crepancy between theory and practice.

A possibly better attempt at explaining the discrepancy is that the large, efficiently
solvable instances are in some way close to a tractable case. One possible such notion of
closeness is that there is a small subset of variables, such that after giving values to these
variables the residual formula is in the tractable class. This concept was introduced by Crama
et al. [2] and Williams et al. [13], the latter work coined the name backdoor set for such a set
of variables.

There are several kinds of backdoor sets for each tractable case considered in the literature.
A strong backdoor set for the class C is a set of variables, such that for every setting of these
variables the residual formula is in C. A weak backdoor set for C is a set of variables, such
that for some setting of these variables the residual formula is in C and satisfiable. There is
also the auxiliary notion of a deletion backdoor set to be defined below.

A strong backdoor set of size k allows to solve a formula of size m in time 2k · mO(1).
This runtime bound depends on the two parameters (size of the formula m and backdoor set
size k) in essentially different ways, and the proper framework to analyze such complexity

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution
Non-Commercial License (CC BY-NC 4.0).

©2020 IOS Press, SAT Association and the authors.

J. Johannsen

bounds is fixed-parameter tractability and parameterized complexity as introduced by Downey
and Fellows [3].

Besides the class of fixed-parameter tractable problems, the theory of parameterized com-
plexity provides a hierarchy of classes of increasingly hard problems that are probably fixed-
parameter intractable, the W-hierarchy containing in particular the classes W[t] for t ∈ N,
and a notion of reduction that allows to define hardness and completeness for these classes.

The complexity bound mentioned above thus means that given a formula together with
a strong backdoor set of size k, testing for satisfiability is fixed-parameter tractable w.r.t. the
parameter k. Thus, if the problem of finding a backdoor set of size k was fixed-parameter
tractable w.r.t. the parameter k as well, then the size of a smallest backdoor set would be a
parameter with respect to which SAT is fixed-parameter tractable. Thus, starting with the
work of Nishimura et al. [11], the parameterized complexity of finding backdoor sets was
determined for various tractable cases, most of the results in that direction are collected in
the recent survey by Gaspers and Szeider [5].

A less well-known tractable case is the class CNF(2) of CNF-formulas in which every
variable has at most two occurrences. The satisfiability problem for these formulas can be
solved in linear time [9], and it has been shown to be complete for deterministic logarithmic
space [8].

In this work, we determine the parameterized complexity of finding backdoor sets w.r.t.
the class CNF(2). We show that the problem is hard for the class W[2], for both weak and
strong backdoor sets, and that in both cases it becomes fixed-parameter tractable when
restricted to inputs in d-CNF for a fixed d.

For those tractable cases where the problem of finding backdoor sets is W[2]-hard, in-
cluding CNF(2), the smallest parameterized complexity class known to contain the problem
is W[P], which lies higher up in the W-hierarchy, beyond the classes W[t]. For the tractable
cases of 0-valid and 1-valid formulas, we show that the weak backdoor set problem is com-
plete for W[2]. To the best of our knowledge, these are the first completeness results in the
W-hierarchy for any weak backdoor set problems.

In order prove this latter result, we study a related artificial problem of finding so-called
very weak backdoor sets, whose definition differs from that of weak backdoor sets by weaken-
ing the condition that the residual formula has to be satisfiable. We show that the problem of
finding very weak backdoor sets for these classes is in W[2], by utilizing the characterization
of the W-hierarchy in terms of first-order logic definability. The method also allows us to put
the very weak backdoor set problem for other tractable cases into the class W[2], including
the class CNF(2).

The paper is structured as follows: in Section 2 we review the necessary background on the
problem SAT and its tractable cases, in particular the class CNF(2), on parameterized com-
plexity and on backdoor sets. Section 3 treats some general properties of CNF(2)-backdoor
sets. In Section 4 we show the results about weak CNF(2)-backdoor sets, and in Section 5
those about strong CNF(2)-backdoor sets. Finally Section 6 presents the mentioned upper
bounds in the W-hierarchy.

2. Preliminaries

We briefly review basic notions about the propositional satisfiability problem, mainly to fix
the notation.

2

Backdoors into Two Occurrences

A literal is a variable x or a negated variable x̄. A clause is a disjunction C = a1∨· · ·∨ad
of literals ai. The width w(C) of C is d, the number of literals in C. We identify a clause with
the set of literals occurring in it, even though for clarity we still write it as a disjunction.

A formula in conjunctive normal form (CNF) is a conjunction F = C1 ∧ · · · ∧ Cm of
clauses, it is usually identified with the set of clauses {C1, . . . , Cm}. A formula F in CNF is
in d-CNF if every clause C in F is of width w(C) � d.

A restriction α is a partial assignment α : V → {0, 1} from the set of variables V to the
truth values {0, 1}. A restriction α is extended to literals by setting α(x̄) := 1 − α(x). We
occasionally identify a restriction α with the set of literals it sets, i.e., {a;α(a) = 1}.

For a clause C over the variables V , we define C�α = 1 if α(a) = 1 for some literal a ∈ C,
and otherwise C�α is the disjunction of those literals a ∈ C for which α(a) = 0 does not hold,
i.e., which are left unset by α. Here the empty disjunction is identified with the constant 0.

For a CNF-formula F over V , we define F �α = 0 if C�α = 0 for some C ∈ F , and
otherwise F �α is the conjunction of the clauses C�α for those clauses C ∈ F for which
C�α = 1 is not the case. Here the empty conjunction is identified with the constant 1.

In other words, the formula F �α is obtained by deleting clauses satisfied by α from F ,
and deleting literals falsified by α from the remaining clauses in F .

For ε = 0, 1, we denote by [x := ε] the restriction setting the variable x to ε. This notation
is also extended to literals by letting [x̄ := ε] denote [x := (1 − ε)].

If F �α = 1, then we say that α satisfies F and write α |= F . The satisfiability problem
SAT is the decision problem:

Instance: Formula F in CNF.
Question: Is there a restriction α with α |= F?

This problem SAT is the canonical NP-complete problem [1], and the strong exponential
time hypothesis [6] is a widely-believed conjecture that implies that SAT is not solvable in
sub-exponential time.

A clause C is tautological, if both x and x̄ occur in C for some variable x. Since tautological
clauses are satisfied by all restrictions of their variables, they are irrelevant for the satisfiability
of a formula they appear in. Therefore, SAT and other related problems are often restricted
to formulas that do not contain any tautological clauses. Except when noted, all our results
hold for problems restricted in this way.

2.1. Tractable Cases of SAT

Despite its hardness, many easy special cases of the problem SAT have been identified.
A tractable case of SAT, sometimes also called an “island of tractability”, is a class of
CNF-formulas such that

• membership F ∈ C can be decided in polynomial time,
• the satisfiability problem for formulas F ∈ C can be decided in polynomial time.

Many tractable cases of SAT have been defined and studied in the literature, some well-known
examples of such classes are, e.g., the following:

• The class Horn of Horn formulas, i.e., formulas in which every clause contains at most
one positive literal.

• The class co-Horn of formulas in which every clause contains at most one negative
literal.

3

J. Johannsen

• The class 2-CNF of formulas in which every clause is of width at most 2.
• The class 1-Val of formulas where every clause contains at least one positive literal.
• The class 0-Val of formulas where every clause contains at least one negative literal.

Note that formulas from the latter two classes are trivially satisfiable by the assignment
setting every variable to 1 (resp., 0).

All the above tractable cases are defined by properties of the individual clauses in the
formula, and by the classification result of Schaefer [12], these are the only maximal such
classes of CNF formulas.

A different tractable class which is not defined by properties of clauses is the class of
cluster formulas [7,10]. Two clauses C and C ′ clash if they contain complementary literals,
i.e. if a ∈ C and ā ∈ C ′ for some literal a. A formula F is a hitting formula if any two different
clauses in F clash. The class Clu of cluster formulas is the class of CNF-formulas that are
variable-disjoint unions of hitting formulas.

Another less well-known tractable class is the class CNF(2) of formulas with at most two
occurrences of every variable – in a way a dual to 2-CNF. It is known that satisfiability of
formulas in CNF(2) can be tested in linear time [9] and in logarithmic space – in fact it is
complete for the class of problems solvable in deterministic logarithmic space [8].

2.2. Parameterized Complexity

We briefly review the basic concepts of parameterized complexity as used in this work, mostly
following the textbook of Flum and Grohe [4].

A parameterized problem is a decision problem P together with a parameterization, i.e., a
polynomial time computable mapping that associates with every instance x of P a parameter
k = k(x) ∈ N. We denote by n = n(x) ∈ N the size of an instance, the number of bits
required to represent x.

A parameterized problem P with parameter k is fixed-parameter tractable if there is an
algorithm that solves P in time f(k) ·O(nd) for some computable function f and d ∈ N. The
class of parameterized problems that are fixed-parameter tractable is called FPT.

An FPT-reduction between parameterized problems P and P ′ with parametrizations k
and k′, resp., is a function r mapping instances of P to instances of P ′ such that

• r is computable in FPT-time f(k) ·O(nd) for some computable function f and d ∈ N,
• r(x) is a positive instance of P ′ iff x is a positive instance of P ,
• there is a computable function g s.t. for every instance x of P we have k′(r(x)) �
g(k(x)).

For a first-order formula ϕ(X) with a free relation variable X of arity d, the parameterized
problem WD(ϕ) is the following:

Instance: Structure A for the language of ϕ, k ∈ N.
Parameter: k.
Question: Is there a relation R ⊆ Ad of size |R| � k with A |= ϕ(R)?

A first-order formula is a Πt-formula if it has at most t alternations of quantifiers, with the
outermost quantifier being universal. A Σt-formula has at most t alternations of quantifiers,
with the outermost one an existential. The class W[t] is the class of parameterized problems
that are FPT-reducible to some problem WD(ϕ) for a Πt-formula ϕ(X).

The parameterized problem Weighted Circuit SAT is:

4

Backdoors into Two Occurrences

Instance: Boolean circuit C, k ∈ N.
Parameter: k.
Question: Is there a satisfying assignment α |= C with |{x;α(x) = 1}| � k?

The class W[P] is the class of parameterized problems that are FPT-reducible to Weighted

Circuit SAT. Since restricted forms of Weighted Circuit SAT (for circuits of constant
depth and weft t, see [3]) are complete for the classes W[t], we have that

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t] ⊆ · · · ⊆ W[P].

The parameterized problem Hitting Set is the following :

Instance: Family {S1, . . . , Sm} of subsets Si ⊆ U , k ∈ N.
Parameter: k.
Question: Is there a set H ⊆ U of size |H| � k with H ∩ Si 	= ∅ for every i?

Hitting Set is one of the canonical W[2]-complete problems. To see that it is in W[2], view
an instance as a structure with unary predicates U(x) for the elements of U , and set(x) for
the sets Si, and the element relation ∈ between elements of U and sets. Then Hitting Set

is the problem WD(ϕ) for the following Π2-formula ϕ(X) with a unary relation variable X:

ϕ(X) ≡ ∀x
(
set(x) → ∃y

(
U(y) ∧X(y) ∧ x ∈ y

))
.

2.3. Backdoor Sets

Let F be a CNF-formula in the variables V , and let C be a tractable case of SAT. Let X ⊆ V
be a set of variables. The formula F \X is the formula obtained by deleting from the clauses
in F all occurrences of literals x and x̄ for x ∈ X.

• A strong C-backdoor set for F is a subset X ⊆ V such that for every assignment
α : X → {0, 1}, the formula F �α is in C.

• A weak C-backdoor set for F is a subset X ⊆ V such that there is an assignment
α : X → {0, 1} such that the formula F �α is in C and satisfiable.

• A deletion C-backdoor set for F is a subset X ⊆ V such that the formula F \X is in C.

If the class C is closed under subsets, then every deletion backdoor set is also a strong backdoor
set, since F �α ⊆ F \X for every α : X → {0, 1}. This fact is useful since deletion backdoor
sets are usually easier to find than strong backdoor sets. For classes C that are also closed
under unions, strong and deletion backdoor sets coincide, since F \X =

⋃
α F �α where the

union is over all α : X → {0, 1}.
The parameterized problem Strong C-Backdoor Set is:

Instance: CNF-formula F , and k ∈ N.
Parameter: k.
Question: Is there a strong C-backdoor set for F of size k?

The problems Weak C-Backdoor Set and Deletion C-Backdoor Set are defined
analogously.

The parameterized complexity of these problems for various tractable classes of formulas
has been determined in the literature. For the classes C = Horn, co-Horn, 2-CNF, 1-Val

5

J. Johannsen

and 0-Val, the problem Strong C-Backdoor Set is fixed parameter tractable. Since
these classes are defined by properties of individual clauses, they are closed under subsets
and unions, so the problem is the same as Deletion C-Backdoor Set, which is easily
seen to be fixed parameter tractable in these cases.

The problem Weak C-Backdoor Set for all of these classes, on the other hand, is
W[2]-hard, but fixed parameter tractable when the input is restricted to formulas in d-CNF
for a fixed d ∈ N. For the class of cluster formulas, both problems Strong Clu-Backdoor

Set and Weak Clu-Backdoor Set are W[2]-hard, but are in FPT when restricted to
inputs in d-CNF. These results, together with many more results for other tractable cases,
can be found in a recent survey by Gaspers and Szeider [5].

3. Backdoors into CNF(2)

Since the class CNF(2) is obviously not closed under unions, deletion and strong backdoor
sets do not necessarily coincide for this class. This is actually not the case, as the following
example shows. Consider the following set of clauses:

(x1 ∨ x2 ∨ x̄3), (x̄1 ∨ x2 ∨ x5), (x̄1 ∨ x̄3 ∨ x̄5), (x̄2 ∨ x4), (x3 ∨ x̄4).

The variables {x1, x2, x3} occur three times each, so the smallest deletion CNF(2)-backdoor
set has size 3. But {x1} is a strong CNF(2)-backdoor set, showing that strong backdoors can
be smaller than deletion backdoors for this class.

For the base class CNF(2), it matters whether formulas are represented as multisets, with
multiple occurrences of the same clause allowed, or as sets, since the number of occurrences
of variables is counted differently in both cases.

If formulas are represented as multisets, then the smallest deletion CNF(2)-backdoor set
is exactly the set of variables with more than two occurrences, hence we trivially have:

Proposition 1. For formulas represented as multisets, the problem Deletion CNF(2)-
Backdoor Set can be solved in linear time.

On the other hand, for formulas represented as sets, clauses can become equal – and hence
identified – if literals are deleted or set to 0. To show that this actually makes a difference
note the following proposition.

Proposition 2. For formulas represented as sets, the problem Deletion CNF(2)-
Backdoor Set is NP-hard.

Proof: We reduce the well-known NP-hard problem Vertex Cover to Deletion

CNF(2)-Backdoor Set. For a graph G = (V,E), define a formula F = F (G) as follows: F
has variables xv ∈ V for v, and for every edge {u, v} a subformula Fe of three clauses:

xu ∨ xv, x̄u ∨ xv, xu ∨ x̄v.

Now if U is a vertex cover in G, the set XU = {xu;u ∈ U} is a deletion CNF(2)-backdoor set:
after deleting the variable xu for u ∈ U , the remaining formula consists of the unit clauses
xv and x̄v for v ∈ V \ U .

6

Backdoors into Two Occurrences

On the other hand, if U ⊆ V is not a vertex cover, and let edge e = {u, v} be uncovered,
then the subformula Fe remains unchanged after deleting the variables in XU , thus xu and
xv occur at least three times each, thus XU is not a deletion CNF(2)-backdoor set. Thus F
has a deletion CNF(2)-backdoor set of size k iff G has a vertex cover of size k. �

We will focus on the case of formulas represented as sets in the remainder of the paper.

4. Weak Backdoors

We now show the hardness of finding weak CNF(2)-backdoor sets.

Theorem 3. Weak CNF(2)-Backdoor Set is W[2]-hard.

Proof: We reduce Hitting Set to Weak CNF(2)-Backdoor Set. Let an instance S =
{S1, . . . , Sm} of Hitting Set be given, with U = S1 ∪ · · · ∪ Sm. We construct a formula
F = F (S) in the variables xs for s ∈ U plus zi,1 and zi,2 for 1 � i � m, such that F has a
weak CNF(2)-backdoor set of size k iff S has a hitting set of size k.

The formula F has for every set Si ∈ S the subformula Di consisting of the three clauses
∨
s∈Si

xs ∨ z̄i,1, zi,1 ∨ zi,2, zi,1 ∨ z̄i,2.

Let H ⊆ U be a hitting set for S. We show that XH := {xs; s ∈ H} is a weak
CNF(2)-backdoor set for F (S) of the same size. Let α be the assignment with α(xs) = 1
for every s ∈ H. Then since H hits every set Si, it follows that α |= ∨

s∈Si
xs for every i, and

hence Di�α = (zi,1 ∨ zi,2) ∧ (zi,1 ∨ z̄i,2) is in CNF(2) and satisfiable for every i. Thus F �α is
in CNF(2) and satisfiable.

For the other direction, let B be a weak CNF(2)-backdoor set for F , and let α be an
assignment to the variables in B such that F �α is in CNF(2) and satisfiable. We first show
that without loss of generality, B contains only variables xs for s ∈ U . If B contains a
variable zi,b, then the assignment α restricted to the variables in B \ {zi,b} will still leave
every subformula Dj for j 	= i in CNF(2) and satisfiable. Thus if we let B′ = B \{zi,b}∪{xs}
for an arbitrary s ∈ Si, and let α′(xs) = 1 and α′ coincide with α for all variables in
B \ {zi,b}, then F �α′ is in CNF(2) and satisfiable, thus B′ is a weak CNF(2)-backdoor set
with |B′| � |B|.

Now we define HB := {s;xs ∈ B}, and show that HB is a hitting set for S of size |B|.
Assume for contradiction that Si ∩HB = ∅. Then the formula Di is left unchanged in F �α,
and therefore the variable zi,1 has three occurrences in F �α. Hence B can not be a weak
CNF(2)-backdoor set. �

In the survey [5] of Gaspers and Szeider, there is a generic construction to show the
W[2]-hardness of the problem Weak C-Backdoor Set for a class C. Our reduction is
based on that construction, but it is simplified, and it has the property that the formula
F (S) only depends on S and is independent from the parameter k. In other words, it is a
polynomial time reduction between the underlying classical problems that does not increase
the parameter. The same simplification can also be made to other applications of the generic
construction in [5], e.g. for C = Horn and C = 2-CNF.

On the other hand, the problem of finding weak CNF(2)-backdoor sets becomes fixed-
parameter tractable when restricted to inputs in 3-CNF:

7

J. Johannsen

Theorem 4. The problem Weak CNF(2)-Backdoor Set for 3-CNF-formulas is fixed-
parameter tractable.

Proof: We will devise a bounded search tree algorithm that, given a formula F and parameter
k, will search for a restriction α of size |α| � k such that F �α is in CNF(2) and satisfiable.
We will call such a restriction a backdoor restriction, its domain is a weak CNF(2)-backdoor
set. Obviously, a backdoor restriction exists if and only if a weak CNF(2)-backdoor set exists.

A set of three clauses C1, C2, C3 in F that share a common variable x will be called an
obstruction.

Proposition 5. Let an obstruction C1, C2, C3 in F be given. Then every backdoor restriction
α for F must set some variable that occurs in C1, C2, C3.

This holds because otherwise we have Ci�α = Ci for i = 1, 2, 3 and therefore F �α still
contains the obstruction, and is thus not in CNF(2).

Once we have chosen a literal to be set, the following obvious proposition shows the
correctness of the recurrence that the search tree algorithm is based on.

Proposition 6. F has a backdoor restriction of size k that contains the assignment [a := 1]
iff F �[a := 1] has a backdoor restriction of size k − 1.

These two proposition show the correctness of the following algorithm, that finds a back-
door restriction of size k in a 3-CNF-formula F if one exists.

Build a search tree of depth k, where at each node v at depth d we keep a partial
assignment αv of size |αv| = d. At the root we have α = ∅. A node v is closed if F �αv is in
CNF(2).

To extend the tree from a node v of depth d < k that is not closed and labeled with α,
find an obstruction C1, C2, C3 in F �α with the common variable x.

Now for each literal a based on a variable occurring in C1, C2, C3, add a child to v with the
assignment α ∪ [a := 1]. These are at most 14 children since the clauses C1, C2, C3 together
contain at most 6 distinct variables besides x.

Now, for every closed leaf v labeled α, test whether F �α is satisfiable. If so, α is a
backdoor restriction. If there is no closed leaf, or for no closed leaf v the residual formula
F �αv is satisfiable, then F does not have a backdoor restriction of size k, and hence no weak
CNF(2)-backdoor set of size k.

Since every inner node has at most 14 children, the size of the search tree is 14k, and
therefore the runtime is O(14kn). �

The algorithm generalizes in the obvious way to formulas in d-CNF for every fixed d ∈ N,
where the branching degree of the search tree is 2(3(d− 1) + 1) = 6d− 4, and hence its size
is (6d− 4)k, which yields a runtime of (6d− 4)k ·O(n).

5. Strong Backdoors

Next, we show the hardness of finding strong CNF(2)-backdoor sets. Unfortunately, the proof
of this result only works when the input formulas are allowed to contain tautological clauses.
The complexity of the problem restricted to formulas without tautological clauses remains
open.

8

Backdoors into Two Occurrences

Theorem 7. Strong CNF(2)-Backdoor Set is W[2]-hard.

Proof: We reduce Hitting Set to Strong CNF(2)-Backdoor Set. The reduction is
similar to that used in the proof of Theorem 3.

Let an instance S = {S1, . . . , Sm} of Hitting Set be given, with U := S1 ∪ · · · ∪ Sm.
We construct a formula F = F (S) in the variables xs for s ∈ U plus zi,1, zi,2 for 1 � i � m,
such that F has a strong CNF(2)-backdoor set of size k iff S has a hitting set of size k.

The formula F has three clauses for every set Si ∈ S, viz.

Ci :=
∨
s∈U

x̄s ∨
∨
s∈Si

xs ∨ zi,1, z̄i,1 ∨ zi,2, z̄i,1 ∨ z̄i,2.

Let H ⊆ U be a hitting set for S. We show that XH := {xs; s ∈ H} is a strong
CNF(2)-backdoor set for F (S) of the same size.

Let α be an assignment to the variables in XH . If α(xs) = 0 for some s ∈ H, then α
satisfies

∨
s∈U x̄s, and hence α |= Ci for every i. If, on the other hand α(xs) = 1 for every

s ∈ H, then since H is a hitting set, α satisfies
∨

s∈Si
xs and hence α |= Ci for very i. Thus

in either case F �α ∈ CNF(2).
Now let B be strong CNF(2)-backdoor set for F . As in the proof of Theorem 3, we first

show that without loss of generality, B contains only variables xs for s ∈ S. If B contains a
variable zi,b, then as before we can exchange it for a variable xs for an arbitrary s ∈ Si.

Now as above, we define HB := {s;xs ∈ B}, and show that HB is a hitting set for S
of size |B|. Assume for contradiction that Si ∩ HB = ∅, and let α be the assignment with
α(xs) = 1 for every xs ∈ B. Then α does not satisfy any of the clauses associated with Si,
and thus the variable zi,1 occurs three times in F �α. Hence B cannot have been a strong
CNF(2)-backdoor set. �

The comment after the proof of Theorem 3 applies here as well: the reduction from
Hitting Set to Strong CNF(2)-Backdoor Set given is actually a polynomial time
reduction that does not change the parameter.

As in the case of weak CNF(2)-backdoor sets, the problem of finding strong CNF(2)-backdoor
sets becomes fixed-parameter tractable when restricted to inputs in 3-CNF.

Theorem 8. Strong CNF(2)-Backdoor Set for 3-CNF-formulas is fixed-parameter
tractable.

Proof: Let F be a 3-CNF-formula, and X a subset of the variables of F . The following
two propositions show the correctness of the bounded search tree algorithm to be presented
below.

Proposition 9. Let α : X → {0, 1} be a restriction. If C1, C2, C3 is an obstruction in F �α,
then every strong CNF(2)-backdoor set for F extending X contains a variable that occurs in
C1, C2, C3.

Otherwise, if Y ⊇ X is a set that is disjoint from the variables of C1, C2, C3, then for
any restriction β : Y → {0, 1} that extends α the formula F �β still contains the obstruction
C1, C2, C3, and is therefore not in CNF(2).

Once we have chosen a variable to be included in the backdoor set, the following propo-
sition, which holds obviously, shows the correctness of the recurrence that the search tree
algorithm is based on.

9

J. Johannsen

Proposition 10. F has a strong CNF(2)-backdoor set of size k that contains the variable x
iff there is a set B of size |B| � k − 1 that is a strong CNF(2)-backdoor set for F �[x := 0]
and for F �[x := 1].

We build a search tree of depth k, where at each node of depth d a set of variables Xv of
size |Xv| = d is kept. Together with Xv we keep a set Cv ⊆ 2Xv of closed assignments, with
the property that F �α ∈ CNF(2) for every α ∈ Cv. A node v is closed if Cv = 2Xv .

To extend the tree from a node of depth d < k labeled (X,C) that is not closed, pick an
assignment α : X → {0, 1} such that F �α /∈ CNF(2), and an obstruction, i.e., three clauses
C1, C2, C3 in F �α that share a common variable x.

For each variable y occurring in C1, C2, C3, add a child to v labeled with X ∪ {y}. For
each of these children, add a set C ′ of assignments. To determine the set C ′, we first put both
extensions α ∪ {[y := 0]} and α ∪ {[y := 1]} of every closed assignment α ∈ C into C ′. Then
for every open assignment β ∈ 2X \ C we consider the extension β0 := β ∪ {[y := 0]}, and
test whether F �β0 is in CNF(2). If that is the case, we add β0 to C ′. We perform the same
for the assignment β1 := β ∪ {[y := 1]}.

If a node is closed, i.e., C = 2X , then X is a strong backdoor set. If on the other hand,
no closed node has been found up to depth k, then by the two Propositions 9 and 10 above
there is no strong backdoor set of size k.

Since the three clauses {C1, C2, C3} contain at most 7 variables, size of the search tree is
bounded by 7k. At each node we need to perform at most 2kO(n) computation steps, so the
runtime is bounded by 14kO(n). �

As in the case of the algorithm for weak backdoor sets, this algorithm generalizes in the
obvious way to formulas in d-CNF for every fixed d ∈ N, with a larger search tree size and
thus a larger exponential dependence on the parameter k.

6. Upper Bounds

For most weak backdoor set problems that are not known to be in FPT, there is no exact char-
acterization of their complexity. With the exception of a few cases which are W[P]-complete,
for most of the other cases it is only known that they are W[2]-hard and in W[P]. We will now
show the – to the best of our knowledge – first W[2]-completeness results for weak backdoor
set problems in the following theorem.

Theorem 11. For the classes C = 1-Val and 0-Val, the problem Weak C-Backdoor

Set is W[2]-complete.

Since finding weak backdoor sets for these classes is known to be W[2]-hard [5], we only
need to show that they are in W[2].

Since all formulas in 1-Val and 0-Val are satisfiable, weak backdoor sets into these
classes are the same as the very weak backdoor sets defined next. This is an admittedly
artificial notion of backdoor set where we weaken the requirement that the residual formula
is satisfiable to the condition that it is not already false.

We define a very weak C-backdoor set for F to be a subset X ⊆ V such that there is an
assignment α : X → {0, 1} such that the formula F �α is in C and non-trivial, i.e., F �α 	= 0.

The parameterized problem Very Weak C-Backdoor Set is:

10

Backdoors into Two Occurrences

Table 1. Relations of a formula as a structure

Relation Meaning
lit(a) a is a literal
cl(c) c is a clause
occ(a, c) literal a occurs in clause c

comp(a, b) a and b are complementary literals
pos(a) a is a positive literal
neg(a) a is a negative literal

Instance: CNF-formula F , and k ∈ N.
Parameter: k.
Question: Is there a very weak C-backdoor set for F of size k?

For the classes 1-Val and 0-Val, this problem is equivalent to Weak C-Backdoor

Set, thus to prove Theorem 11 it suffices to show it is in W[2]. Since our technique readily
generalizes to other cases, we show that the problem of finding very weak C-backdoor sets
is in W[2], for various tractable cases C. For the other cases besides 1-Val and 0-Val, this
might turn out to be useful in the future.

We show that these problems are in the class W[2] by making use of the logical charac-
terization of this class.

Proposition 12. For each of the tractable classes

C = CNF(2),Horn,co-Horn, 2-CNF,Clu, 1-Val and 0-Val,

the problem Very Weak C-Backdoor Set is in W[2].

Proof: View a CNF-formula F as a structure whose elements are the literals of F and the
clauses of F , with the relations described in Table 1.

For each of the classes C in the statement of the theorem, we will define a Π2-formula
ϕC(A) in this language with a free set variable A expressing that A is a backdoor restriction
into the class C, i.e. F |= ϕC(α) for a restriction α iff F �α ∈ C. We also define a Π2-formula
ntrivA expressing that the formula F after restriction by A is nontrivial. Thus the problem
Very Weak C-Backdoor Set is equivalent to the problem WD(ψC), where ψC :≡ ntrivA∧
ϕC(A). Since both formulas ntrivA and ϕC(A) are Π2-formulas, this shows that these problems
are in W [2].

We start by expressing that literal a is false under A. By uniqueness of the complementary
literal, this can be expressed by the following formula:

falseA(a) :≡ ∃x
(
comp(a, x) ∧ A(x)

)
≡ ∀x

(
comp(a, x) → A(x)

)
.

Note that this formula is a Δ1-formula, i.e., it is equivalent to both a Π1- and a Σ1-formula.
Therefore it can be used like an atomic formula without increasing the quantifier complexity.

We then can express the condition that the formula F restricted by A is non-trivial by
the Π2-formula

ntrivA :≡ ∀c cl(c) → ∃a lit(a) ∧ occ(a, c) ∧ ¬ falseA(a).

11

J. Johannsen

We define a Σ1-formula stating that the clause c is satisfied by A as:

satA(c) :≡ ∃x
(
occ(x, c) ∧ A(x)

)
.

The following Π1-formulas express that clauses c1 and c2 are equal after restriction by A:

subA(c1, c2) :≡ ∀x
(
occ(x, c1) → falseA(x) ∨ occ(x, c2)

)
,

eqA(c1, c2) :≡ subA(c1, c2) ∧ subA(c2, c1).

We can express that the variable underlying literal a occurs in clause c by the Δ1-formula

varocc(a, c) :≡ occ(a, c) ∨ ∃x
(
comp(a, x) ∧ occ(x, c)

)
≡ occ(a, c) ∨ ∀x

(
comp(a, x) → occ(x, c)

)
.

With the aid of these formulas, we can write down the formula as:

∀c1, c2, c3
∧

1�i�3
cl(ci) →

(∨
1�i�3

satA(ci) ∨
∨

1�i<j�3
eqA(ci, cj)

∨ ∀a
(

lit(a) → A(a) ∨ falseA(a) ∨
∨

1�i�3
¬ varocc(a, ci)

))
.

This formula ϕCNF(2)(A) states that for any three clauses one of the following holds:

• either one of them is satisfied by A,
• or two of them are equal under A,
• or every variable that is not set by A does not occur in one of them.

Thus F |= ϕCNF(2)(α) if and only if F �α is in CNF(2).
We can use the same technique to obtain upper bounds on the complexity of finding very

weak backdoor sets for other tractable cases:
The following Π2-formula ϕ2-CNF(A) states that F restricted by A is a 2-CNF-formula.

∀c cl(c) → satA(c) ∨ ∀a1, a2, a3
∧

1�i�3
lit(ai) →

(∨
1�i<j�3

ai = aj

∨
∨

1�i�3
A(ai) ∨

∨
1�i�3

falseA(ai) ∨
∨

1�i�3
¬ occ(ai, c)

)
.

This formula states that for every clause c that is not satisfied by A, and any three literals,
one of the following holds:

• either two of the literals are equal,
• or at least one of them is set by A,
• or at least one of them does not occur in c.

Thus F |= ϕ2-CNF(α) if and only if F �α is in 2-CNF.

12

Backdoors into Two Occurrences

The following Π2-formula ϕHorn(A) states that F restricted by A is a Horn formula.

∀c cl(c) → satA(c) ∨ ∀a, a′ lit(a) ∧ lit
(
a′
)
→

(
a = a′ ∨ A(a) ∨ A

(
a′
)

∨ falseA(a) ∨ falseA
(
a′
)

∨ ¬ occ(a, c) ∨ ¬ occ
(
a′, c

)
∨ neg(a) ∨ neg

(
a′
))

This formula states that for every clause c unsatisfied by A, and any two distinct literals that
are not set by A and occur in c, one of them is negative. The formula ϕco-Horn(A) is defined
symmetrically.

A result of Nishimura et al. [10] characterizes the class of cluster formulas by excluded
configurations: A formula is a cluster formula if it does not contain any of the following
obstructions:

1. two clauses C and C ′ that overlap, i.e., have a variable in common, but do not clash,
2. three clauses C1, C2 and C3 such that C1 and C2 clash, and C2 and C3 clash, but C1

and C3 do not clash.
We define Σ1-formulas stating that two clauses overlap or clash as:

overlap(c1, c2) :≡ ∃x lit(x) ∧ ¬A(x) ∧ ¬ falseA(x) ∧ varocc(x, c1) ∧ varocc(x, c2),

clash(c1, c2) :≡ ∃x lit(x) ∧ ¬A(x) ∧ ¬ falseA(x) ∧ occ(x, c1)

∧ ∃y
(
comp(x, y) ∧ occ(y, c2)

)
.

With the help of these formulas, we define the Π2-formula ϕClu(A) as ϕClu1(A) ∧ ϕClu2(A),
where ϕClu1(A) states that the formula F does not contain the first type of obstruction:

∀c1, c2
(
cl(c1) ∧ cl(c2) → satA(c1) ∨ satA(c2) ∨ eqA(c1, c2)

∨¬ overlap(c1, c2) ∨ clash(c1, c2)
)

and ϕClu2(A) states that F does not have the second type of obstruction:

∀c1, c2, c3
(∧

1�i�3
cl(ci) →

∨
1�i�3

satA(ci) ∨
∨

1�i<j�3
eqA(ci, cj)

∨¬ clash(c1, c2) ∨ ¬ clash(c2, c3) ∨ clash(c1, c3)
)
.

Finally, we define the Π2-formula ϕ1-Val(A) expressing that the formula F restricted by
A is 1-valid. The formula ϕ0-Val(A) is defined analogously.

We define the Σ1-formula

cpos(c) := ∃x occ(x, c) ∧ ¬ falseA(x) ∧ pos(x)

expressing that clause c contains a positive literal that is not falsified by A. Thus the following
Π2-formula

ϕ1-Val(A) := ∀c cl(c) → satA(c) ∨ cpos(c)

13

J. Johannsen

states that F restricted by A is 1-valid. �

6.1. Open Problems

We list some problems left open by this work.

• Settle the parameterized complexity of the problem Strong CNF(2)-Backdoor Set

in the restricted case when formulas do not contain tautological clauses, i.e., show the
problem remains W[2]-hard in this case.

• Determine the precise parameterized complexity of Weak C-Backdoor Set for
tractable cases C other that 1-Val and 0-Val, possibly using the logical approach
used in this paper.

• Is the problem Strong C-Backdoor Set in W[2] for the tractable cases C = CNF(2)
and C = Clu, for which we know it is W[2]-hard?

Acknowledgements

I thank Stefan Szeider, Sebastian Ordyniak and Ulrich Schöpp for useful discussions about
the contents of the paper, and an anonymous referee whose comments helped to improve the
presentation of the paper. The research leading to the results in this paper was initiated at
Dagstuhl Seminar 12471 “SAT Interactions”.

References

[1] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[2] Y. Crama, O. Ekin and P.L. Hammer, Variable and term removal from Boolean
formulae, Discrete Applied Mathematics 75(3) (1997), 217–230. doi:10.1016/S0166-
218X(96)00028-5.

[3] R.G. Downey and M.R. Fellows, Fixed-parameter tractability and completeness, Con-
gressus Numerantium 87 (1992), 161–187.

[4] J. Flum and M. Grohe, Parameterized Complexity Theory, Texts in Theoretical Com-
puter Science, Springer, 2006.

[5] S. Gaspers and S. Szeider, Backdoors to satisfaction, in: The Multivariate Algorithmic
Revolution and Beyond, H.L. Bodlaender, R. Downey, F.V. Fomin and D. Marx, eds,
Lecture Notes in Computer Science, Vol. 7370, 2012, pp. 287–317. doi:10.1007/978-3-
642-30891-8_15.

[6] R. Impagliazzo, R. Paturi and F. Zane, Which problems have strongly exponential com-
plexity?, Journal of Computer and System Sciences 63(4) (2001), 512–530. doi:10.1006/
jcss.2001.1774.

[7] K. Iwama, CNF-satisfiability test by counting and polynomial average time, SIAM Jour-
nal on Computing 18(2) (1989), 385–391. doi:10.1137/0218026.

14

https://doi.org/10.1016/S0166-218X(96)00028-5
https://doi.org/10.1016/S0166-218X(96)00028-5
https://doi.org/10.1007/978-3-642-30891-8_15
https://doi.org/10.1007/978-3-642-30891-8_15
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/0218026

Backdoors into Two Occurrences

[8] J. Johannsen, Satisfiability problems complete for deterministic logarithmic space, in:
21st International Symposium on Theoretical Aspects of Computer Science (STACS
2004), V. Diekert and M. Habib, eds, Lecture Notes in Computer Science, Vol. 2996,
2004, pp. 317–325.

[9] H. Kleine Büning and T. Lettmann, Propositional Logic: Deduction and Algorithms,
Cambridge University Press, 1999.

[10] N. Nishimura, P. Ragde and S. Szeider, Solving #SAT using vertex covers, Acta Infor-
matica 44(7–8) (2007), 509–523. doi:10.1007/s00236-007-0056-x.

[11] N. Nishimura, P. Ragde and S. Szeider, Detecting backdoor sets with respect to Horn
and binary clauses, in: Proceedings of the 7th International Conference on Theory and
Applications of Satisfiability Testing, 2004, pp. 96–103.

[12] T.J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the 10th ACM
Symposium on Theory of Computing, 1978, pp. 216–226.

[13] R. Williams, C. Gomes and B. Selman, Backdoors to typical case complexity, in: Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence, G. Gottlob
and T. Walsh, eds, 2003, pp. 1173–1178.

15

https://doi.org/10.1007/s00236-007-0056-x

	Introduction
	Preliminaries
	Tractable Cases of SAT
	Parameterized Complexity
	Backdoor Sets

	Backdoors into CNF (2)
	Weak Backdoors
	Strong Backdoors
	Upper Bounds
	Open Problems

	Acknowledgements
	References

