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Abstract

GhostQ is a DPLL-based non-CNF QBF solver. This paper describes a noteworthy
feature of GhostQ that has not yet been described in the peer-reviewed literature: support
for Plaisted-Greenbaum encoding. For CNF inputs, GhostQ attempts to perform reverse
engineering on the CNF formula to create an equivalent circuit representation. Support for
reversing the Plaisted-Greenbaum transformation was added to the existing capability for
reversing the Tseitin transformation.
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1. Overview

GhostQ is a DPLL-based solver that uses ghost variables and learned sequents to achieve
symmetry in handling of universal and existential variables. A description of GhostQ’s
ghost variables and sequents is in [4]. The original version of GhostQ [5] had support for
non-prenex instances, but non-prenex support was dropped in 2012 to focus on prenex
instances and add support for a limited form of CEGAR learning [3, 2]. A new feature
added in 2017 (but not described in the literature until this paper) is an enhancement to
the preprocessor to add support for the Plaisted-Greenbaum encoding. In addition, better
support was added for XOR/ITE gates, including allowing them to be handled in instances
where the order of clauses has been shuffled. Three configurations of GhostQ have been
submitted to QBFEVAL’17 and QBFEVAL’18:

1. ghostq-pg-cegar: Plaisted-Greenbaum and CEGAR learning.

2. ghostq-pg-plain: Plaisted-Greenbaum, but without CEGAR learning.

3. ghostq-cegar: Unchanged from the 2016 version (no Plaisted-Greenbaum).

2. Preliminaries

We consider prenex QBF formulas of the form Q1X1...QnXn. φ, where each Qi ∈ {∃, ∀}
and φ is quantifier-free. We say that Q1X1...QnXn is the quantifier prefix and that φ is
the matrix. A BNF grammar for the matrix φ is as follows (using v to denote a variable):

φ ::= v | ¬φ | φ ∧ . . . ∧ φ | φ ∨ . . . ∨ φ | φ⇔ φ | true | false
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A literal is a variable or the negation of a variable. Given a literal `, we write “var(`)”
to denote the variable v such that either ` = v or ` = ¬v. If a literal is an unnegated
variable, it is said to have positive polarity. If a literal is a negated variable, it is said to
have negative polarity. Given a literal `, we write “¬`” to denote the literal with the same
variable of ` but the opposite polarity. (That is, we remove double negations: if ` = ¬x,
then ¬` = x.) A clause is a disjunction of literals. The order of literals in a clause is
immaterial; the clause (x ∨ y) is considered equivalent to (y ∨ x).

Definition (immediate subformula): Given a clause (`1∨ ...∨`n), the set of immedi-
ate subformulas of the clause is {`1, ..., `n}. For example, x is not an immediate subformula
of (¬x ∨ y), but ¬x is.

Definition (positive/negative occurrence): The terms “occur positively” and “oc-
cur negatively” are defined inductively as follows: (1) A formula occurs positively in itself.
(2) If ¬ψ occurs positively (or respectively negatively) in φ, then ψ occurs negatively (resp.
positively) in φ. (3) If ψ1 ∧ ... ∧ ψn or ψ1 ∨ ... ∨ ψn occurs positively (resp. negatively) in
φ, then all the formulas ψ1, ..., ψn occur positively (resp. negatively) in φ. (4) If ψ1 ⇔ ψ2

occurs (either positively or negatively) in φ, then ψ1 and ψ2 occur both positively and
negatively in φ.

Definition (restricted circuit form): A QBF formula is in restricted circuit form iff
its matrix consists only of variables, conjunction, disjunction, and negation (i.e., there are
no occurrences of the biconditional (“⇔”), true, or false).

Gate variables. Given a formula in restricted circuit form, we label each conjunction
and disjunction with a gate variable. If a subformula φ is labelled by a gate variable g, then
¬φ is labelled by ¬g. The variables originally in the formula are called “input variables”,
in distinction to gate variables.

QBF as a Game. A QBF formula Φ can be viewed as a game between an existential
player (Player ∃) and a universal player (Player ∀):

• Existentially quantified variables are owned by Player ∃.

• Universally quantified variables are owned by Player ∀.

• The state of the game consists of an assignment to variables in the matrix of the QBF
formula. At the start of the game, the assignment is empty.

• On each turn, the owner of the outermost-quantified unassigned variable assigns it a
value (either true or false).

• The goal of Player ∃ is to make Φ be true.

• The goal of Player ∀ is to make Φ be false.

2.1 Tseitin transformation

The Tseitin transformation [6] is the usual way of converting a formula (in restricted circuit
form) into CNF. In the Tseitin transformation, all the gate variables (also called Tseitin
variables) are existentially quantified in the innermost quantification block and clauses are
added to equate each gate variable with the subformula that it represents. For example,
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consider the following formula:

Φ := ∃e.∀u. (e ∧ u)︸ ︷︷ ︸
g1

∨ (¬e ∧ ¬u)︸ ︷︷ ︸
g2

The subformula (e∧ u) is labelled by the gate variable g1, and the subformula (¬e∧¬u) is
labelled by the gate variable g2. This formula is converted to:

Φ′ = ∃e.∀u. ∃g1∃g2. (g1 ∨ g2) ∧ (g1 ⇔ (e ∧ u)) ∧ (g2 ⇔ (¬e ∧ ¬u)) (1)

The biconditionals defining the gate variables are converted to clauses as follows:

(g1 ⇔ (e ∧ u)) = (¬e ∨ ¬u ∨ g1) ∧ (¬g1 ∨ e) ∧ (¬g1 ∨ u)

3. Reverse Engineering for Plaisted-Greenbaum

In the Tseitin encoding, the gate definition g ⇔ (x1 ∨ ... ∨ xn) is encoded by the following
clauses: (¬g ∨ x1 ∨ ... ∨ xn), (g ∨ ¬x1), . . . , (g ∨ ¬xn). During unit propagation, the
binary clauses (i.e., clauses with exactly two literals) will force g to be assigned true if any
xi gets assigned true. The single non-binary clause will force g to be assigned false if all
the xi get assigned false. The Plaisted-Greenbaum encoding for g may omit either all the
binary clauses or the single non-binary clause, depending on how g occurs in the formula.
(If g occurs both positively and negatively, then no clauses can be omitted.)

One approach for reversing the Plaisted-Greenbaum encoding is presented in [1]. Here,
we present a different approach, which was easier to correctly implement for GhostQ.

Consider a QBF formula Φ of the form P.φ where P is the quantifier prefix and φ is a
conjunction of clauses and a non-CNF formula1.: φ = (clause1 ∧ ... ∧ clausem) ∧ φnon-CNF.
Consider a literal g, where var(g) is existentially quantified in the innermost quantification
block. We define binary half-def as follows:

If (1) g does not occur as an immediate subformula of any non-binary clause and
(2) the set of clauses in which g does occur (as an immediate subformula) is the set
{(g ∨ ¬x1), ..., (g ∨ ¬xn)}, then (g ∨ x1 ∨ ... ∨ xn) is a binary half-def of g in Φ, and
{(g ∨ ¬x1), ..., (g ∨ ¬xn)} is the set of clauses associated with the half-def.

Intuition: With the game semantics of QBF, the set of clauses {(g ∨ ¬x1), ..., (g ∨ ¬xn)}
forces the existential player to assign g true if any of the xi literals have been assigned true.
It is safe2. to individually replace any occurrence of g (other than in the clauses associated
with its half-def) with its half-def because if the half-def evaluates to a different value than
g evaluates to, then the matrix is going to evaluate to false anyway because one of the
associated binary clauses will evaluate to false. When all occurrences of g (outside the
associated binary clauses) have been replaced, the associated binary clauses can be safely

1. Motivation: We start with a formula in CNF. When we discover clauses that constitute a gate definition,
we delete the clauses and insert an equivalence for the gate definition. E.g., (x∨y)∧(¬x∨¬y)∧C3∧...∧Cn

might become (C3 ∧ ... ∧ Cn) ∧ (x ⇔ ¬y).
2. By saying that the operation is ‘safe’, it is meant that the operation doesn’t change the truth value that

the QBF formula evaluates to.
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removed. (Alternatively, all occurrences of g, including in the associated binary clauses,
can be simultaneously substituted for.) At that point, g should either occur only positively
or occur only negatively, allowing it to be substituted with either true or false.

We define non-binary half-def as follows:

If ¬g occurs (as an immediate subformula) in exactly one clause, and that clause is a
non-binary clause (¬g ∨ x1 ∨ ... ∨ xn), then g ∧ (x1 ∨ ... ∨ xn) is a non-binary half-def
of g in Φ.

Notation: Given two formulas φ and ψ and a variable v, let “φ[v :=ψ]” denote the result
of taking φ and substituting all occurrences of v with ψ. Given a negative literal ` = ¬v,
let “φ[` :=ψ]” denote φ[v :=¬ψ].

Notation: Given a formula φ and an assignment π = 〈x1:c1, ..., xn:cn〉 (where each ci
is a boolean constant (true or false)), let “φ|π” denote the substitution of π in φ, i.e.,
φ|π = φ[x1 :=c1][x2 :=c2] · · · [xn :=cn].

Theorem 1 If a formula ψ of the form (g ∨ x1 ∨ ... ∨ xn) is a binary half-def of a literal g
in P. φ, then P. φ[g :=ψ] has the same truth value as P. φ.
Proof. Let us write “∃g” as an abbreviation of “∃ var(g)”. Since var(g) is quantified
innermost and existentially, it suffices to prove the following: For every assignment π to all
variables in φ except g, ∃g. φ[g :=ψ]|π = ∃g. φ|π. Consider such an assignment π. There are
two cases:

1. If (x1∨ ...∨xn)|π = false, then ψ|π = (g∨false)|π = g|π, and thus φ[g :=ψ]|π = φ|π.

2. If (x1 ∨ ... ∨ xn)|π = true, then:

(a) ∃g. φ|π = φ|π ∪ 〈g : false〉 ∨ φ|π ∪ 〈g : true〉 (by def of “∃”)

(b) φ|π ∪ 〈g :false〉 = false (because at least one binary clause
with g is false under π ∪ 〈g : false〉.)

(c) ∃g. φ|π = φ[g :=true]|π (follows from the above two steps)

(d) ∃g. φ[g :=ψ]|π = ∃g. φ[g :=(ψ|π)]|π
= φ[g :=true]|π

(e) ∃g. φ[g :=ψ]|π = ∃g. φ|π (follows from steps (c) and (d))

Theorem 2 If a formula ψ of the form g∧ (x1∨ ...∨xn) is a non-binary half-def of a literal
g in P. φ, then P. φ[g :=ψ] has the same truth value as P. φ.
Proof. This is similar to the proof of Theorem 1 above. It suffices to prove the following:
For every assignment π to all variables in φ except g, ∃g. φ[g :=ψ]|π = ∃g. φ|π. There are
two cases:

1. If (x1 ∨ ... ∨ xn)|π = true, then ψ|π = g|π, and therefore φ[g :=ψ]|π = φ|π.

2. If (x1 ∨ ... ∨ xn)|π = false, then:

(a) ∃g. φ|π = φ|π ∪ 〈g : false〉 ∨ φ|π ∪ 〈g : true〉
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(b) φ|π ∪ 〈g : true〉 = false because the non-binary clause with ¬g is false
under π ∪ 〈g : true〉.

(c) ∃g. φ|π = φ[g :=false]|π
(d) ∃g. φ[g :=ψ]|π = φ[g :=false]|π,

Theorem 3 Let ψ be a half-def of a literal g in P. φ, and let D be the set of clauses
associated with ψ. (I.e., if ψ is binary half-def then D is the set of binary clauses in which
g occurs as an immediate subformula; and if ψ is a non-binary half-def then D is the set of
the single non-binary clause in which ¬g occurs as an immediate subformula.) Let γ be the
result of removing the clauses D from φ. Then P. γ[g :=ψ] has the same truth value as P. φ.

Proof. It is easy to verify that, for every every clause c in D, c[g :=ψ] reduces to true.

P. φ = P. φ[g :=ψ] (Theorems 1 and 2)

= P. (γ ∧D)[g :=ψ] (Definition of γ)

= P. γ[g :=ψ] ∧D[g :=ψ] (Distributive property)

= P. γ[g :=ψ] ∧ true
= P. γ[g :=ψ]

Recall that the Plaisted-Greenbaum encoding can be used to encode a subformula only
if the subformula either occurs only positively or occurs only negatively. Thus, after all
occurrences of g have been replaced with a half-def and the half-def’s associated clauses are
removed, g should occur either only positively or only negatively. (Note that the soundness
Theorems 1–3 does not depend on how g occurs in φnon-CNF, but if g does occur both
positively and negatively in φnon-CNF, then the transformation described here in this paper
would be unlikely to be helpful.) If g occurs only positively, it can be replaced with true;
it occurs only negatively, it can be replaced by false.

3.1 Algorithm

Theorems 1–3 suggest a simple, straightforward algorithm, shown in Algorithm 1.

Algorithm 1: Naive Plaisted-Greenbaum Reverse Engineering

Input: A QBF formula P. φ
1 while (at least one variable in P. φ has a half-def) do
2 Let ψ be a half-def of a variable g in P. φ;
3 Let D be the set of (binary clauses or single non-binary clause) associated with

ψ;
4 Let γ be the result of removing the clauses D from φ;
5 φ := γ[g :=ψ];

6 end
7 Substitute any existential variables that occur only positively with true;
8 Substitute any existential variables that occur only negatively with false;
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Example. Let Φ = ∀u∀w.∃a∃g. (g ∨ a) ∧ (g ∨ u) ∧ (−g ∨ w). Then (g ∨ ¬a ∨ ¬u) is a
binary half-def of g. Deleting the associated clauses of the half-def and substituting g with
its half-def in Φ yields:

∀u∀w.∃a ∃g.¬(g ∨ ¬a ∨ ¬u) ∨ w

Since g is existential and occurs only negatively, it can be replaced by false:

∀u∀w.∃a ∃g.¬(¬a ∨ ¬u) ∨ w

Note Algorithm 1 has an undesirable property: making a transform for one half-def
might destroy the clauses needed to transform a different half-def. To help mitigate this
issue, GhostQ does two things: (1) It uses heuristics for which order to try available half-defs.
(2) Rather than immediately substituting gate variables with their half-defs, it maintains
a table (GateDef) that maps gate variables to their definitions. (This requires doing an
additional check to avoid cycles in the definition table.)

3.2 Implementation Details

The input to the GhostQ preprocessor is a QDIMACS file that includes a set of clauses C.
The preprocessor creates and maintains a hashtable GateDef that maps gate variables to
their definitions. First the preprocessor tries to reverse Tseitin-encoded gates, removing the
defining clauses from C and adding the corresponding gate definitions to GateDef. Second,
it looks for XOR/ITE gates. Third, it looks for Plaisted-Greenbaum gates.

Definition. A half-def ψ of g is a definite half-def iff g is not already defined in GateDef

and either (1) ψ is the only half-def of g (in C) and there are no half-defs of ¬g (in C) or
(2) the only innermost-quantified variable in ψ without a gate def is g.

The GhostQ preprocessor handles Plaisted-Greenbaum as shown in Algorithm 2 (but with
some additional heuristics for the order in which to try half-defs). Simplification of variables
that occur only positively or only negatively is a separate pass in GhostQ.

Algorithm 2: Plaisted-Greenbaum Reverse Engineering

1 repeat
2 for each literal g that has a definite half-def ψ (in C) do
3 if the below actions won’t cause a cycle in the gate defs then

4 Delete (from C) the binary clauses or single non-binary clause associated
with the half-def ψ.

5 Let h be a fresh variable. Replace all occurrences of g with h in both the
clauses C and the gate definitions (in GateDef), but not in ψ.

6 Add a gate definition: GateDef[h] = ψ.

7 end

8 end

9 until fixed point is reached
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3.3 Competition Results

In QBFEVAL 2017, there were two tracks in which both ghostq-pg-cegar and ghostq-

cegar competed: Prenex CNF and Prenex 2QBF. In Prenex 2QBF, ghostq-pg-cegar

solved 246 instances (the most of any solver), while ghostq-cegar solved only 76. The
families in which the two variants of GhostQ differed in their number of solved instances
are shown in Table 1. This data comes from the QBFEVAL website3.. In Prenex CNF,
ghostq-pg-cegar solved 190 instances, while ghostq-cegar solved 156. The families in
which the two variants of GhostQ differed by more than 2 solved instances are shown in
Table 2. This data comes from the QBFEVAL website4..

Table 1. Number of solved instances in Prenex 2QBF track

Family ghostq-cegar ghostq-pg-cegar

HardwareFixpoint 6 62

RankingFunctions 0 37

Reduction-finding 10 68

sketch 2 0

Sorting networks 0 5

terminator 18 34

Table 2. Number of solved instances in Prenex CNF track

Family ghostq-cegar ghostq-pg-cegar

Generalized-Tic-Tac-Toe 4 1

HardwareFixpoint 1 16

LinearBitvectorRankingFunction 0 6

Reduction-finding 1 5

terminator 3 8

3. http://www.qbflib.org/solver_families.php?solver=269&year=2017&track=3

http://www.qbflib.org/solver_families.php?solver=235&year=2017&track=3

4. http://www.qbflib.org/solver_families.php?solver=269&year=2017&track=1

http://www.qbflib.org/solver_families.php?solver=235&year=2017&track=1

71

http://www.qbflib.org/solver_families.php?solver=269&year=2017&track=3
http://www.qbflib.org/solver_families.php?solver=235&year=2017&track=3
http://www.qbflib.org/solver_families.php?solver=269&year=2017&track=1
http://www.qbflib.org/solver_families.php?solver=235&year=2017&track=1


W. Klieber

References

[1] Alexandra Goultiaeva and Fahiem Bacchus. Recovering and utilizing partial duality in
QBF. In Proceedings of the 16th International Conference on Theory and Applications
of Satisfiability Testing, 7962 of Lecture Notes in Computer Science, pages 83–99.
Springer, 2013.
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