
Journal on Satisfiability, Boolean Modeling, and Computation 10 (2016) 1–9

On Exponential Lower Bounds
for Partially Ordered Resolution
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Abstract

Is well-known that the proof size in propositional resolution is sensitive to the order
of how variables are resolved on. Indeed, imposing a certain resolution order can lead to
an exponential blowup compared to unrestricted resolution. In this paper we study even
a weaker restriction. We require that one partition of variables is resolved on before the
second partition (this is a special case of a partial order). We show that this also can lead
to an exponential blowup. This helps us to understand why dynamic variable orderings in
SAT solvers is so successful but also it motivates further investigation in variable orderings
in SAT solvers.
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1. Introduction

The study of proof complexity has both theoretical and practical roots. It is well-known that
proof size is tightly linked to computational complexity [5]. Sizes of proofs are interesting
from a practical perspective because the runtime of decision procedures can be modeled
by the size of the corresponding proof. In particular, modern SAT solvers rely heavily on
propositional resolution [16] and thus this system is particularly of interest.

A number of variants of resolution were studied throughout the years. Most notably
regular resolution where a variable might be resolved on at most once on any resolution
path [19]. Regular resolution was separated from unrestricted resolution [6, 7, 1]. Another
special case of resolution is ordered resolution, or DPLL resolution, where variables must
be resolved on in a certain order. This is in fact a special case of regular resolution but a
super-polynomial lower bound was already shown by Goerdt in ’92 [7]. Another well-known
type of resolution is tree resolution, where the resolution graph is represented as a tree
(essentially it means that derived clauses cannot be reused). Tree and ordered resolution
were exponentially separated from unrestricted resolution by Bonet et al. [4]. Other known
resolution types include negative resolution [8] and SLD-resolution [14]. Exponential lower
bounds for unrestricted resolution were demonstrated by Haken [9].

Since SAT solvers rely heavily on unit propagation and clause learning, their strengths
have been extensively studied [2, 18]. Another concept related to resolution order is the
order of decisions made by a CDCL SAT solver. Indeed, a backtracking SAT solver, with no

c©2016 IOS Press, SAT Association and the authors.



M. Janota

unit-propagation or clause learning leads to a resolution proof where the resolution order is
the same as the order of decisions in the algorithm. In CDCL solvers this is complicated by
the fact that unit propagation implicitly influences the order of how variables are resolved
on. The effects of decision order have been also extensively studied [13, 15, 17, 12].

In this paper we show two classes of formulas where considering a specific partial order
leads to an exponential blowup compared to unrestricted resolution. Section 2 introduces
notation and concepts used in the remainder of the paper; in particular partially ordered
resolution is defined. Section 3 introduces a simple one-player game where specific partial
variable order leads to exponential blowup. Section 4 studies a class of formulas that
correspond to an encoding of a simple tautology F ∨ ¬F ; here resolving on the auxiliary
variables first leads to exponential blowup. Finally, Section 5 concludes the paper.

2. Preliminaries

A literal is a Boolean variable or its negation. A term is a conjunction of literals and a clause
is a disjunction of literals. A formula in conjunctive normal form (CNF) is a conjunction of
clauses. A CNF formula may be treated as a set of clauses and a clause as a set of literals.

An assignment is a mapping from variables to the Boolean constants {0, 1}. We
write F � τ for a restriction of F by the assignment τ . An assignment is complete for a
set of variables X when it maps all variables from X to a constant. We slightly abuse the
notation so that for a Boolean function f : X → {0, 1} a complete assignment to X can be
given as an argument.

For Boolean function f : X → {0, 1}, an implicant is a term t that contains only
variables X and for any complete assignment τ to X, if t � τ is true then f(τ) = 1. An
implicate is defined analogously as a clause C so that f(τ) = 1 implies C � τ is true. Note
that for any term t, ¬t is a clause and vice versa. A term t is an implicant of f iff ¬t is an
implicate of ¬f .

The resolution rule is defined as follows. For two clauses C1 ∨ x and C2 ∨¬x, called the
antecedents, derive the clause C1∨C2, which is called the resolvent. The variable x is called
the pivot, and we say that it is being resolved on. A resolution proof of a clause C from a
set of clauses φ is a finite sequence of clauses C1, . . . , Cn with Cn = C and such that each
clause either belongs to φ or is derived by the resolution rule from some of the previous
ones. A resolution proof is called a refutation if it derives the empty clause, denoted as ⊥.
Resolution is sound and refutation complete, i.e. a formula is unsatisfiable if and only if it
can be refuted.

A resolution proof π of a clause C corresponds to a (rooted) directed acyclic graph
(DAG) constructed as follows. The clause C is the root; any clause that is the result of
resolution has out-degree 2 connecting it to the antecedents; clauses coming from π have
out-degree 0. The clauses going from π are commonly referred to as axioms and they form
leafs of the proof DAG. The size of a resolution proof is the number of clauses appearing
in it.

Definition 1. Let ≺ be a partial order on variables and let π be a resolution proof. We
say that π is ≺-ordered if for any path P from a leaf to the root in π, if x is resolved on
before y on P , then it does not hold that y ≺ x.
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Figure 1. Example refutations.

Figure 2. SE-game illustration with 3 arrows placed so far.

Notation. We say that a resolution proof π is X<Y -ordered if it is ≺-ordered for ≺
defined as {x ≺ y | x ∈ X, y ∈ Y }.

Observe that a partially-ordered resolution may not be regular nor ordered. For instance,
{x1, . . . , xn}<{y}-ordered enables resolution proofs where xi variables are resolved on in an
arbitrary order and may repeat—as long as the last resolution is on y.

Example 1. Consider the refutation in Figure 1(a). The refutation is {x, y}<{e}-ordered but
it is not {y}<{x}-ordered nor {x}<{y}-ordered. In contrast, the refutation in Figure 1(b)
is {e}<{x, y}-ordered.

3. SE-Projection Game Formulas

We consider the following game, called the South-East Projection Game.1. It is a one-player
game played on an n × n board, where the player places an arrow on each square (see
Figure 2). A placed arrow either faces south or east. Whenever the arrow faces south, a
ball is placed in the same column as the arrow, south of the board, i.e. the arrow is projected
south. Analogously, placing an east arrow on a square results in placing a ball in the same

1. This concept is inspired by formulas previously used for lower bounds in QBF [10].
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row. The player loses when there is a ball for every column or when there is a ball for every
row.

It is easy to see that the player must necessarily lose the game. The only way how the
player can avoid placing a ball on a row i, is by placing south arrows on each square of that
row. This, however, leads to placing a ball in each column.

The CNF formula SEGn, which encodes the game, is defined as follows. The following
sets of variables are introduced. X = {xij | i, j ∈ 1..n}—for the direction of the arrows;
S = {si | i ∈ 1..n}—for south balls; E = {ei | i ∈ 1..n}—for east balls. To formula itself
comprises the following clauses.

xij ∨ si, i, j ∈ 1..n (1)

¬xij ∨ ej , i, j ∈ 1..n (2)∨
i∈1..n

¬si (3)∨
i∈1..n

¬ei (4)

We show that (S ∪E)<X-ordered resolution refutation π is exponential with respect
to n. We start off by some technical lemmas.

Lemma 1. Let π be a (S ∪E)<X-ordered resolution refutation of SEGn. Let C be a clause
in π such that it does not contain any si or ei variables and let πC ⊆ π be a proof of C
from SEGn. The resolution proof πC contains one of the clauses (3), (4).

Proof. Construct a path P that starts at C and ends in some leaf of πC . The path is
constructed so that ¬si, resp. ¬ei, is followed whenever si, resp. ei, is resolved on. Since all
axiom clauses (1), (2) contain si or ei positively, one of (3), (4) must be at the end of P .

Lemma 2. Let π be a (S ∪E)<X-ordered resolution refutation of SEGn. Let P be a path
in π from the root of π that contains clauses with only xij variables and is maximal in that
respect, i.e. P cannot be extended by a clause that would have only xij variables. Let C be
the clause in which P ends. The clause C that contains either a literal xij for each i ∈ 1..n
or literal ¬xij for each j ∈ 1..n. Hence, C contains at least n different variables from X.

Proof. Let πC be the sub-proof of π proving C. Since C contains only xij variables,
from Lemma 1 there is one of (3), (4) in πC . Consider the case when (3) is in πC . The
clause (3) introduces ¬si for each i ∈ 1..n. Since C does not contain any ¬si, all these must
have been resolved on. As the only clauses containing the positive literals si are clauses of
type (1), a literal xij must be introduced for each i ∈ 1..n. Since no literal xij could have
been resolved on in πC , all the introduced xij literals must appear also in C. Analogously,
we derive that ¬xij ∈ C for every j ∈ 1..n if (4) is in πC .

Theorem 1. Any (S ∪E)<X-ordered resolution refutation of SEGn is exponential in n.

Proof. Let π be a (S ∪E)<X-ordered resolution refutation of SEGn. Pick an assignment τ
to all variables xij . Construct a path P as follows. Start from P = ⊥. If the end of P
is derived by a resolution step over some variable xij , extend P with the antecedent that
contains the literal l s.t. τ(l) = 0 and var(l) = xij . If the end of P is derived by a resolution
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over some si, ei variable, stop. Due to Lemma 2, the path P ends with a clause Cτ that
contains n different variables xij and τ(Cτ ) = 0. There are 2n×n different assignments τ to
the xij variables and each clause Cτ covers at most 2n×n−n assignments. Hence there must
be at least 2n×n/2n×n−n = 2n clauses Cτ in π altogether.

Theorem 2. The formula SEGn has polynomial size refutation in tree resolution. Further,
this refutation is ordered.

Proof. Pick an i ∈ 1..n. Using the clauses xij∨si and ¬xij∨ej derive the clause Bij = si∨ej
for all j ∈ 1..n (resolution on xij). Using linear steps, resolve each Bij , j ∈ 1..n with the
clause ¬e1 ∨ · · · ∨ ¬en to obtain the clause si (resolution on ei).

Repeat this process for all i ∈ 1..n, thus obtaining si for each. Using linear steps resolve
each si the clause ¬s1 ∨ . . .¬sn, obtaining thus ⊥ (resolution on si). The resolution tree is
ordered in the order x11, . . . xnn, e1, . . . , en, s1, . . . , sn.

4. Function Encoding

For a set of variables X consider a Boolean function f : X → {0, 1} and the simple
tautology f(X) ∨ ¬f(X). As usual we consider its negation f(X) ∧ ¬f(X). We use this
contradiction to derive a lower bound in the following way. We encode f(X) and ¬f(X) as
two separate CNF formulas, where fresh auxiliary variables might be introduced. Then we
consider a refutation of the conjunction of these two formulas where the auxiliary variables
are resolved on first. We show that such refutation needs to derive implicants of f , which
permit us to derive an exponential lower bound for functions with long implicants.2.

For a function f , let F+ denote a formula so that F+ � τ is satisfiable iff f(τ) = 1.
Analogously, F− denotes a formula for which F− � τ is satisfiable iff f(τ) = 0. The formula
F+ may introduce auxiliary fresh variables in order to achieve polynomial encoding of f ,
this set will be denoted as T+. Analogously, T− denotes the fresh variables in F−. Hence,
we have f = ∃T+. F+ and ¬f = ∃T−. F−. We assume that T+ and T− are disjoint.

Lemma 3. Let π be a (T+ ∪T−)<X-ordered resolution refutation of F+ ∧ F−. There is
no clause C in π that contains both T− and T+ variables.

Proof. (by induction on derivation depth) The hypothesis is true for all of the axiom clauses,
since they come from F+ ∪F− and T+ and T− are disjoint.

The hypothesis is preserved by any resolution step on a variable t ∈ T− ∪T+ since
both antecedents must contain t. Any resolution step on x ∈ X must also preserve the
hypothesis because none of the antecedents may contain a variable from T− ∪T+ due to
the order condition.

Lemma 4. Let π be a (T+ ∪T−)<X-ordered resolution refutation of F+∧F−. Any clause C
in π that contains any T− variables is an implicate of F−. Analogously, a clause that
contains any T+ variables is an implicate of F+.

Proof. (by induction on derivation depth) Since T+ and T− are disjoint, any axiom clause
that contains a variable from T− must be from F−, and therefore is trivially its implicate.

2. This idea is inspired by formulas previously used for lower bounds in QBF [3].
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To show that the hypothesis is preserved by resolution step consider a C that contains
some variables from T− with the antecedents C1 and C2. We split on the following cases, the
pivot variable is either from: T+, T−, or X. If the pivot is from T−, then both C1 and C2

are implicates of F− due to the induction hypothesis. Hence, C is also its implicate by the
properties of resolution. If the pivot is from T+, it must be contained in both antecedents
but from Lemma 3 there are no T− variables and therefore C wouldn’t contain any T−

variables either. If the pivot were from X, C wouldn’t contain any T− ∪T+ due to the
condition on order of resolution.

Lemma 5. Let π be a (T+ ∪T−)<X-ordered resolution refutation of F+ ∧ F−. Let C be
a clause in π such that it does not contain any T− ∪T+ variables and it is a resolvent of
antecedents that contain a variable from T− ∪T+. Then ¬C is an implicant of f or of ¬f .

Proof. Let C1 and C2 be the antecedents of C. Since C1 and C2 contain a variable from
T− ∪T+, but C does not contain any, it must be that the resolution on C1 and C2 is on some
variable from T− ∪T+. First let us assume that the variable is from T−. From Lemma 4,
the clauses C1 and C2 are implicates of F− and therefore C is also its implicate. Since C
is an implicate of F− that does not contain any auxiliary variables (it contains only the
variables X), it is also an implicate of ¬f . Hence, ¬C is an implicant of f .

Similarly we show that if C1 and C2 are resolved on T+, then ¬C is an implicant of
¬f .

In the following we consider f as the parity function, i.e. f(x1, . . . , xn) = x1 ⊕ · · · ⊕
xn, where ⊕ is the exclusive or operation. We write xor(l1, l2, r) as a shorthand for the
conjunction of the following clauses {¬l1 ∨¬l2 ∨¬r,¬l1 ∨ l2 ∨ r, l1 ∨¬l2 ∨ r, l1 ∨ l2 ∨¬r}. For
a natural number n > 3, define the formula ParityContn as the following CNF formula.

xor(x1, x2, t2) ∧
∧

i∈3..n
xor(ti−1, xi, ti)

∧ xor(x1, x2, t
′
2) ∧

∧
i∈3..n

xor(t′i−1, xi, t
′
i)

∧ tn ∧ ¬t′n
Theorem 3. Any (T+ ∪T−)<X-ordered resolution refutation π of ParityContn is expo-
nential in n.

Proof. We observe that ParityContn is of the form F+ ∧F−, which will enable us to use
Lemma 5 to construct wide clauses in the refutation.

Pick a complete assignment τ to the variables X s.t. f(τ) = 1, i.e. it assigns to 1 an odd
number of variables. Starting from the clause ⊥ in π construct a path that corresponds to
the assignment τ , i.e. all clauses on the path are falsified by τ . The path ends in a clause C
that contains only X variables and its antecedents contain some T+ ∪T− variables. Hence,
C satisfies the precondition of Lemma 5, from which we obtain that ¬C is an implicant
of f or ¬f . As the assignment τ was picked to be an implicant of f , ¬C must also be an
implicant of f . From the properties of the parity function, the implicant has to contain all
variables X, i.e. |C| = |X|.

Since we picked τ arbitrarily out for the 2|X|−1 possible ones and there is only one
clause C with the property above for a given τ , the refutation π must contain at least
2|X|−1 clauses.
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Theorem 4. The formula ParityContn has a polynomial resolution refutation. Further,
this refutation is ordered.

Proof. (sketch) Semantically, xor(x1, x2, t2) corresponds to t2 ⇔ (x1 ⊕ x2). This lets us
derive t2 ⇔ t′2 from the clauses xor(x1, x2, t2)∪ xor(x1, x2, t

′
2). In particular, by first greedily

resolving on x1 and then on x2, obtaining, among others, the clauses ¬t2 ∨ t′2 and t2 ∨ ¬t′2.

Using the binary clauses above, by resolving on t′2, replace in xor(t′2, x3, t
′
3) the variable

t′2 with t2, thus obtaining xor(t2, x3, t
′
3). Just as above, derive ¬t3 ∨ t′3 and t3 ∨ ¬t′3.

Repeat this process until deriving ¬tn∨t′n and tn∨¬t′n. This gives contradiction for i = n
with the unit clauses tn and ¬t′n. The proof is ordered with the order x1, x2, t

′
2, t2, x3, t3, . . . .

5. Conclusion

This paper studies a restriction of propositional resolution where one partition of variables
must be resolved on before the second partition. Since there are no further restrictions,
such resolution proofs are not required to be ordered or even regular.

We have seen two different classes of formulas where such restriction gives an exponential
lower bound, while the same formulas have short general resolution refutations. What is
interesting about these classes is that the formulas are rather natural and have a clear
interpretation. The first class of formulas we consider describes a simple one-player game,
which is necessarily losing for the player. The first partition of variables models the results of
the actions of the player and the second partition models the actions themselves. This partial
order leads to an exponential blow up while the same formula has a polynomial unrestricted
tree resolution. This contrasts with the known result that minimal tree resolutions are
regular [20, Lem 5.1].

The second class of formulas deals with the simple contradiction f∧¬f for some Boolean
function f . Once f is encoded using auxiliary (Tseitin) variables and these variables are
resolved on first, we are forced to derive implicants of f , which leads to long proofs for
functions with long implicants, e.g. the parity function. This result is contrasting to the
results of Järvisalo and Junttila [11] who show that there are formulas for which it is
harmful for a SAT solver to make decisions only on non-auxiliary variables. This suggests
that in general, it is neither beneficial to start deciding on auxiliary variables nor on the
non-auxiliary ones.

On the positive side, the presented formulas do have ordered refutations, with the catch
that the right order is needed. An interesting case represents the formula ParityContn,
whose short proof uses an order that interleaves the input and auxiliary variables.

Overall, these results further support the use of dynamic decision orderings in modern
SAT solves (e.g. VSIDS [17], DLIS [15]). But we also hope, that these aforementioned
contrasting theoretical results, might inspire further heuristics for decision ordering.
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