
Journal on Satisfiability, Boolean Modeling and Computation 9 (2015) 129-134

MSCG: Robust Core-Guided MaxSAT Solving

system description

Antonio Morgado ajrm@sat.inesc-id.pt

Alexey Ignatiev aign@sat.inesc-id.pt

Joao Marques-Silva jpms@tecnico.ulisboa.pt

INESC-ID, IST

University of Lisbon

Lisbon, Portugal

Abstract

Maximum Satisfiability (MaxSAT) is a well-known optimization version of Propositional
Satisfiability (SAT) that finds a wide range of practical applications. This work describes
and evaluates the Maximum Satisfiability using the Core-Guided approach solver (MSCG),
which is a robust MaxSAT solver that participated in the MaxSAT Evaluation 2014.

Keywords: maximum satisfiability, core-guided, Boolean optimization

Submitted December 2014; revised May 2015; published December 2015

1. Introduction

Maximum Satisfiability (MaxSAT) is the problem of determining a minimum cost assignment
to the variables of a given set of clauses, where each falsified clause incurs in a penalty cost.
MaxSAT has been applied to relevant applications that include planning, fault localization
in C code and design debugging, among others (see [9] for references).

MaxSAT Evaluations have been held since 2006. In recent evaluations a trend has
emerged where core-guided algorithms have been particularly successful in industrial cate-
gories. MSCG is a new state-of-the-art MaxSAT solver that includes different core-guided
algorithms. The competition version of MSCG participated in the latest MaxSAT Evalua-
tion 2014, where it ranked second place in weighted partial, and third place in partial of the
industrial categories (disregarding portfolio solvers). This paper describes the algorithms
and techniques included in MSCG.

The paper is organized as follows. Section 2 describes the main architectural components
of MSCG, while Section 3 presents experimental data comparing MSCG with the winners
of the latest MaxSAT Evaluations. Section 4 concludes the paper.

2. MSCG - Main Components

This section describes the main components of MSCG. Figure 1 shows the architecture of
MSCG with respect to its main components. Each of the components is detailed in the
following sections.

c© 2015 IOS Press, the SAT Association, and the authors.



Morgado et al.

MSCG

Co
m

pl
et

e 
BM

O

MaxSAT 
algorithms

MSU1

PRG/
BCD2

OLL

...

LB
 / 

UB
 

He
ur

ist
ic

Cardinality 
Constraints

Bitwise

Totalizer

Modulo 
totalizer*

...

Unsat core trimming

SAT solver interface

Glucose 3.0 MiniSAT 2.2 ...

CNF/
WCNF 

Figure 1. Architecture of MSCG

2.1 MaxSAT Algorithms

MSCG gathers different core-guided MaxSAT algorithms. In this paper, we reference the
following MaxSAT algorithms (used by MSCG in the MaxSAT Evaluation 2014): the
MSU1 algorithm [3], the Progression algorithm [9] (with BCD2 as the base algorithm), and
an incremental version of the OLL algorithm [8] (see Section 2.4). The use of incrementality
allows a rearrangement of the algorithm. Namely, as published in [8], the original OLL
asserts the output of the created sums by adding soft unit clauses (of the corresponding
output literals). In this case, removing constraints not useful anymore can be practically
inefficient. In contrast to the original implementation of OLL [8], the incremental version
of OLL asserts the outputs of the created sums with the use of assumption literals. This
allows the solver to remove unneeded constraints incrementally “on the fly”.

2.2 Cardinality Constraint Encodings

The algorithms in MSCG rely heavily on the ability of the solver to encode cardinality
constraints into CNF, in particular to transform the atMostK cardinality constraint1. l1 +
. . . + ln ≤ k into a set of clauses. MSCG uses different cardinality constraints encodings,
in particular in this work we consider the Bitwise encoding [12] (for which k = 1), a variant
of the Modulo Totalizer encoding [11], the Totalizer encoding [2] (these correspond to the
encodings used by MSCG in the MaxSAT Evaluation 2014) and its iterative version [6].

The idea of the variant of the Modulo Totalizer is to use the Modulo Totalizer encoding
but approximating it to the technique of k-cardinality. This variant was motivated by
the proposed future work in the Conclusions section of [11], where their goal is to do k-
cardinality of the Modulo Totalizer instead of approximating it.

1. In MSCG only atMostK cardinality constraints are considered, as such, all the other cardinality con-
straints are disregarded in this description.

130



MSCG: Robust Core-Guided MaxSAT Solving

2.3 Lower and Upper Bound Heuristics

Before invoking a MaxSAT algorithm, MSCG computes both a lower and an upper bound
on the MaxSAT solution. The lower bound corresponds to a minimum cost for which it is
known that there is no MaxSAT solution smaller than it. The upper bound corresponds to
the cost of an assignment satisfying all the hard clauses (if present).

Initially, the solver makes a call to the SAT solver using solely the hard clauses. This
call checks whether the CNF formula comprising the hard clauses is satisfiable or not. If
it is not, MSCG returns an unsatisfiable status. Otherwise, a model is provided, which
satisfies all the hard clauses, and may or may not satisfy the soft clauses. The cost of this
model represents an initial upper bound on the MaxSAT solution.

When requested, the lower bound in MSCG is computed as in the MSU3 algorithm [9],
that is the SAT solver is invoked with all the clauses in the formula. If the formula is
unsatisfiable then an unsatisfiable core is obtained, all the soft clauses of the core are
removed from the formula, and the SAT solver is called again on the new formula. The
process continues until the formula becomes satisfiable. At this point, the lower bound is
given by the sum of the minimum weights in each of the unsatisfiable cores. Additionally,
the model returned by the last SAT call satisfies all the hard clauses (since these are not
removed), and thus the cost of this model is compared against the previous upper bound,
which may result in a new refined upper bound.

2.4 SAT Solver Interface

A minimal interface has been created in MSCG to access all the SAT solver’s functionality.
This interface builds on top of the SAT solver’s API, and is general enough to allow the
tool to be able to select the underlying SAT solver used. In order to use this interface with
a specific SAT solver, we require the SAT solver to be capable of handling assumptions, to
return a model of satisfiable formulas, and to compute unsatisfiable cores of unsatisfiable
formulas. In MSCG the assumptions are associated with the soft clauses (one-to-one
correspondence). Hard clauses do not contain assumptions. Whenever a formula is declared
unsatisfiable by the SAT solver, then an unsatisfiable core is obtained from the SAT solver
containing the assumptions representing the soft clauses in the core. MSCG integrates
several SAT solvers including Glucose 3.02. and Minisat 2.23..

All the algorithms in MSCG use the SAT solver non-incrementally, i.e. the SAT solver
is restarted after each call, the exception being the incremental version of OLL, which
maintains clauses between calls to the SAT solver.

2.5 Additional Features

Complete BMO Condition In the case of weighted instances MSCG checks if the
instance respects the complete BMO condition [5], which consists in the following. Given
a MaxSAT formula ϕ, ϕ respects the complete BMO condition if for any clause (c, w) ∈
ϕ its weight w is larger than the sum of weights that are smaller than w, i.e. w >∑

(ci,wi)∈ϕ; wi<w wi. If the instance respects the complete BMO condition, then MSCG

2. http://www.labri.fr/perso/lsimon/glucose
3. https://github.com/niklasso/minisat

131

http://www.labri.fr/perso/lsimon/glucose
https://github.com/niklasso/minisat


Morgado et al.

30 32 34 36 38 40 42 44
0

200

400

600

800

1000

1200

1400

1600

1800

MSCG∗

Open-WBO-Inc
MSCG
pmifumax

400 420 440 460 480 500
0

200

400

600

800

1000

1200

1400

1600

1800

MSCG∗

Open-WBO-Inc
MSCG
QMaxSAT2-mt

320 330 340 350 360 370
0

200

400

600

800

1000

1200

1400

1600

1800

Eva500a
MSCG∗

MSCG
WPM1-2013

(a) (b) (c)

Figure 2. Results for Industrial MaxSAT benchmarks from MaxSAT Evaluation 2014 (a) Plain
MaxSAT benchmarks (b) Partial MaxSAT benchmarks (c) Weighted Partial MaxSAT benchmarks

solves the instance by considering different levels of weights starting from the largest weight
and disregarding the levels with smaller weights. Each level is solved as a non-weighted
MaxSAT instance (since all weights in the level are equal), and when a solution is found for
that level, the corresponding clauses of the level are hardened for the following levels. When
the last level is processed, a solution of the original weighted MaxSAT formula is found [5].

Unsatisfiable Core Trimming In order to reduce the size of the cores obtained, the
technique of unsatisfiable core trimming has been implemented in MSCG. Whenever a
new unsatisfiable core ϕC is extracted, the SAT solver is called again with the soft clauses
belonging to ϕC together with all the hard clauses. Since the new CNF instance is unsatis-
fiable, a new core ϕ′C is extracted. Note that ϕ′C ⊆ ϕC . If ϕ′C ⊂ ϕC , then ϕC is replaced by
ϕ′C and the trimming algorithm continues until a fixed point is found (i.e. when ϕ′C = ϕC)
or a maximum number of trimming attempts are done.

3. Experimental Results

This section presents the experimental data obtained for MSCG for all the industrial bench-
marks of the MaxSAT Evaluation 20144.. The experiments were performed on a cluster with
Intel Xeon E5-2630-v2 2.60GHz processors with 64GB of RAM. All the tested solvers were
set to run for each instance for 1800 seconds with 3.5GB of memory limit. The best per-
forming solvers in each industrial category of both the 2014 and 2013 MaxSAT Evaluations
(disregarding portfolio solvers) were selected for the experiments. As such, pmifumax5.

and Open-WBO-Inc [7] were considered for Plain MaxSAT instances while QMaxSAT2-
mt [4] and Open-WBO-Inc [7] were chosen for Partial MaxSAT. Finally, WPM1-2003 [1]
and Eva500a [10] were used for Weighted Partial MaxSAT benchmarks. Two versions of
MSCG (MSCG and MSCG∗) were considered and are described in what follows.

4. http://www.maxsat.udl.cat
5. http://sat.inesc-id.pt/~mikolas/sw/mifumax

132

http://www.maxsat.udl.cat
http://sat.inesc-id.pt/~mikolas/sw/mifumax


MSCG: Robust Core-Guided MaxSAT Solving

MSCG MSCG is the competition version of MSCG, which was submitted to the
MaxSAT Evaluation 2014. MSCG corresponds to a wrapper made on top of MSCG that
depending on the formula type sets which components to use. In the case of plain MaxSAT
instances, MSCG invokes the MSU1 algorithm [3] using the Bitwise cardinality constraint
encoding [12]. For partial MaxSAT instances MSCG invokes the Progression algorithm [9]
with BCD2 as the base algorithm, and using the variant of the Modulo Totalizer cardi-
nality encoding [11]. Finally, for weighted (partial) MaxSAT instances MSCG invokes the
incremental version of the OLL algorithm [8], using the Totalizer cardinality encoding [2].
Whenever a weighted (partial) instance respect the complete BMO condition [5], then the
complete BMO approach is used (see Section 2.5). Additionally, MSCG uses Glucose 3.0 in
the non-incremental mode (except for the OLL algorithm), trims all cores at most 5 times
and always computes both an upper and a lower bound (as described in Section 2.3).

MSCG∗ After the MaxSAT Evaluation, a new improved version of the solver referred to as
MSCG∗ was created, which resulted from the following improvements. Independently of the
type of instance (that is, for all the categories) the MaxSAT algorithm invoked corresponds
to the incremental version of the OLL algorithm (using the SAT solver in incremental mode),
and it also uses the iterative version of the Totalizer encoding [6] as cardinality constraint
encoding. Similarly to the weighted configuration of MSCG , Glucose 3.0 (in incremental
mode) is used as the underlying SAT solver. Additionally, it computes lower and upper
bounds, trims unsatisfiable cores at most 5 times, and uses the complete BMO algorithm
whenever possible (clearly, the latter can be used only for some of the weighted formulas).

Figure 2 presents the results obtained for each of the industrial categories. Both versions
of MSCG clearly improve over the best performing solvers of MaxSAT Evaluation 2013.
It can also be seen that in each category the competition version (MSCG) is close to the
winning solvers of the MaxSAT Evaluation 2014 while MSCG∗ is able to outperform the
winning solver of 2014 for both plain MaxSAT and for partial MaxSAT benchmarks. It
should be noted that MSCG∗ is always able to perform the same or better than MSCG .
Overall the results show that MSCG is one of the most robust MaxSAT solvers.

4. Conclusions

This work describes the MSCG solver, which comprises different core-guided algorithms
as well as some of the state-of-the-art MaxSAT techniques. In this work, we addition-
ally presented two versions of MSCG: the competition version MSCG submitted to the
MaxSAT Evaluation 2014 and MSCG∗, which is currently the best performing configuration
of MSCG. The experimental results indicate that both versions improve over the best per-
forming solvers for the industrial benchmark categories of the MaxSAT Evaluation 2013, and
are comparable with the best performing solvers of the MaxSAT Evaluation 2014. MSCG∗

is even able to outperform the best performing solvers in two categories. Overall, it can be
seen as one of the most robust state-of-the-art MaxSAT solvers.

133



Morgado et al.

Acknowledgments

This work is partially supported by SFI PI grant BEACON (09/IN.1/I2618), FCT grant
POLARIS (PTDC/EIA-CCO/123051/2010) and national funds through Fundação para a
Ciência e a Tecnologia (FCT) with reference UID/CEC.50021/2013.

References

[1] C. Ansotegui, M. L. Bonet, and J. Levy. SAT-based MaxSAT algorithms. Artificial
Intelligence, 196:77–105, 2013.

[2] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of Boolean cardinality con-
straints. In Principles and Practice of Constraint Programming, 2833 of LNCS, pages
108–122, 2003.

[3] Z. Fu and S. Malik. On solving the partial MaxSAT problem. In Theory and Applica-
tions of Satisfiability Testing, 4121 of LNCS, pages 252–265. 2006.

[4] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa. QMaxSAT: A partial MaxSAT
solver. J. Satisfiability, Boolean Modeling and Computation, 8(1/2):95–100, 2012.

[5] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce. Boolean lexicographic optimiza-
tion: algorithms & applications. Annals of Mathematics and Artificial Intelligence
(AMAI), 62(3-4):317–343, 2011.

[6] R. Martins, S. Joshi, V. Manquinho, and I. Lynce. Incremental cardinality constraints
for MaxSAT. In Principles and Practice of Constraint Programming, 8656 of LNCS,
pages 531–548. 2014.

[7] R. Martins, V. Manquinho, and I. Lynce. Open-WBO: A modular MaxSAT solver. In
Theory and Applications of Satisfiability Testing, 8561 of LNCS, pages 438–445. 2014.

[8] A. Morgado, C. Dodaro, and J. Marques-Silva. Core-guided MaxSAT with soft car-
dinality constraints. In Principles and Practice of Constraint Programming, 8656 of
LNCS, pages 564–573. 2014.

[9] A. Morgado, A. Ignatiev, and J. Marques-Silva. MSCG: Robust core-guided MaxSAT
solving (extended system description). Technical Report 18/2015, INESC-ID, 2015.

[10] N. Narodytska and F. Bacchus. Maximum Satisfiability using core-guided MaxSAT
resolution. In AAAI Conference on Artificial Intelligence, pages 2717–2723, 2014.

[11] T. Ogawa, Y. Liu, R. Hasegawa, M. Koshimura, and H. Fujita. Modulo based CNF
encoding of cardinality constraints and its application to MaxSAT solvers. In Tools
with Artificial Intelligence, pages 9–17, 2013.

[12] S. D. Prestwich. Variable dependency in local search: Prevention is better than cure.
In Theory and Applications of Satisfiability Testing, 4501 of LNCS, pages 107–120,
2007.

134


	Introduction
	MSCG - Main Components
	MaxSAT Algorithms
	Cardinality Constraint Encodings
	Lower and Upper Bound Heuristics
	SAT Solver Interface
	Additional Features

	Experimental Results
	Conclusions

