
Journal on Satisfiability, Boolean Modeling and Computation 9 (2015) 89-128

ahmaxsat: Description and Evaluation of a Branch and
Bound Max-SAT Solver

André Abramé andre.abrame@lsis.org

Djamal Habet djamal.habet@lsis.org

Aix Marseille Université, CNRS, ENSAM

Université de Toulon, LSIS UMR 7296, 13397

Marseille, France

Abstract

Branch and bound (BnB) solvers for Max-SAT count at each node of the search tree
the number of disjoint inconsistent subsets to compute the lower bound. In the last ten
years, important advances have been made regarding the lower bound computation. Unit
propagation based methods have been introduced to detect inconsistent subsets and a
resolution-like inference rules have been proposed which allow a more efficient and incre-
mental lower bound computation. We present in this paper our solver ahmaxsat, which
uses these new methods and improves them in several ways. The main specificities of our
solver over the state of the art are: a new unit propagation scheme which considers all the
variable propagation sources; an extended set of patterns which increase the amount of
learning performed by the solver; a heuristic which modifies the order of application of the
max-resolution rule when transforming inconsistent subset; and a new inconsistent subset
treatment method which improves the lower bound estimation. All of them have been pub-
lished in recent international conferences. We describe these four main components and
we give a general overview of ahmaxsat, with additional implementation details. Finally,
we present the result of the experimental study we have conducted. We first evaluate the
impact of each component on ahmaxsat performance before comparing our solver to some
of the current best performing complete Max-SAT solvers. The results obtained confirm
the ones of the Max-SAT Evaluation 2014 where ahmaxsat was ranked first in three of
the nine categories.

Keywords: Max-SAT, branch and bound, max-resolution

Submitted December 2014; revised May 2015; published December 2015

1. Introduction

The Max-SAT problem consists in finding an assignment to the Boolean variables of an
input CNF formula which maximizes (minimizes) the number of satisfied (falsified) clauses.
Max-SAT is the optimization version of the well-known satisfiability (SAT) problem and it
is NP-hard [49]. Max-SAT has numerous applications in real-life domains such as routing
[60], bioinformatics [54], scheduling and planning [16, 62], etc. Many academic optimization
problems can be formulated as Max-SAT instances (Max-CSP over finite domains [21], Max-
Cut, Max-Clique, etc.). In the weighted version of Max-SAT, a positive weight is associated
to each clause and the goal is to maximize (minimize) the sum of the weights of the satisfied
(falsified) clauses. Two other variants exist: partial Max-SAT and weighted partial Max-

c© 2015 IOS Press, the SAT Association, and the authors.

A. Abramé and D. Habet

SAT. In these variants, the clauses of the instances are separated in two parts: the hard ones
and the soft ones. The solution of a (weighted) partial Max-SAT instance is an assignment
which satisfies all the hard clauses while maximizing (minimizing) the number (the sum of
the weights) of satisfied (falsified) soft clauses. Unless specified, we consider all instances
as weighted partial Max-SAT in the rest of this paper.

Several methods have been proposed to solve the Max-SAT problem. These methods can
be divided in two main categories: the complete ones, which give the optimal solution and
the incomplete ones which are generally faster but cannot prove the solution optimality.
The incomplete methods are mainly based on local search algorithms [1, 14, 24, 52, 61]
or approximation methods [23, 57]. Among the complete methods, the ones based on
iterative calls to a SAT solver [22, 28, 32, 42, 43, 44, 45, 47] are very efficient on industrial
instances. Solvers based on the reformulation in integer linear programming [7, 10] perform
particularly good on crafted partial instances. Note that hybrid solvers exist [17, 18, 19],
which combine iterative-SAT and ILP-based approaches. Finally, solvers based on a branch
and bound (BnB) algorithm outperform the other approaches on random and non-partial
crafted instances. It is worth mentioning the existence of portfolio algorithms [11].

A typical branch and bound (BnB) algorithm for Max-SAT works as follows. At each
node of the search tree, it computes the lower bound (LB) by counting the disjoint incon-
sistent subsets (IS) remaining in the formula. Then it compares LB to the best solution
found so far (the upper bound, UB). If LB is greater or equal to UB, then no better solution
can be found by extending the current assignment and the algorithm performs a backtrack
(it goes back to the previous node of the search tree). Otherwise, it selects an unassigned
variable and gives it a value. When all the variables have been assigned, a new best solution
is found and UB is updated. This process is repeated until the whole search tree has been
explored. In the last ten years, many work have been made on BnB solvers for Max-SAT
and especially on the lower bound estimation. New methods based on unit propagation
have been proposed to detect the disjoint inconsistent subsets [38, 39]. New inference rules
have been defined [25, 34, 40] to simplify the formula. These rules are also used to perform
a limited form of learning in the sub-part of the search tree, making the LB computation
more incremental. Among these inference rules, the max-resolution [13, 25, 34] is espe-
cially interesting since all the previously introduced inference rules can be viewed as limited
forms of max-resolution [35]. These methods have been implemented in several solvers such
as MiniMaxSat [26, 27], wmaxsatz [40, 37] or akmaxsat [33] and lead to significant
practical improvements.

In the first part of this paper, we make a review of the techniques used in the most recent
BnB solvers. Especially, we detail three of the most critical of their components: (i) the
LB computation, (ii) the branching heuristics, and (iii) the inference rules used to extend
the assignment. The second part of this paper is dedicated to our solver ahmaxsat, which
was ranked first in three of the nine categories of the Max-SAT Evaluation 2014 (Max-
SAT random, Partial Max-SAT random and Max-SAT crafted) and second in a fourth
one (Weighted Partial Max-SAT random, which is composed of weighted instances and of
weighted partial ones). We describe the four main novel components included in ahmaxsat:
a new unit propagation scheme [4], extended sets of inference rules [5], a new way to
treat the IS detected during unit propagation [3], and a heuristic which makes the max-
resolution rule more usable [2]. We give a general overview of our solver and give details

90

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

on its implementation. Finally, we present the results of the experimental study we have
performed. We first show the improvements brought by each ahmaxsat new component
and we discuss their interactions. Then we compare ahmaxsat to some of the most recent
complete Max-SAT solvers on the benchmark set of the Max-SAT Evaluation 2014 and on
an extended set of generated random and crafted instances. We discuss the advantages and
weaknesses of the each solver family and we give improvement perspectives for ahmaxsat
and more generally for BnB solvers.

This paper is organized as follows. We give in Section 2 the basic definitions and
notations used in this paper. In Section 3, we describe the recent Max-SAT BnB imple-
mentations. Section 4 is dedicated to the description of our solver ahmaxsat. We give
the results of the experimental study we have performed in Section 5 before concluding in
Section 6.

2. Definitions and Notations

A weighted formula Φ in conjunctive normal form (CNF) defined on a set of n propositional
variables X = {x1, . . . , xn} is a conjunction of weighted clauses. A weighted clause cj is a
weighted disjunction of literals and a literal l is a variable xi or its negation xi. Alternatively,
a weighted formula can be represented as a multiset of weighted clauses Φ = {c1, . . . , cm}
and a weighted clause as a tuple cj = ({lj1 , . . . , ljk}, wj) with {lj1 , . . . , ljk} a set of literals
and wj > 0 the clause weight. The minimum value for the weight of the hard clauses is the
sum of the weights of the soft clauses plus one. Note that the weighted partial Max-SAT
formalism can be used to represent any other of the Max-SAT variants. In non-partial
instances, there is no hard clause while in unweighted instances all the weights of the soft
clauses are set to 1. We denote the number of clauses of Φ by |Φ| and the number of literals
of cj by |cj |.

An assignment can be represented as a set I of literals which cannot contain both a
literal and its negation. If xi is assigned to true (resp. false) then xi ∈ I (resp. xi ∈ I).
I is a complete assignment if |I| = n and it is partial otherwise. A literal l is said to
be satisfied by an assignment I if l ∈ I and falsified if l ∈ I. A variable which does
not appear either positively or negatively in I is unassigned. A clause is satisfied by I
if at least one of its literals is satisfied, and it is falsified if all its literals are falsified.
By convention, an empty clause (denoted by �) is always falsified. A subset ψ of Φ is
inconsistent if there is no assignment which satisfies all its clauses. For a unit assignment
I = {l}, we denote by Φ|I the formula obtained by applying I on Φ. Formally, Φ|I =
{cj | cj ∈ Φ, {l, l} ∩ cj = ∅} ∪ {cj/{l} | cj ∈ Φ, l ∈ cj}. This notation can be extended to
any assignment I = {l1, l2, . . . , lk} as follows: Φ|I = (. . . ((Φ|{l1})|{l2}) . . . |{lk}). Solving the
weighted partial Max-SAT problem consists in finding a complete assignment which satisfies
all the hard clauses and which maximizes (minimizes) the sum of the weights of the satisfied
(falsified) soft clauses of Φ. Two formulas are equivalent for (weighted) Max-SAT iff they
have the same number (sum of weights) of falsified clauses for each partial assignment.

91

A. Abramé and D. Habet

3. State of the Art of Branch and Bound Solvers

A typical branch and bound solver for Max-SAT works as follows (Algorithm 1). It starts
by initializing the best solution found so far, the upper bound (UB), to the worst possible
value: the sum of the weights of the soft clauses (line 2). Then it explores the space of the
possible solutions by constructing a search tree. At each node of this search tree, it first tries
to extend the current assignment by applying inference rules (line 6). Then, it computes
the lower bound (LB) which is the sum of the weights of the clauses falsified by the current
partial assignment I plus an under-estimation of the sum of the clauses which will become
falsified if we extend the current assignment (line 7). If LB ≥ UB, then no better solution
can be found by extending the current assignment and the algorithm performs a backtrack
(line 8). It undoes the previously made decisions until finding an unexplored branch of the
search tree. If the current assignment is complete (i.e. a value is given to all the variables),
then a new better solution is found and the algorithm updates the UB before backtracking
(lines 9-12). Otherwise, it selects an unassigned variable according to a branching heuristic
and it gives it a value (line 14-15). These steps are repeated until the whole search space
has been explored.

Algorithm 1: A typical BnB algorithm for Max-SAT

Data: A CNF formula Φ with n the number of variables of Φ.
Result: (UB, IUB) with UB the best solution found and IUB the corresponding assignment.

1 begin
2 UB ←

∑
cj∈Φ wj ;

3 IUB ← ∅;
4 I ← ∅;
5 repeat
6 I ←assignment extension(Φ,I);
7 LB ←

∑
cj=�∈Φ|I wj + count remaining conflicts(Φ|I);

8 if LB ≥ UB then backtrack();
9 else if |I| = n then

10 UB ←
∑

cj=�∈Φ|I wj ;

11 IUB ← I;
12 backtrack();

13 else
14 l←select new decision();
15 I ← I ∪ {l};

16 until |I| > 0;
17 return (UB, IUB)

In the rest of this paper, we consider that at each node of the search tree the initial
formula Φ is simplified by the current partial assignment I. Thus, the term formula will
now refer to Φ|I and we will use the term initial formula or original formula to refer to Φ. It
implies that other definitions such as unit clause or inconsistent subset must be considered
in the simplified formula Φ|I and not in the original one Φ.

92

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

The efficiency of Max-SAT BnB solvers depends mainly on two parameters: (1) the
number of nodes of the search tree they explore (thus their capability to prune the search
tree) and (2) the time they spent on each node. The amount of pruning performed depends
on the quality of the upper and lower bounds. We consider that UB is of good quality if its
value is close to the optimum of the instances. Similarly, at a given node of the search tree,
we consider that LB is of good quality if its value is close to the best solution reachable in the
current branch of the search tree. Three components have an impact on the UB and LB qual-
ities: the branching heuristic (function select new decision), the inference rules used to
extend the current assignment (function assignment extension) and the under-estimation
of the clauses which will become falsified (function count remaining conflicts). In the
rest of this section, we give an overview of the techniques used in these components.

3.1 Branching Heuristic

The branching heuristic in BnB Max-SAT solvers has multiple goals which are not nec-
essarily compatible. On the one hand, to get a good quality upper bound, solvers must
choose the assignments which satisfy as many clauses as possible. On the other hand, to
get high lower bound values in the early nodes of the search tree solvers should choose the
assignments which falsify as much clauses as possible. These assignments should also allow
a good estimation of the remaining inconsistencies (thus they should create unit and binary
clauses to empower unit propagation). Since both polarities will likely be explored for each
chosen variable, solvers should choose the “balanced” variables first, i.e. variables which
are likely to give good LB value for both polarities.

The first branching heuristics dedicated to Max-SAT solvers [8, 31, 59] were variants
of the SAT branching heuristics MOMS [50] or Jeroslow-Wang (JW) [29, 30]. The main
difference of these heuristics over their SAT original versions is that the importance of
the unit clauses is reduced while the one of the binary clauses is increased. That way,
the heuristics favor the creation of new unit clauses which allow a better LB estimation.
However, these rules focus on satisfying clauses rather than falsifying them. Each literal
has a score which only depends on the clauses in which it appears. There is no mechanism
to ensure a balance between the polarities of the chosen variables.

Recent BnB solvers use more sophisticated branching heuristics. For instance, wmax-
satz gives a score to each literal based on its occurrence in the clauses and then chooses the
variable which maximizes the multiplication of its literal scores plus their sum. It aims at
obtaining high LB values in the higher nodes of the search tree while keeping its branches
balanced. The branching heuristic of akmaxsat is similar, except it takes into considera-
tion the participation of the literals in the inconsistent subsets (IS) detected during the LB
computation.

It is worth noticing that to the best of our knowledge only one branching heuristic makes
a special treatment for hard clauses. MiniMaxSat applies the VSIDS heuristic [46] as long
as there are hard clauses. When there are no hard clauses, it uses a weighted variant of the
Jeroslow-Wang heuristic [25].

93

A. Abramé and D. Habet

3.2 Extending the Current Assignment

At each node of the search tree, BnB solvers use inference rules to extend the assignment.
This component is critical for the solvers efficiency since it allows to prune the search tree
by fixing the value of some variables. The higher in the search tree and the more the
variables value can be fixed, the less the number of explored nodes is. Recent solvers use
three inference rules for this purpose.

Hard Unit Propagation Unit propagation (UP) is a powerful inference rule used in SAT
complete solvers [20, 46]. It consists in iteratively fixing to true the literals which appear in
unit clauses. This rule however cannot be applied in the Max-SAT context since it can lead
to non-optimal solution [38]. However, when the weight of a unit clause is greater than the
difference between UB and LB, falsifying the literal of this clause will necessarily lead to a
solution worst than the best one found so far. Thus, solvers can safely satisfy this literal.
We call this inference rules hard unit propagation (HUP).

Dominating Unit Clause Another inference rule for SAT which can be used in the
Max-SAT context is the dominating unit clause rule (DUC) [46]. If the sum of the weights
of the unit clauses containing a literal li is greater or equal to the sum of the weights of
the clauses which contain li, then satisfying li will necessarily lead to a better solution than
falsifying it.

Pure Literal The last inference rule used to extend the assignment by BnB Max-SAT
solvers is the pure literal rule (PL) [48]. If a variable appears only positively (negatively)
in the formula, then it can be fixed to true (false) without falsifying any clause.

3.3 Lower Bound Computation

At each node of the search tree, BnB solvers calculate the lower bound (LB) which is
an under-estimation of the sum of the weights of the clauses which will be falsified if we
extend the current partial assignment. This component is critical in two ways. Firstly, it is
applied very often and its computing time has an important impact on a solver’s efficiency.
Secondly, its quality determines the number of explored nodes. Thus, a trade-off must be
made between the time spent to compute it and its quality.

The simplest way to compute the lower bound consists in counting the sum of the weights
of the clauses falsified by the current assignment. In addition, several methods have been
proposed to increase LB accuracy by detecting or approximating the disjoint inconsistent
subsets (IS) present in the formula under the current partial assignment. The first LB
computation method was the inconsistency count due to Wallace and Freuder [58] which
counts the number of disjoint IS of the form {{li}, {li}}. Shen and Zhang have improved
this first method in LB4 [51] by using linear resolution to generate more unit clauses before
applying inconsistency count. Alisnet et al. used the star rule [48] to capture disjoint IS of
the form {{l1}, . . . , {lk}, {l1, . . . , lk}} [9]. Approximations have also been used to compute
a fast lower bound, using integer programming [59] or semi-definite programming [23].

More recently, Li et al. have shown [38, 39] how unit propagation based methods can
be used to detect IS. Once detected, they are transformed to ensure their disjointness. We
present the existing IS detection and treatment methods in the remaining of this section.

94

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

3.3.1 UP-based Detection of the Inconsistent Subsets

Unit propagation (UP) consists in iteratively satisfying the literals which appear in unit
clauses until a conflict is found (an empty clause) or no more unit clauses remain. When a
conflict is found, the clauses which have led to it by propagation form an IS of the formula
(under the current partial assignment).

The propagation steps can be represented by an implication graph G = (V,A) which is
a directed acyclic graph where the nodes V are the propagated literals and each arrow of
A is tagged with the clause causing the propagation [41].

Simulated Unit Propagation Li et al. have proposed a new LB computation method
based on unit propagation [38]. At each node of the search tree, they apply UP on the
formula. When a conflict is detected, they analyze the implication graph to build the
corresponding IS and apply a treatment (the existing treatments are described below) on it
to ensure that it will not be counted more than once. This process is repeated until no more
unit clauses remain. Since UP is not sound for Max-SAT (it can lead to non-optimal solution
[38]) the propagated variables are unassigned at the end of the lower bound estimation. This
method is called simulated unit propagation (SUP) to differentiate it from the classical UP
usage.

Each soft clause of the formula can only participate in one IS. Thus, the smaller the
IS are, the more SUP will be able to detect other IS. Based on this observation, Li et al.
have introduced two SUP variants: SUPS and SUP∗ [39]. The first one uses a stack instead
of a queue to store the unit clauses so the last unit clause inserted is the first one used
for propagation. The second one uses two different queues, one for the “real” unit clauses
(which does not depend on the simulated propagation steps) and one for the “simulated”
unit clauses (which contains literals falsified by the simulated propagation steps). Empirical
results suggest that SUP∗ performs better than the two other variants [39].

Example 1. Let us consider the (unweighted and non-partial) CNF formula Φ1 = {c1, . . . ,
c10} with c1 = {x1}, c2 = {x1, x2}, c3 = {x1, x2, x3}, c4 = {x2, x4}, c5 = {x5}, c6 = {x5, x2},
c7 = {x6}, c8 = {x6, x7}, c9 = {x6, x3} and c10 = {x6, x7, x3}. The application of SUP∗ on
Φ1 leads to the sequence of propagations 〈x1@c1, x2@c2, . . . , x5@c5, x6@c7, x7@c8〉 (meaning
that x1 is propagated by clause c1, then x2 by c2, etc.). The clause c10 is empty. Fig. 1
shows the corresponding implication graph. The set of clauses ψ = {c1, c2, c3, c7, c8, c10}
which have led by propagation to the conflict (i.e. to the empty clause c10) is an IS of Φ1.

Failed Literals The second UP-based method to detect IS, the failed literals technique
(FL) [39], is due to Li et al. Let us consider a formula Φ and a partial assignment I. At
each node of the search tree and for each unassigned variable xi such as I ∩ {xi, xi} = ∅,
FL applies SUP to Φ|I∪{xi} then to Φ|I∪{xi}. If two IS ψ and ψ′ are detected in Φ|I∪{xi}
and Φ|I∪{xi} respectively, then ψ ∪ ψ′ is an IS in Φ|I . FL is generally applied when no
more conflict can be reached by SUP. Since FL can be very time consuming, its application
is generally restricted to variables which appears both positively and negatively in binary
clauses.

This technique has been further refined by Kügel [33] by merging SUP and FL into one
single method called generalized unit propagation (GUP). The main idea behind GUP is to

95

A. Abramé and D. Habet

x7

x6 �

x3

x1 x2

x5 x4

c1
c2

c3
c3

c4
c5

c7
c8

c10
c10

c10

Figure 1: Implication graph of the formula Φ1 from Example 1. Nodes are the propagated
literals and arrows are labeled with the clauses causing the propagations.

reuse the previously detected failed literals. If one IS ψ1 is detected in Φ|I∪{xi}, we know
that xi must be set to false to avoid a clause of ψ1 from being falsified. If no IS is detected
in Φ|I∪{xi}, we can still use ψ1 and continue applying FL in the formula Φ|I∪{xi}.

3.3.2 Transforming Inconsistent Subsets

We give below the existing treatments applied on the clauses of the IS (IS) detected by SUP
or FL.

Inconsistent Subset Removal (ISR) A simple way to avoid detecting the same IS
several times is to remove its clauses and add an empty clause to the formula. Such operation
has the advantages of being fast and it does not increase the size of the formula. Since
the removed clauses are restored before the next decision, ISR does not impact the LB
estimation in the current sub-tree. However, the formula resulting from the ISR application
is not equivalent to the original one and may contain fewer inconsistencies. Indeed, IS
clauses are removed without considering their interaction with the rest of the formula.
Thus, the quality of the lower bound estimation can be deteriorated and the number of
decisions made by a BnB solver increased.

Max-resolution Rule An alternative way to avoid the re-detection of the same conflicts
is to use the max-resolution rule [13, 25, 34], which is the Max-SAT version of the SAT
resolution. It is defined as follows (on top the original formula and at the bottom the
formula after the transformation):

ci = {x, y1, . . . , ys}, cj = {x, z1, . . . , zt}
cr = {y1, . . . , ys, z1, . . . , zt}, cc1, . . . , cct, cct+1, . . . , cct+s

with:

cc1 = {x, y1, . . . , ys, z1, z2, . . . , zt}
cc2 = {x, y1, . . . , ys, z2, . . . , zt}

...

cct = {x, y1, . . . , ys, zt}

cct+1 = {x, z1, . . . , zt, y1, y2, . . . , ys}
cct+2 = {x, z1, . . . , zt, y2, . . . , ys}

...

cct+s = {x, z1, . . . , zt, ys}

Where ci and cj are the original clauses, cr the resolvent and cc1, . . . , cct+s the compensa-
tion clauses added to preserve the number of falsified clauses (keep formula’s equivalency).

96

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

One should note that ci and cj are removed after max-resolution. This definition can
be extended to weighted formulas as follows: if m is the minimum weight of the original
clauses, m is subtracted from the weight of ci and cj and each produced clause (resolvent
and compensation ones) takes the weight m.

An IS can be transformed by applying several max-resolution steps between its clauses.
These steps are generally applied in reverse propagation order. This process is close to the
clause learning mechanism used in modern SAT solvers [41].

The max-resolution is sound but has some disadvantages. Indeed, its application is more
time-consuming than the IS removal. Moreover, it increases the number and the size of the
clauses and it can push back the detection of inconsistencies in lower nodes of the search
tree by removing clauses which could have been used later for propagation.

Example 2. Let us consider again the formula Φ1 = {c1, . . . , c10} from Example 1. We
have seen that the IS ψ = {c1, c2, c3, c7, c8, c10} can be detected by applying SUP∗. The
transformation of ψ by max-resolution can be done as follows. First, max-resolution is
applied between c8 and c10 around the propagated variable x7. It produces an intermediary
resolvent c11 = {x6, x3} and the compensation clause c12 = {x6, x7, x3}. Then, max-
resolution is applied between c11 and c7 around the propagated variable x6 and so forth.
The max-resolution steps applied on ψ are shown in Fig. 2 with the compensation clauses
in boxes. The original clauses c1, c2, c3, c7, c8, c10 are removed from the formula and besides
the compensation clauses c12, c14, c16, c17, the resolvent c19 = � is added to the formula.
The intermediary resolvents c11, c13, c15, c18 are consumed by the max-resolution steps. We
obtain the formula Φ′ = {�, c4, c5, c6, c9, c12, c14, c16, c17} with c12 = {x6, x7, x3}, c14 =
{x6, x3}, c16 = {x3, x1, x2} and c17 = {x3, x2}.

c10 = {x6, x7, x3} c8 = {x6, x7}
c12 = {x6, x7, x3}

c11 = {x6, x3} c7 = {x6}
c14 = {x6, x3}

c13 = {x3} c3 = {x1, x2, x3}
c16 = {x3, x1, x2} , c17 = {x3, x2}

c15 = {x1, x2} c2 = {x1, x2}

c18 = {x1} c1 = {x1}

c19 = �

x7

x6

x3

x2

x1

Figure 2: Max-SAT resolution steps applied on the IS ψ in Example 2.

Existing Implementations Recent Max-SAT solvers (e.g. wmaxsatz [36, 39, 40], ak-
maxsat [33]) apply SUP and FL at each node of the search tree and build an IS for each
detected conflict. If the IS corresponds to some patterns (see below), then they apply the
max-resolution rule and keep the modifications in the sub-tree. Otherwise, they temporarily

97

A. Abramé and D. Habet

remove all the clauses of the IS from the formula for the duration of the LB estimation. We
refer to these two treatments as respectively sub-tree max-resolution and temporary removal
in the rest of this paper. The main patterns are (with on top the clauses of the original
formula and on bottom the clauses obtained after transformation):

(P1)
{{x1, x2}, {x1, x2}}

{{x1}}
, (P2)

{{x1, x2}, {x1, x3}, {x2, x3}}
{{x1}, {x1, x2, x3}, {x1, x2, x3}}

,

(P3)
{{x1}, {x1, x2}, {x2, x3}, . . . , {xk−1, xk}, {xk}}
{�, {x1, x2}, {x2, x3}, . . . , {xk−1, xk}}.

Note that the number of clauses added is smaller than or equal to the number of original
clauses removed. Consequently, the size of the formula does not grow. Moreover, the sizes of
the IS corresponding to the patterns are small, and it is less likely that they will hamper the
detection of other IS in the sub-part of the search tree. It should be noted that the clauses
of an IS are not necessarily all treated by the same method. A part can be transformed by
sub-tree max-resolution while the other part is simply removed temporarily.

For the sake of completeness, we also describe the treatment applied on IS by Mini-
MaxSat [26, 27], which is to the best of our knowledge the only solver which makes a more
extensive use of the max-resolution rule. MiniMaxSat detects conflicts by SUP, then it
applies sub-tree max-resolution to the IS if at each max-resolution step the resolvent con-
tains less than 4 literals. Otherwise, it temporarily removes the clauses of the IS. As do
the aforementioned solvers, MiniMaxSat performs also a limited form of learning in the
sub-tree while avoiding or limiting the impact of the max-resolution drawbacks. But rather
than specifying a list of patterns, it uses a more general criterion based on the size of the
intermediary resolvents. This criterion is less restrictive, i.e. MiniMaxSat makes more
learning, but it controls less efficiently the drawbacks cited above.

4. Our BnB Max-SAT Solver: ahmaxsat

We describe in this section our solver ahmaxsat. We first present the four main novel
components that it includes: a new unit propagation scheme [4], a heuristic which improves
the order of application of the max-resolution steps on IS [2], new sets of patterns to extend
the amount of learning performed by the solver [5], and a new transformation method for
the parts of the IS which do not match the pattern (IS transformations which are not kept
in the sub-part of the search tree) [3]. Then we give an overview of ahmaxsat with an
emphasis on its lower bound computation function, its branching heuristic, and the inference
rules used to extend the current assignment.

4.1 Handling All Variable Propagation Sources

Multiple Propagation Source Scheme To the best of our knowledge, all the existing
implementations of unit propagation (for SAT or Max-SAT) use the first propagation source
(FPS) scheme: they only consider the first unit clause causing the propagation of the
variables (the first propagation source). The next propagation sources encountered are
satisfied by the already propagated variables and thus they are simply ignored. When a
propagation is undone in this scheme, all the propagations made afterwards must also be

98

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

undone to ensure that the previously ignored propagation sources will now be considered.
This is satisfactory in the SAT context where the propagations are undone only during the
backtracking process (thus in reverse chronological order). In the Max-SAT context, clauses
can be removed from the formula during the IS treatment. In such a situation, propagations
made afterward must be undone even if they are still valid (i.e. they still have a propagation
source). Thus many unnecessary un-propagations and re-propagations may be performed.
The following example illustrates this behavior.

Example 3. Let us consider the formula Φ1 from Example 1. We have seen that the applica-
tion of SUP∗ on Φ1 leads to the sequence of propagations 〈x1@c1, x2@c2, . . . , x5@c5, x6@c7,
x7@c8〉. The clause c10 is empty and we can compute the inconsistent subset (IS) ψ =
{c1, c2, c3, c7, c8, c10} by analyzing the implication graph. One can note that the clauses c6

and c9, which are predecessors (but not the first ones) of respectively x2 and x3 are neither
considered nor represented in the implication graph (see Figure 1).

If the clauses of ψ are removed from the formula, we obtain Φ′1 = {c4, . . . , c6, c9}. All the
propagations caused by the clauses of ψ must be undone. The less recent ones is x1@c1 and
since the propagations are undone in reverse chronological order in FPS, all the propagations
are undone. Thereafter, application of SUP∗ on Φ′1 leads to the sequence of propagation
〈x5@c5, x2@c6, x4@c4〉. Note that these three variables have been consecutively unassigned
and reassigned.

To overcome this limitation of the FPS scheme, we have proposed a new scheme called
multiple propagation source (MPS) scheme [4]. In this scheme, all the propagation sources
of each variable are stored rather than only the first one. Propagated variables are undone
only when they have no more propagation source. This way, propagations can be undone
in a non-chronological order and fewer unnecessary propagation steps are performed. The
propagation steps performed in the MPS scheme can be modeled by a full implication graph
[4] which is a AND/OR directed graph where the AND nodes are the clauses causing the
propagation and the OR nodes the propagated variables. Note that such scheme has been
only considered from a theoretical point of view [56] and in a very limited way for improving
the backjump level [12] of Conflict Driven Clause Learning SAT solvers [41]. The following
example illustrates the MPS scheme behavior.

Example 4. Let us consider again the formula Φ1 from Example 1. The application
of SUP∗ with MPS leads to the same six first propagation steps done in Example 3:
〈x1@c1, x2@c2, . . . , x5@c5, x6@c7〉. At this point, the variable x7 has two propagation sour-
ces of opposite polarities, c8 and c10, which cannot be both satisfied. Fig. 3 shows the full
implication graph obtained in a MPS based solver. One can note that the second propa-
gation source of x2 and x3 (respectively c6 and c9) are represented in the full implication
graph. As in the previous example, we can build the IS ψ = {c1, c2, c3, c7, c8, c10} by taking
the first propagation source of each propagated variable which have led to the conflict. If
ψ is removed from the formula, the variables x1, x3, x6 and x7 have no more propagation
source and must be unset. Note that x2, x4 and x5 remain propagated since they all have
still at least one propagation source.

99

A. Abramé and D. Habet

c8 x7

c7 x6 c10 x7

c9

c3 x3

c1 x1 c2 x2

c5 x5 c6 c4 x4

Figure 3: Full implication graph of the formula Φ1 from Example 4. The circled nodes are
the propagated variables while the uncircled nodes are unit clauses. Note that contrary to
the implication graph of Fig. 1, the predecessors c6 of x2 and c9 of x3 are represented.

Reducing the Inconsistent Subset Sizes The MPS scheme has other advantages. It
gives information on the structure of the instances which are not available in the FPS
scheme. ahmaxsat uses this information to influence the characteristics of the IS it builds.

When FPS based solvers find a conflict (an empty clause), they build an IS by analyzing
the sequence of propagation steps which have led to the conflict. For each propagated
variable of this sequence, its propagation source is added to the IS. Since only the first
propagation source of each propagated variable is known, only one IS can be built.

To the contrary, MPS based solvers can choose for each propagated variable which has
led to a conflict the propagation source they add to the IS. Thus MPS based solvers can
influence the structure of the generated IS. We have proposed a simple heuristic to select
the propagation source added to the IS [4]. The aim of this heuristic is to reduce the size
of the IS produced to let more clauses available for later unit propagation steps. It may
improve the estimation of the lower bound and thus reduce the number of explored nodes of
the search tree. The heuristic works as follows. For each propagated variable participating
in the conflict (taken in reverse propagation order), it selects the propagation source which
contains the less new variables. We refer to this method as the smaller inconsistent subsets
(SIS) heuristic in the rest of this paper.

ahmaxsat uses the MPS scheme. Each variable keeps two statically allocated lists for
its positive and negative propagation sources. When a clause cj becomes unit, ahmaxsat
identifies the propagated variable xi (the only unassigned variable of cj) and adds it to the
appropriate propagation source list of xi. Propagated variables are unset only when they
have no more propagation source.

The MPS scheme does not change the overall time complexity of our algorithm. Since
there cannot be more propagation sources than the number of clauses of the instance,
the worst case time complexity of the IS computation mechanisms (unit propagation, IS
building and transformation) remains unchanged. In practice however more clauses will
be examined during the unit propagation process and when building the IS. Moreover, the
underlying data structures must be adapted to support this new propagation scheme.

100

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

4.2 Reducing the Number and the Sizes of the Compensation Clauses

We have seen in Section 3 how IS can be transformed thanks to Max-SAT resolution. When
a conflict (an empty clause) is detected by SUP, an IS is built by analyzing the implication
graph. This IS is then transformed by applying several max-resolution steps on its clauses.
Since max-resolution can be applied on a literal only when it reduces one single clause
of the IS (or when all the clauses it reduces have been merged into a single intermediary
resolvent), the max-resolution steps are usually applied in reverse propagation order. These
transformations produce compensation clauses, and thus the size of the formula can grow
quickly.

We have observed that the number and the sizes of the compensation clauses added
depend on the order in which the Max-SAT resolution steps are performed. Especially, we
have shown that for two adjacent variables in an implication graph, applying max-resolution
first around the one producing the smallest intermediary resolvent always produces less com-
pensation clauses and of smaller size [2]. Based on this observation, we have implemented
in ahmaxsat a simple heuristic to choose the order of application of the max-resolution
steps. This heuristic works as follows. Let us consider an implication graph G = (V,A).
Firstly, the algorithm computes the scores of the variables of V according to the following
definition:

score(xi) =

{
size of the intermediary resolvent if xi reduces a single clause ck
∞ if xi reduces more than one clause

Then, it selects the variable of V of the smallest score and it applies Max-SAT resolution
between its predecessor and successor. It updates the implication graph G by replacing the
consumed clauses by the intermediary resolvent produced (duplicated arcs are removed)
and it updates the scores of the variables. This process is repeated until the implication
graph contains no more variable. The last resolvent produced is added to the formula. We
refer to this method as the smallest intermediary resolvent (SIR) heuristic in the rest of this
paper. It should be noted that this heuristic is not necessarily optimal and, for a given IS,
it may exist sequences of application of the max-resolution steps which reduce further the
number and sizes of the compensation clauses produced. Nevertheless, experimental results
[2] shows that the SIR heuristic reduces significantly both these values. The following
example illustrates how this method works.

Example 5. Let us consider a formula Φ2 = {c1, c2, . . . , c6} defined on a set of Boolean
variables {x1, . . . , x5} with c1 = {x1}, c2 = {x2}, c3 = {x2, x3}, c4 = {x2, x4}, c5 =
{x1, x3, x5} and c6 = {x4, x5}. The application of unit propagation on Φ2 leads to the
assignments 〈x1@c1, x2@c2, . . . , x5@c5〉 (meaning that x1 is propagated by clause c1, then
x2 by c2, etc.). The clause c6 is falsified and ψ = {c1, c2, . . . , c6} is an IS of Φ2. Fig. 4 shows
the corresponding implication graph. In this example, the intermediary resolvent and the
updated implication graph obtained after a sequence of max-resolution steps 〈xi1 , . . . , xik〉
are denoted respectively cr〈xi1

,...,xik
〉 and G〈xi1

,...,xik
〉.

a) Classical transformation by max-resolution: The max-resolution steps are typically ap-
plied around the literals of the implication graph in reverse propagation order. Thus,
max-resolution is applied first between c6 and c5. It produces an intermediary resolvent
cr〈x1〉 = {x1, x3, x4} and three compensation clauses cc1 = {x1, x3, x4, x5}, cc2 = {x3, x4, x5}

101

A. Abramé and D. Habet

x1 x5

x2 x3 �

x4

c1

c2 c3

c4

c5

c5

c6

c6

Figure 4: Implication graph for the formula Φ2 from Example 5.

and cc3 = {x1, x3, x4, x5}. Then it is applied between cr〈x1〉 and c4 and so forth. Fig. 5 shows
the max-resolution steps applied on the formula, with the compensation clauses in boxes.
The original clauses c1, . . . , c6 are removed from the formula and besides the compensation
clauses cc1, . . . , cc8, the resolvent cr〈x1,...,x5〉 = � is added to the formula. The intermediary
resolvents cr〈x1〉, . . . , cr〈x1,...,x4〉 are consumed by the Max-SAT resolution steps. We obtain
the formula Φ′2 = {�, cc1, . . . , cc8}. Note that Φ′2 contains, besides the empty clause �, one
clause of size two, three clauses of size three and four clauses of size four.

c6 = {x4, x5} c5 = {x1, x3, x5}

cc1 = {x1, x3, x4, x5} , cc2 = {x3, x4, x5}
cc3 = {x1, x3, x4, x5}

cr〈x1〉 = {x1, x3, x4} c4 = {x2, x4}

cc4 = {x1, x2, x3, x4}
cc5 = {x1, x2, x3, x4} , cc6 = {x2, x3, x4}

cr〈x1,x2〉 = {x1, x2, x3} c3 = {x2, x3}

cc7 = {x1, x2, x3}
cr〈x1,...,x3〉 = {x1, x2} c2 = {x2}

cc8 = {x1, x2}
cr〈x1,...,x4〉 = {x1} c1 = {x1}

cr〈x1,...,x5〉 = �

x5

x4

x3

x2

x1

Figure 5: Max-SAT resolution steps applied on the formula Φ2 in Example 5a.

b) Transformation by max-resolution with the SIR heuristic: If we use the SIR heuristic to
transform ψ, a score is given to each literal of G. Fig. 6a shows the implication graph G
with in brackets the literal’s scores.

Initially, there are two variables with the lowest score 2, x1 and x4. The algorithm applies
Max-SAT resolution between the predecessor of x1, c1, and its successor c5. It produces
the intermediary resolvent cr〈x1〉 = {x3, x5}, then it removes x1 from the implication graph,
it replaces the tag c5 of the arc (x3, x5) by cr〈x1〉 and it updates the scores of x3 and
x5. Fig. 6b shows the modified implication graph, with in bold the replaced arcs and the
updated scores.

Then, it takes the next variable of score 2, x4, and it applies Max-SAT resolution
between its predecessor and successor (c4 and c6 respectively). It updates the implication

102

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

x1(2)

x3(3) x5(3)

x2(∞) x4(2) �

c1

c2

c3

c4

c5

c5

c6

c6

(a) Original implication graph G

x3(2) x5(2)

x2(∞) x4(2) �
c2

c3

c4

cr〈x1〉

c6

c6

(b) G〈x1〉

x3(2) x5(2)

x2(∞) �
c2

c3

cr〈x1〉

cr〈x1,x4〉

cr〈x1,x4〉

(c) G〈x1,x4〉

x3(2)

x2(∞) �
c2

c3

cr〈x1,x4,x5〉

cr〈x1,x4,x5〉

(d) G〈x1,x4,x5〉

x2(0) �
c2

cr〈x1,x4,x5,x3〉

(e) G〈x1,x4,x5,x3〉

�

(f) G〈x1,x4,x5,x3,x2〉

Figure 6: Evolution of the implication graph during the transformation of the formula Φ2

of Example 5b.

c1 = {x1} c5 = {x1, x3, x5}

cc1 = {x1, x3, x5}
cc2 = {x1, x5}

cr〈x1〉 = {x3, x5} c4 = {x2, x4} c6 = {x4, x5}

cc3 = {x2, x4, x5}
cc4 = {x2, x4, x5}

cr〈x1,x4〉 = {x2, x5}

cc5 = {x2, x3, x5}
cc6 = {x2, x3, x5}

c3 = {x2, x3} cr〈x1,x4,x5〉 = {x2, x3}

c2 = {x2} cr〈x1,x4,x5,x3〉 = {x2}

cr〈x1,x4,x5,x3,x2〉 = �

x1

x4

x5

x3

x2

Figure 7: Max-SAT resolution steps applied on the formula Φ2 in Example 5b.

graph and the variable scores (Fig. 6c). It applies the same treatment on x5 (Fig. 6d)
then x3 (Fig. 6e). At this point, the two successors of x2 have been merged and Max-SAT
resolution can be applied between its predecessor c2 and its new successor, the intermediary
resolvent cr〈x1,x4,x5,x3〉. This last resolution step produces an empty clause and, after its
updating, the implication graph does not contain any more variable (Fig. 6f). Fig. 7 shows
the max-resolution steps applied on the clauses of ψ.

We obtain the transformed formula Φ′′2 = {�, cc1, . . . , cc6} which contains, besides the
empty clause �, six clauses (five of size three and one of size two). There are two clauses

103

A. Abramé and D. Habet

less than with the classical order of application of the max-resolution steps and the clause
sizes are smaller. It is also interesting to observe that the max-resolution steps are no longer
applied in a topological order of the unit propagation steps.

4.3 Increased Learning

We have seen that the most recent BnB solvers apply a limited form of learning in the
sub-part of the search tree on the parts of the IS which match some patterns. Two of these
patterns (P1 and P2) produce, after transformation by max-resolution, a unit resolvent
clause. The goal of memorizing such transformations is twofold. On the one hand, it
reduces the number of redundant propagations and on the other hand, it may empower the
detection of inconsistencies in lower nodes of the search tree since more unit clauses are
available for applying unit propagation.

We have proposed to extend the amount of learning performed by BnB solvers by con-
sidering more patterns which produce unit resolvent clauses when transformed by max-
resolution [5]. These patterns can be formally defined as follows.

Definition 1 (Unit Clause Subset (UCS)). Let Φ be a CNF formula. A unit clause subset
(UCS) is a set {ci1 , . . . , cil} ⊂ Φ with ∀j ∈ {1, . . . , l}, |cij | > 1 such that there exists
an order of application of l − 1 max-resolution steps on ci1 , . . . , cil which produces a unit
resolvent clause. We denote the set of the UCS’s patterns of size k by k-UCS.

Example 6. Below the patterns of the 3-UCS set:

(P2)
{{x1, x2}, {x1, x3}, {x2, x3}}

{{x1}, {x1, x2, x3}, {x1, x2, x3}}
, (P4)

{{x1, x2}, {x2, x3}, {x1, x2, x3}}
{{x1}, {x1, x2, x3}}

,

(P5)
{{x1, x2}, {x1, x3}, {x1, x2, x3}}

{{x1}, {x1, x2, x3}}
, (P6)

{{x1, x2}, {x1, x2, x3}, {x1, x2, x3}}
{{x1}}

Since one of the goals of memorizing transformations which produce unit resolvent
clauses is to increase the number of assignments made by unit propagation (SUP or FL), we
do not consider the subsets of clauses which contain unit clauses. In the best case (if they
contain only one unit clause), the transformation of such subsets lets the number of unit
clauses of the formula unchanged. In the worst case (if they contain more than one unit
clause), the transformed formula contains less unit clauses than the original one. Thus, the
number of assignments made by unit propagation and consequently the number of detected
IS may be reduced. We also make a distinction between the patterns of the k-UCS sets
depending on the size of their clauses. We denote kb-UCS the subset of k-UCS composed
of the patterns which contain only binary clauses and kt-UCS the subset composed of the
patterns which contain at least one ternary clause. It should be noted that the patterns
(P1) and (P2) presented in Section 3.3.2 belong respectively to the sets 2-UCS and 3b-UCS.

We have shown empirically that our solver ahmaxsat obtains better performance while
memorizing the 2-3t-4t-5t-UCS patterns (i.e. 2-UCS ∪ 3t-UCS ∪ 4t-UCS ∪ 5t-UCS) [5].

The k-UCS patterns are detectable by analyzing the implication graph. Indeed, the
clauses which are between the conflict and the first unit implication point (FUIP) [41]
produce a unit resolvent clause if they transformed by max-resolution. This analysis can be
done as follows. The falsified literals of the falsified clause are added to a queue Q. At each
step, the most recently propagated literal is removed from Q and the falsified literals of its

104

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

propagation source are added to Q. The FUIP is found when Q contains only one literal.
Solvers simply have to count the number and the sizes of clauses between the conflict and
the FUIP (the falsified clause and the propagation sources encountered during the analysis)
to know if they are in presence of a valid UCS. This does not change the complexity of the
conflict analysis procedure and the computational overhead is negligible.

4.4 Local Max-Resolution

When they detect an IS, recent BnB solvers apply two kind of treatments depending on
the structure of the IS: a max-resolution based transformation or the IS removal (ISR).
The first technique keeps the formula equivalency but has some drawbacks: the size of the
formula grows and it may reduce the capability to detect IS in the lower nodes of the search
tree. The existing solvers use this transformation method to perform learning by keeping
the changes in the sub-part of the search tree. To limit the impact of the drawbacks cited
above, it is only applied in very specific cases. The other treatment method does not keep
the formula equivalency. It is only used to ensure that each detected IS is counted only
once during the LB computation. The changes induced by this method are only kept for
the duration of the LB estimation (i.e. they are local to each node).

We have measured experimentally that 80% to 90% of the IS were transformed with
IS removal. Starting from the assumption that the ISR gives a poor estimation of the
inconsistencies of the formulas, we have proposed an alternative treatment which gives a
more accurate LB estimation at the cost of a more time-consuming treatment [3]. We
have replaced the temporary removal by the max-resolution based treatment, but instead
of keeping the changes in the sub-tree, we restore the changes before the next decision.
This way, the estimation of the inconsistencies made at each node might be better. The
increase in the size of the formula will be limited and it will not hamper the detection of
inconsistencies in lower nodes, since the changes are undone before each new decision. We
call this new treatment method local max-resolution. The following example illustrates the
effect of each method of dealing with IS.

Example 7. Let us suppose that we are at the level g of the search tree, and the current
unweighted CNF formula is Φ3 = {c1, . . . , c14} with c1 = {x1}, c2 = {x1, x4}, c3 = {x1, x5},
c4 = {x4, x7}, c5 = {x5, x7}, c6 = {x2}, c7 = {x2, x4}, c8 = {x3}, c9 = {x3, x5}, c10 =
{x3, x6}, c11 = {x6, x7}, c12 = {x2, x8, x3}, c13 = {x2, x8, x9} and c14 = {x2, x9}.

a) Temporary Removal: The application of SUP* on Φ3 leads to the following ordered
propagation queue: 〈x1@c1, x4@c2, x5@c3, x7@c5〉 (meaning x1 is propagated by unit clause
c1, then x4 by c2, etc.). At this point, clause c5 is empty. The implication graph cor-
responding to this situation is shown in Fig. 8a. The IS corresponding to this conflict is
{c1, c2, c3, c4, c5}. If we remove this subset from Φ3, we obtain Φ′3 = {�, c6, . . . , c14} and all
the propagated assignments are undone.

The treatment of the remaining unit clauses leads to the following assignment: 〈x2@c6,
x4@c7, x9@c14, x3@c8, x5@c9, x6@c10, x7@c11, x8@c13〉. At this point, no empty clause has
been found and there are no more unit clauses to propagate (see Fig. 8b). Then we go to
the next decision level g + 1. The removed clauses are restored, the propagations undone
and a new decision x8 = true is made. As previously, the variables 〈x1@c1, x4@c2, x5@c3,

105

A. Abramé and D. Habet

x4 x7

x1 �

x5

c1

c2

c3

c4
c5

c5

(a) Φ3 or Φ3|{x8}

x4

x2 x9

x3 x5

x6 x7

c6

c7
c14

c8 c9
c10

c11

(b) Φ′3

x4

x2 �

x9

c6

c7

c13

c14

c14

(c) Φ′3|{x8} or Φ
(3)
3 |{x8}

x8 x2 x4

x3 x5

x6 x7

c8

c12
c12

c7

c9
c10

c11

(d) Φ′′3

x2 x9

x4 x7

x5 �

x3 x6

c6
c7

c14

c8

c9
c10

c15
c15 c11

c11

(e) Φ
(3)
3

x8 x2 x4

x3 x5 �

x6 x7

c8

c12
c12

c7

c9
c10

c11

c15
c15

c15

(f) Φ
(5)
3

Figure 8: Implication graphs for each formula of the Example 7.

c5 = {x5, x7} c4 = {x4, x7}
c15 = {x4, x5, x7}
c16 = {x4, x5, x7}

{x4, x5} c3 = {x1, x5}
c17 = {x1, x4, x5}
c18 = {x1, x4, x5}

{x1, x4} c2 = {x1, x4}

{x1} c1 = {x1}

�

x7

x5

x4

x1

Figure 9: Max-resolution steps applied on the IS {c1, c2, c3, c4, c5} of the formula Φ3 in
Example 7.

x7@c5〉 are propagated, making c5 empty (Fig. 8a), and we obtain Φ′3 after removing the
corresponding IS. Then we keep applying unit propagation: 〈x2@c6, x4@c7, x9@c13〉 making
c14 empty (Fig. 8c). The corresponding IS {c6, c13, c14} is removed from the formula and
we obtain Φ′′3 = {�,�, c7, . . . , c12}.

106

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

We continue applying unit propagation: 〈x3@c8, x2@c12, x5@c9, x6@c10, x4@c7, x7@c11〉.
Formula Φ′′3 contains no more unit clauses (Fig. 8d), and we can go to the next decision.
The temporary removal of the IS detects one inconsistency at level g and two at level g+ 1.

b) Sub-tree max-resolution: As in the previous example, the application of unit propa-
gation on Φ3 leads to the following assignments 〈x1@c1, x4@c2, x5@c3, x7@c5〉 (Fig. 8a).
The clause c5 is empty, and the IS {c1, c2, c3, c4, c5} can be processed. The application of
the max-resolution based rule removes the clauses of the IS from the formula and adds
an empty clause (the resolvent) and the following compensation clauses to the formula:
c15 = {x4, x5, x7}, c16 = {x4, x5, x7}, c17 = {x1, x4, x5} and c18 = {x1, x4, x5}. Fig. 9
shows the max-resolution steps applied during this transformation. We obtain the formula

Φ
(3)
3 = {�, c6, . . . , c18}.

The propagations are undone and the treatment of the remaining unit clauses leads
to the assignment 〈x2@c6, x4@c7, x9@c14, x3@c8, x5@c9, x6@c10, x7@c15〉. At this point, the
clause c11 is empty (Fig. 8e). The application of the sub-tree max-resolution removes the
clauses of the IS {c6, c7, c8, c9, c10, c11, c15} from the formula and adds an empty clause
(the resolvent) and the compensation clauses c19 = {x4, x5, x6, x7}, c20 = {x5, x6, x7},
c21 = {x4, x5, x6, x7}, c22 = {x3, x4, x5, x6}, c23 = {x3, x4, x5, x6}, c24 = {x3, x5, x6}, c25 =

{x3, x4, x5}, c26 = {x3, x4} and c27 = {x2, x4}. We obtain Φ
(4)
3 = {�,�, c12, . . . , c14, c16, . . . ,

c27}. The propagations are undone and no more unit clauses remain.
At the next decision level g+1, the formula transformations are kept and a new decision

x8 = true is made. The formula contains no unit clauses, thus the number of inconsistencies
stays unchanged (two). The max-resolution based transformation with changes kept in the
sub-tree detects two inconsistencies at level g and two at level g + 1.

c) Local max-resolution: As with the sub-tree max-resolution, two conflicts are detected at

level g and after the transformation we obtain the formula Φ
(4)
3 = {�,�, c12, . . . , c14, c16, . . . ,

c27}. No more propagation can be made.
At the next decision level g + 1, the propagations are undone and the original formula

is restored. A new decision x8 = true is made. The first propagations made are similar to
the ones of the previous decision level: 〈x1@c1, x4@c2, x5@c3, x7@c5〉 (Fig. 8a). The same
conflict is detected, which leads to the same transformation of the formula. The clauses
c1, c2, c3, c4, c5 are removed from the formula and �, c15, c16, c17 and c18 are added to form

Φ
(3)
3 = {�, c6, . . . , c18}.

The propagations are undone, and we can apply propagation again, leading to the
following assignments: 〈x2@c6, x4@c7, x9@c13〉. At this point (Fig. 8c), the clause c14 is
empty. The application of the max-resolution rule removes the clauses c6, c13, c14 and adds

an empty clause � (no compensation clauses are added). The resulting formula is Φ
(5)
3 =

{�,�, c7, . . . , c12, c15, . . . , c18}.
Again, the propagations are undone and we treat the remaining unit clauses: 〈x3@c8,

x5@c9, x6@c10, x2@c12, x7@c11, x4@c7〉. The clause c15 is empty (Fig. 8f), and we apply
the max-resolution based rule to the corresponding IS {c7, . . . , c12, c15}. These clauses
are removed, while an empty clause � and the following compensation clauses are added
c28 = {x2, x4, x5, x7}, c29 = {x2, x4, x5, x7}, c30 = {x2, x4, x7}, c31 = {x2, x5, x6, x7},
c32 = {x2, x5, x6, x7}, c33 = {x5, x6, x7}, c34 = {x2, x3, x5, x6}, c35 = {x2, x3, x5, x6}, c36 =

{x2, x3, x6} and c37 = {x3, x5, x6, x8}. We obtain Φ
(6)
3 = {�,�,�, c16, . . . , c18, c28, . . . , c37}.

107

A. Abramé and D. Habet

No more propagations are possible. The local max-resolution allows to detect two inconsis-
tencies at level g and three at level g + 1.

To conclude the example, the local max-resolution detects one more inconsistency than
the temporary removal at levels g and g+ 1 and one more than the sub-tree max-resolution
at level g + 1.

4.5 Overview of ahmaxsat

In the remaining of this section, we give an overview of our solver ahmaxsat. Its general
structure is similar to the one presented in Algorithm 1. It explores the whole search tree.
At each node, it computes the LB and compares it to the UB to decide if it is worth
exploring the current branch. As seen previously, ahmaxsat main particularities lie in the
LB computation method. We describe this part below, with an emphasis on the interactions
between the different methods used. We also detail how it uses HUP, PL and DUC to extend
the assignment as well as its branching heuristic.

4.5.1 Inference Rules to Extend the Current Assignment

ahmaxsat uses at each node of the search tree the inference rules presented in Section 3
to extend the assignment. Contrary to the existing solvers (e.g. wmaxsatz, akmaxsat)
which apply these rules only once before computing the LB, ahmaxsat dynamically applies
HUP, PL and DUC during the LB computation. This way, variable values may be fixed
higher in the search tree than in other solvers. Moreover, assigning more variables will
reduce clauses which can be used by SUP and FL to detect IS. Thus, the LB estimation
may be more accurate. Note that ahmaxsat uses the MPS scheme to apply dynamically
HUP. If a literal li is such that LB +

∑
cj=({li},wj)wj ≥ UB (where the cj are the “real”

propagation sources of li), then li can be fixed to true by the HUP rule.

4.5.2 Lower bound computation

The lower bound computation function used by ahmaxsat is presented in Algorithm 2.
It starts by trying to extend the current assignment I with the inference rules HUP, PL
and DUC (line 5). Then, iteratively, it applies SUP∗ with the MPS scheme and applies a
treatment to the detected IS (lines 7-10). At this point, SUP∗ cannot detect any conflict.
The algorithm selects an unassigned variable from the candidate list (lines 12-13). It tries
to detect IS by SUP∗ and transforms them (lines 14-17) until saturation. If IS have been
detected in Φ|I∪{l}, then their treatments have added new clauses which are unit under the
assignment I. In this case, the algorithm goes back to the application of SUP∗ (line 7).
Otherwise, it selects a new unassigned variable and applies FL (line 12). If the algorithm
has applied FL to all the candidate variables without generating new unit clauses, it goes
back to line 4 and checks if the assignment I can be extended again thanks to the inference
rules. This whole process is iterated until no more conflict can be detected by SUP∗, no
more FL candidate remains and no more assignment extension can be made. The algorithm
computes the LB value by counting the sum of the weights of the falsified clauses of the
formula and it undoes the local transformations (lines 21-22).

The following functions are used by the algorithm. apply HUP PL DUC() checks for each
unassigned variable if one of the three inference rules HUP, PL and DUC can be applied.

108

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

Algorithm 2: ahmaxsat LB computation

Data: A CNF formula Φ defined on a set of Boolean variables X and a partial assignment I.
Result: The transformed formula Φ and a positive integer LB.

1 begin
2 FL candidate ← X \ I;
3 repeat
4 Φ′ ← Φ;

// Inference rules to extend the assignment

5 I ← apply HUP PL DUC(Φ, X \ I);
6 repeat

// IS detection by SUP∗

7 G = (V,A) ← SUP∗(Φ|I);
8 while � ∈ V do
9 Φ ← analyze and treat conflict(Φ, G = (V,A));

10 G = (V,A) ← SUP∗(Φ|I);

// Here SUP is saturated, we apply FL

11 repeat
12 x ← FL candidate;
13 l ← literal of x which appear the most in binary clauses;
14 G = (V,A) ← SUP∗(Φ|I∪{l});
15 while � ∈ V do
16 Φ ← analyze and treat conflict(Φ, G = (V,A));
17 G = (V,A) ← SUP∗(Φ|I∪{l});

18 until (Φ|I contains unit clauses) or (FL candidate = ∅);

19 until Φ|I does not contains unit clauses;

20 until Φ|I = Φ′|I ;
21 LB ←

∑
cj=�∈Φ|I wj ;

22 Φ← undo local changes(Φ);
23 return (Φ, LB);

Algorithm 3: ahmaxsat conflict treatment

Data: A CNF formula Φ and a conflicting full implication graph G = (V,A).
Result: The transformed formula Φ.

1 begin
2 G′ = (V ′, A′) ← full implication graph to implication graph(G);
3 S ← build order(G′);
4 (ψst, ψtmp) ← detect patterns(G′);
5 Φ ← apply max resolution(Φ,G′,S,ψst,ψtmp);
6 return Φ;

109

A. Abramé and D. Habet

If so, it updates the assignment I. SUP∗() applies simulated unit propagation with two
separated queues as described in Section 3 and with the MPS scheme. When it detects a
conflict or no more unit clauses remain, it returns the full implication graph. The function
analyze and treat conflict() is described below. undo local changes() simply undoes
the transformations marked as local and returns the modified formula.

The function analyze and treat conflict() (Algorithm 3) takes two parameters: the
formula Φ and a conflicting full implication graph. It first converts the full implication graph
G into a normal implication graph G′ by choosing for each propagated variable participat-
ing in the conflict a single propagation source according to the SIS heuristic described in
Section 4.1 (line 2). Then it computes the sequence S of the max-resolution steps according
to the SIR heuristic presented in Section 4.2 (line 3). It analyzes the implication graph G′

and separates the IS in two parts: the one matching the patterns P3 and/or one of the
2-3t-4t-5t-UCS, ψst, and the other part ψtmp. Finally, it transforms the clauses of the IS by
applying max-resolution steps according to the sequence S. The transformations are stored
in two separated queues, one for the local changes (which are restored at the end of the
lower bound computation) and one for the sub-tree changes (which are restored during the
backtracks). The transformations of the clauses of ψtmp are kept in the first queue while
the transformation of the ones of ψst are stored in the second queue. The function returns
the transformed formula.

4.5.3 Branching Heuristic

ahmaxsat branching heuristic is close to the one of wmaxsatz. It chooses the unassigned
variable which maximizes:

score(xi) = lscore(xi) ∗ lscore(xi) + lscore(xi) + lscore(xi)

with
lscore(li) = 2 ∗

∑
cj | li∈cj
and |cj |=1

wj + 4 ∗
∑

cj | li∈cj
and |cj |=2

wj + 1 ∗
∑

cj | li∈cj
and |cj |=3

wj

The value given to the chosen variable xi depends on the lscore() values of its literals. If
lscore(xi) ≥ lscore(xi) then xi is set to true otherwise it is set to false.

4.5.4 Hard Clauses Handling

Except the hard unit propagation inference rule, our solver does not apply any particular
treatment on hard clauses. Its behavior on the hard part of the instances can be compared
to the one of a classical DPLL solver: it explores the search tree by using (hard) unit propa-
gation to extend the current assignment. When a conflict is detected, a simple backtrack is
performed. Note that unsatisfiable formulas are detected when the optimum value obtained
is greater than the sum of the soft clause weights.

On partial instances, it would probably be beneficial for ahmaxsat performance to
integrate some recent SAT solving techniques. Among the methods which could be applied
in a BnB Max-SAT solver, we can cite clause learning, backjumping and activity-based
branching heuristic [20, 41]. These methods, which are used in conflict driven clause learning
solvers (CDCL), have shown their efficiency for solving SAT crafted and industrial instances.

110

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

To the best of our knowledge, no recent BnB solver for Max-SAT includes such techniques
(except MiniMaxSat [20, 53], which is build on top of the CDCL solver MiniSAT). We
plan to incorporate them in ahmaxsat in a near future.

5. Experimental Study

We present in this section the results of the experimental study we have performed. This
study is divided into two parts. In the first part, we evaluate the impact on our solver of the
components presented in Section 4 (except the multiple propagation source scheme). The
second part is dedicated to the comparison of ahmaxsat with some of the best performing
complete Max-SAT solvers.

Instance Sets We use in this experimental study two sets of instances. The first one
is composed of all the 1776 random and crafted instances of the Max-SAT Evaluation
2014 (MSE 2014) benchmark. These instances are divided into three categories: Max-SAT
(ms), partial Max-SAT (pms) and weighted partial Max-SAT (wpms). Note that we do
not include industrial instances. Existing branch and bound solvers (including ours and
except MiniMaxSat) are notoriously inefficient on these instances. Most of them rely on
statically allocated data structures and thus they are not designed to handle such huge
instances. Even when they do, their performance are poor compared to the ones of the
iterative SAT based solvers1.. In our opinion, this is mainly due to their inability to exploit
the structural properties of the instances to guide the exploration of the search space. For
these reasons, we do not include any industrial instance in the experiments presented below.

More than 80% of the random and crafted instances of the Max-SAT Evaluation 2014 are
treated successfully by current best performing BnB solvers. The remaining 20% are very
hard, and even with a cutoff extended to 7200 seconds, only a handful of them are solved.
To strengthen the comparison between solvers, we have generated max2sat and max3sat
random instances, both unweighted and weighted2.3.. We have increased progressively the
number of variables and clauses of the instances of the MSE 2014 until reaching the limits
of the current solvers (i.e. when no instance is solved by any solver). It gives us 3000
instances with a number of variables and clauses varying respectively from 120 to 200 and
from 1200 to 2600 for the max2sat ones and respectively from 70 to 110 and from 700 to
1500 for the max3sat ones. We have also generated maxcut crafted instances using the same
methodology. The number of variables and clauses of these last instances varies from 140
to 220 and from 1200 to 1600. We have not found any instance generator which produces
partial Max-SAT instances.

Experimental Protocol All the experiments are performed on machines equipped with
Intel Xeon 2.4 Ghz processors and 24 Gb of RAM and running under a GNU/Linux op-
erating system. The cutoff time is fixed to 1800 seconds per instance and the maximum
amount of memory available for each solver is limited to 3.5 Gb. Note that these values are
similar to the ones used in the Max-SAT Evaluation.

1. See for instance the Max-SAT Evaluation 2014 results available from
http://www.maxsat.udl.cat/14/results

2. The generators are available from http://web.udl.es/usuaris/m4372594/jair-generators

3. The generated instances are available from http://www.lsis.org/habetd/Djamal_Habet/MaxSAT.html

111

http://www.maxsat.udl.cat/14/results
http://web.udl.es/usuaris/m4372594/jair-generators
http://www.lsis.org/habetd/Djamal_Habet/MaxSAT.html

A. Abramé and D. Habet

Our solver ahmaxsat4. is implemented from scratch in C, and compiled with gcc. The
variant of ahmaxsat presented in this paper is numbered 1.68 while the ones presented
to the Max-SAT Evaluation 2013 and 2014 are numbered 1.16 and 1.55, respectively. ah-
maxsat 1.16 included early versions of the multiple propagation source scheme and of the
local max-resolution treatment. Since then, we have rewritten almost entirely our solver.
The version 1.55 also includes the two other components presented in this paper: the SIR
heuristic and the UCS extended learning scheme. Changes brought by the 1.68 version over
the 1.55 one are rather small : some limited code rewriting and memory optimization. Fig-
ure 10 compares the number of solved instances and the cumulative solving time of these
three versions on the MSE 2014 instances. It shows that the performance gap between
versions 1.16 and 1.55 is huge. Thanks to the memory optimization, version 1.68 solves few
more instances than the 1.55 one but their performance on the majority of the benchmark
instances are similar.

0

200

400

600

800

1000

1200

1400

1600

1800

400 600 800 1000 1200 1400

so
lv

in
g

 t
im

e

number of solved instances

ahmaxsat 1.68
ahmaxsat 1.55
ahmaxsat 1.16

Figure 10: Comparison of the cumulative run times of the different ahmaxsat versions on
the random and crafted instances of the Max-SAT Evaluation 2014.

5.1 Impact of ahmaxsat Components

We first study the impact of the new components of ahmaxsat on its behavior. We consider
five variants of our solver:

• ahmaxsat-all includes all the components presented in Section 4.

• ahmaxsat-ucs+mrl includes the unit clauses subset extended learning scheme and
the local max-resolution treatment but not the SIR heuristic.

• ahmaxsat-mrl+sir includes the local max-resolution treatment and the SIR heuris-
tic but not the unit clause subsets extended learning scheme.

• ahmaxsat-ucs+sir includes the unit clauses subset extended learning scheme and
the SIR heuristic but not the local max-resolution treatment.

• ahmaxsat-none includes neither the local max-resolution treatment, nor the unit
clauses subset extended learning scheme nor the SIR heuristic.

Note that all these variants include the multiple propagation source scheme as well as
the SIS heuristic. The propagation scheme is a core component of our solver, and many data

4. The version 1.55 of ahmaxsat is available from
http://www.lsis.org/habetd/Djamal_Habet/MaxSAT.html

112

http://www.lsis.org/habetd/Djamal_Habet/MaxSAT.html

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

structures depend on it. Implementing a variant which uses the first predecessor scheme
would have required important changes in the core structure of ahmaxsat. Moreover,
the performance of such a variant would highly depend on the amount of time spent on
optimizing it. Thus, we do not present such a variant in this paper. Interested readers can
refer to the empirical evaluation of the multiple propagation source scheme presented in [4].

The results obtained by the variants of ahmaxsat on the MSE 2014 instances are
presented in Table 1. For each variant, the number of solved instances is given with in
brackets the average solving time. We can first observe that on the whole benchmark, the
variant including all the novel components solves more instances in a lower average solving
time than the other variants. Especially, ahmaxsat-all solves respectively 34, 2, 49 and
51 instances more than ahmaxsat-ucs+mrl, ahmaxsat-mrl+sir, ahmaxsat-ucs+sir
and ahmaxsat-none. The average solving time is reduced by respectively 9.1%, 10.2%,
33.9% and 41.2%. Figures 11 and 12 compare for each instance respectively the solving
time and the number of nodes of ahmaxsat-all with the ones of the other variants. It
shows that the variant ahmaxsat-all explores less nodes than ahmaxsat-none one on
almost all the benchmark instances (Figure 11d). Consequently, the solving time is reduced
on large majority of them (Figure 12d). Let us now discuss the impact of each component
on ahmaxsat behavior and the interactions between them.

Local Max-resolution The transformations of inconsistent subsets (IS) which do not
match the learning criteria by local max-resolution improves the quality of the lower bound
estimation and thus the number of explored nodes is reduced on almost every instance of the
benchmark (Figure 11c). The impact of this improvement on the solving time is partially
compensated by the computational overhead induced by the intensive application of the
max-resolution rule and by the increased number of propagation steps performed and IS
detected at each node. Nevertheless, the solving time is reduced on a large majority of the
benchmark instances (Figure 12c). On the whole benchmark, it is reduced by more than
30% (Table 1, ahmaxsat-all vs. ahmaxsat-ucs+sir).

If we look at the results for each instance classes, we can observe some disparities.
The variants using the local max-resolution transformation (ahmaxsat-all, ahmaxsat-
ucs+mrl and ahmaxsat-mrl+sir) are better on almost all the unweighted instances (ms
and pms lines). The results are more mixed on weighted instances (wpms lines). The
variants without local max-resolution (ahmaxsat-ucs+sir and ahmaxsat-none) give
significantly better results on several of these instance classes.

Both the SIR heuristic and the UCS learning scheme impact the efficiency of local
max-resolution. The reduction of the number and sizes of the compensation clauses re-
duces the time dedicated to the application of the max-resolution rule. Similarly, extending
the amount of learning performed reduces the redundancy in the IS detection and trans-
formation. In both cases, it reduces the time overhead due to the application of local
max-resolution.

SIR heuristic The SIR heuristic reduces the number and sizes of the added compen-
sation clauses by in average respectively 30% and 20% (detailed results are not presented
in this paper). It has two effects on the solver behavior. The first one is straightforward:
smaller formula induces a faster exploration of the search tree and thus a reduction of the
solving time. The second effect is due to the reduction of the compensation clause sizes,

113

A. Abramé and D. Habet

Table 1: Results of the ahmaxsat variants on the random and crafted MSE 2014 instances.
For each variant, the number of solved instances is given with in brackets the average solving
time.

Instance classes #
ahmaxsat

all ucs+mrl mrl+sir ucs+sir none

m
s

cr
a
ft

ed bipartite 100 100(90.74) 100(101.07) 100(95.28) 99(373.15) 99(392.22)
maxcut 67 56(44.72) 56(51.12) 56(63.14) 55(43.12) 55(46.65)

set-covering 10 0(-) 0(-) 0(-) 0(-) 0(-)

ra
n

d
o
m

highgirth 82 7(1165.99) 6(1238.03) 7(1139.55) 7(1140.87) 7(1152.51)
max2sat 100 100(89.51) 100(115.38) 100(107.7) 100(207.54) 100(256.97)
max3sat 100 100(231.18) 100(265.93) 100(284.85) 100(248.6) 100(308.93)
min2sat 96 96(2.56) 96(2.89) 96(2.66) 96(13.56) 96(13.7)

p
m

s cr
a
ft

ed

frb 25 5(154.16) 5(156.64) 5(333.46) 5(167.57) 5(383.66)
job-shop 3 0(-) 0(-) 0(-) 0(-) 0(-)

maxclique 158 133(30.24) 132(18.84) 133(28.7) 132(20.29) 133(35.84)
maxone 140 109(50.13) 108(44.77) 109(60.77) 110(58.78) 111(64.43)

min-enc/kbtree 42 34(476.23) 24(599.54) 34(500.82) 15(718.06) 14(728.78)
pseudo/miplib 4 2(0.02) 2(0.02) 2(0.02) 2(0.03) 2(0.03)

reversi 44 8(129.24) 7(147.29) 8(129.95) 7(122.12) 7(138.47)
scheduling 5 0(-) 0(-) 0(-) 0(-) 0(-)

ra
n

d
o
m

min2sat 60 58(186.84) 55(168.83) 58(184.23) 44(515.6) 44(518.18)
min3sat 60 58(249.93) 58(311.65) 58(262.63) 52(436.26) 53(464.04)

pmax2sat 60 60(3.18) 60(4.36) 60(3.49) 60(3.88) 60(4.6)
pmax3sat/hi 30 30(60.08) 30(67.17) 30(65.05) 30(68.91) 30(81.02)

w
p

m
s cr

a
ft

ed

auction 40 40(115.49) 40(141.31) 40(123.48) 40(90.56) 40(98.99)
CSG 10 4(452.34) 4(435.81) 4(432.44) 4(434.74) 4(447.9)

frb 34 14(58.74) 14(64.27) 14(128.57) 14(68.1) 14(142.3)
min-enc 74 64(108.83) 63(125.53) 64(109.06) 58(10.05) 58(9.97)

pseudo/miplib 12 4(158.77) 4(306.37) 4(159.4) 4(293.32) 4(290.82)
ramsey 15 4(44.79) 4(43.48) 4(44.17) 5(341.53) 5(344.78)

random-net 32 3(572.45) 2(541.23) 1(1069.46) 3(498.58) 0(-)
set-covering 45 25(46.41) 10(136.6) 25(42.31) 25(100.62) 25(100.85)

wmaxcut 48 46(49.41) 46(54.37) 46(85.89) 44(38.9) 44(61.39)

ra
n

d
o
m

wmax2sat 120 120(45.45) 120(57.32) 120(51.58) 120(161.24) 119(196.89)
wmax3sat 40 40(99.52) 40(117.27) 40(115.25) 40(74.27) 40(91.86)

wpmax2sat 90 90(5.52) 90(7.5) 90(5.87) 90(5.76) 90(6.44)
wpmax3sat/hi 30 30(84.09) 30(103.59) 30(88.38) 30(63.61) 30(72.14)

Overall 1776 1440(96.87) 1406(106.6) 1438(107.88) 1391(146.47) 1389(164.69)

114

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

100

1000

10000

100000

1e+06

1e+07

100 1000 10000 100000 1e+06 1e+07

a
h

m
a
x

s
a
t−

U
C

S
+

L
M

R

ahmaxsat−ALL

(a) ALL vs UCS+LMR

100

1000

10000

100000

1e+06

1e+07

100 1000 10000 100000 1e+06 1e+07

a
h

m
a
x

s
a
t−

L
M

R
+

S
IR

ahmaxsat−ALL

(b) ALL vs LMR+SIR

100

1000

10000

100000

1e+06

1e+07

100 1000 10000 100000 1e+06 1e+07

a
h

m
a
x

s
a
t−

U
C

S
+

S
IR

ahmaxsat−ALL

(c) ALL vs UCS+SIR

100

1000

10000

100000

1e+06

1e+07

100 1000 10000 100000 1e+06 1e+07
a
h

m
a
x

s
a
t−

N
O

N
E

ahmaxsat−ALL

(d) ALL vs NONE

Figure 11: Comparison of the number of nodes explored by the ahmaxsat variants. Each
point represents an instance. All axis are in log scale.

1

10

100

1000

1 10 100 1000

a
h

m
a
x

s
a
t−

U
C

S
+

L
M

R

ahmaxsat−ALL

(a) ALL vs UCS+LMR

1

10

100

1000

1 10 100 1000

a
h

m
a
x

s
a
t−

L
M

R
+

S
IR

ahmaxsat−ALL

(b) ALL vs LMR+SIR

1

10

100

1000

1 10 100 1000

a
h

m
a
x

s
a
t−

U
C

S
+

S
IR

ahmaxsat−ALL

(c) ALL vs UCS+SIR

1

10

100

1000

1 10 100 1000

a
h

m
a
x

s
a
t−

N
O

N
E

ahmaxsat−ALL

(d) ALL vs NONE

Figure 12: Comparison of the solving time of the ahmaxsat variants. Each point represents
an instance. All axis are in log scale.

115

A. Abramé and D. Habet

which improves the capability of unit propagation to detect IS. The quality of the lower
bound estimation is improved, and thus ahmaxsat explores less nodes of the search tree
(Figure 11a). The combination of these two effects reduces the solving time of our solver
by in average 9.1%.

One can note that the improvement brought by the SIR heuristic is relatively homoge-
neous. On almost all the instance classes, the performance of ahmaxsat are improved by
the SIR heuristic (Table 1, ahmaxsat-all vs. ahmaxsat-ucs+mlr). This observation is
confirmed by the solving time comparison instance per instance (Figure 12a). These results
show that the impact of the SIR heuristic on the solver behavior is not significantly affected
by the discrepancies (in structure, weight or hard/soft clauses) between the instance classes.

Obviously, there is a strong correlation between the frequency of application of the max-
resolution rule and the impact of the SIR heuristic on the solver performance. The SIR
heuristic shows its full worth only in combination with local max-resolution. Without it,
very few max-resolution transformations are performed and the effect of the SIR heuristic
is marginal. Conversely, the UCS learning scheme reduces the redundancy in the LB com-
putation, thus less max-resolution transformations are performed and the effect of the SIR
heuristic on the solver performance decreases slightly.

Extended Learning Scheme The UCS learning scheme reduces the redundancy in the
lower bound computation, thus the time spent on each node of the search tree is reduced. It
also lets more unit clauses available for applying unit propagation. More IS are detected at
each node and the LB estimation quality is improved. Thus, the number of explored nodes
is slightly reduced (Figure 11a). These two effects combined led to a significant reduction
of the average solving time by 10.2%.

However, we can observe variations in these results both from the instance per instance
solving time comparison (Figure 12a) and from the detailed results (Table 1, ahmaxsat-
all vs. ahmaxsat-mlr+sir). On some instance classes (e.g. wpms/crafted/ramsey or
wpms/crafted/random-net), UCS are frequently found and the performance are drastically
improved. On other instance classes, there is a moderate improvement and even a slight
performance loss in some cases.

It should be noted that local max-resolution does not impact significantly the behavior
of the extended learning scheme. Conversely, the small compensation clauses produced with
the SIR heuristic are more likely to appear in UCS patterns, and thus it increases slightly
the amount of learning performed with the UCS-based scheme.

5.2 ahmaxsat vs. State of the Art

In the second part of this experimental evaluation, we compare two variants of our solver
(the one including all the novel components, ahmaxsat-all, and the one which does not
include any of them, ahmaxsat-none) to some of the best performing complete solvers.
We consider the BnB solvers MiniMaxSat [26, 27], two variants of maxsatz [37, 40]
(wmaxsatz 2009 and wmaxsatz 2013) and akmaxsat [33]. All have been regularly well
ranked during the previous Max-SAT evaluations5.. We also include in this experiment
three iterative SAT solvers, maxHS [17, 18, 19], eva500 [47] and open-wbo [44], and

5. Results are available at http://www.maxsat.udl.cat

116

http://www.maxsat.udl.cat

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

two solvers based on reformulation in integer linear programming (ILP), ilp-2013 [10] and
scip-maxsat [7]. All these solvers were ranked in the top three on some of the categories
of the Max-SAT Evaluation 2014.

5.2.1 MSE 2014 Benchmark

We have run all the solvers on the MSE 2014 random and crafted instances. Results are
presented in Table 2, which gives for each solver the number of solved instances and in
bracket the average solving time. For each instance class, the best result is presented in
bold and the best result among the BnB solvers is underlined.

We can observe that on the whole benchmark, BnB solvers solve more instances than the
iterative SAT and ILP-based solvers. They clearly dominate the random instance classes as
well as the unweighted, non-partial crafted one. The results are more mixed on the partial
crafted (unweighted and weighted) instances, where non-BnB solvers give better results on
the majority of the instance classes. It should be noted however that even on these instance
classes, BnB solvers perform honorably and the number of instances they solve is not very
far from the ones of the non-BnB solvers. Conversely, non-BnB solvers manage to solve
only few random instances, which explains the broad difference in the overall results.

The mixed performance of BnB solvers on partial crafted instances may be due to
their inefficiency on the partial part of the instances. The difficulty of the majority of the
instances from the partial crafted (unweighted and weighted) classes lies in their hard part
rather than in their soft one. Thus, to be efficient on such instances, solvers must be able
to quickly walk through the assignment satisfying the hard part of the instances. In order
to do so, BnB solvers should use recent SAT solving techniques such as clause learning,
backjumping or activity-based branching heuristics. To the best of our knowledge, the BnB
solvers considered in this paper do not implement such methods (except MiniMaxSat
which is build on top of the SAT solver minisat [20, 53]).

Figure 13a shows the cumulative run-time of the solver of the whole benchmark. We can
see that our solver ahmaxsat-all is the more efficient, followed by the other BnB solvers.
We also add in this figure ahmaxsat-ls and ccls to akmaxsat which are variants of
ahmaxsat and akmaxsat enhanced with a pre-processing phase where a local search
algorithm is used to compute the first UB value. ahmaxsat-ls uses the local search solver
ubcsat [55] while ccls to akmaxsat uses ccls [15]. One can note that these variants
are slightly faster than the respective original solvers. However, if ccls to akmaxsat
manages to solve more instances than akmaxsat, it is not the case of ahmaxsat-ls. This
may be due to slight changes in the branching orders induced by the new UB values.

On the crafted instances (Figure 13b), the BnB solver MiniMaxSat solves slightly more
instances than ahmaxsat-all even if its solving time is higher. The next best performing
solvers are wmaxsatz 2013 followed by the two ILP-based solvers ilp-2013 and scip-
maxsat. Random instances are dominated by the BnB solvers (Figure 13c). Our solver is
the more efficient, followed by akmaxsat, wmaxsatz 2013 and wmaxsatz 2009. One can
note that MiniMaxSat performs poorly on the random instances compared to the other
BnB solvers.

These results are in sync with the ones of the MSE 2014. Branch and bound solvers
dominate the random and non-partial crafted categories while ILP-based solvers dominate

117

A
.

A
b
r
a
m

é
a
n
d

D
.

H
a
b
e
t

Table 2: Solver results on the random and crafted instances of the Max-SAT Evaluation 2014. For each solver, the number of
solved instances is given with in brackets the average solving time.

Instance classes # a
h
m

a
x
sa

t
-a

ll

a
h
m

a
x
sa

t
-n

o
n
e

w
m

a
x
sa

t
z

20
13

a
k
m

a
x
sa

t

w
m

a
x
sa

t
z

20
09

M
in

iM
a
x
S
at

il
p-

20
13

sc
ip

-m
a
x
sa

t

m
a
x
H

S

ev
a
50

0a

o
pe

n
-w

b
o

m
s

cr
a
ft

ed bipartite 100 100(90,7) 99(392,2) 99(295) 100(105,2) 99(270,2) 85(641) 0(-) 0(-) 0(-) 0(-) 0(-)
maxcut 67 56(44,7) 55(46,7) 55(56,9) 55(29,8) 55(97,5) 55(143,4) 30(187,3) 24(164) 6(0,7) 9(119,8) 11(86,5)

set-covering 10 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(46,3) 0(-) 0(-)

ra
n

d
o
m

highgirth 82 7(1166) 7(1152,5) 0(-) 1(1737,3) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-)
max2sat 100 100(89,5) 100(257) 100(177,9) 100(124,4) 97(304,4) 8(1023,4) 0(-) 0(-) 0(-) 0(-) 0(-)
max3sat 100 100(231,2) 100(308,9) 100(251,6) 100(202,1) 97(383,9) 56(536,7) 2(1609,7) 5(1077) 0(-) 0(-) 0(-)
min2sat 96 96(2,6) 96(13,7) 96(9,8) 96(6,7) 77(186,5) 61(338,1) 80(116) 60(297,3) 17(481,4) 0(-) 0(-)

p
m

s cr
a
ft

ed

frb 25 5(154,2) 5(383,7) 5(178,2) 5(467) 0(-) 5(265) 11(216,7) 12(295,2) 14(347,4) 25(141,8) 21(289,7)
job-shop 3 0(-) 0(-) 0(-) 0(-) 0(-) 1(85,5) 0(-) 0(-) 3(32,4) 3(132,8) 3(32,6)

maxclique 158 133(30,2) 133(35,8) 133(17,8) 133(41,8) 109(84,3) 131(12,5) 132(70,9) 131(111,6) 135(54,3) 99(209,7) 85(121,2)
maxone 140 109(50,1) 111(64,4) 136(34,3) 95(78,1) 137(128,2) 140(6,9) 138(76,7) 139(37,8) 140(3,7) 138(106,5) 139(28,4)

min-enc/kbtree 42 34(476,2) 14(728,8) 10(363,9) 1(269,9) 8(508,7) 14(556,5) 42(197,8) 42(69,9) 2(99,7) 5(214,4) 6(26,4)
pseudo/miplib 4 2(< 0, 1) 2(< 0, 1) 3(580,8) 3(320,3) 2(0,1) 2(0,4) 4(22,1) 4(31,1) 4(3,2) 4(54,9) 4(10,2)

reversi 44 8(129,2) 7(138,5) 5(2,8) 7(421,4) 7(145,1) 32(56,7) 13(332) 15(307,1) 31(15,1) 32(23,8) 33(13,8)
scheduling 5 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1117,5) 1(505,6)

ra
n

d
o
m

min2sat 60 58(186,8) 44(518,2) 21(786,1) 44(454,6) 43(401,6) 1(414) 48(329,4) 13(747,1) 5(270) 0(-) 7(600,9)
min3sat 60 58(249,9) 53(464) 49(596,8) 43(602,1) 45(553,9) 6(1034) 13(898,2) 12(1156,6) 0(-) 0(-) 0(-)

pmax2sat 60 60(3,2) 60(4,6) 59(3,1) 60(11,4) 60(8,5) 56(210,3) 12(574,4) 8(652,6) 0(-) 0(-) 0(-)
pmax3sat/hi 30 30(60,1) 30(81) 30(42,9) 30(82,3) 30(71) 29(362,2) 9(1028,1) 12(736,3) 0(-) 0(-) 3(515,6)

w
p

m
s cr

a
ft

ed

auction 40 40(115,5) 40(99) 40(257,1) 40(265,7) 34(217,6) 40(38,8) 40(0,1) 40(0,5) 40(< 0, 1) 38(5,7) 20(4,7)
CSG 10 4(452,3) 4(447,9) 1(404) 3(1055,7) 2(967,2) 8(321,8) 4(133,5) 4(35,4) 10(5,9) 7(98,5) 5(3,4)

frb 34 14(58,7) 14(142,3) 14(65,5) 14(157,8) 9(12,2) 14(143,7) 19(124,1) 21(168,4) 23(228,2) 19(63,6) 30(172,4)
min-enc 74 64(108,8) 58(10) 47(53,7) 41(188,4) 51(102,7) 59(42,1) 73(73,9) 74(23,1) 74(0,8) 58(3,8) 56(1,3)

pseudo/miplib 12 4(158,8) 4(290,8) 5(322,1) 2(2) 3(131,8) 3(47,3) 3(128,9) 3(378,7) 3(12,1) 5(330,4) 3(3,7)
ramsey 15 4(44,8) 5(344,8) 4(55,2) 4(50) 4(93,2) 4(75,4) 3(187,5) 3(171,8) 1(0,9) 1(0,7) 1(0,2)

random-net 32 3(572,5) 0(-) 0(-) 1(1122,8) 0(-) 0(-) 25(90,8) 1(1092,1) 32(9,4) 12(89,6) 12(8,9)
set-covering 45 25(46,4) 25(100,9) 0(-) 0(-) 0(-) 19(476,5) 35(39,1) 35(51,5) 35(48,6) 9(274,4) 1(0,3)

wmaxcut 48 46(49,4) 44(61,4) 44(108,3) 45(39,6) 42(114,7) 43(162,7) 25(280,9) 20(251,5) 2(20,5) 1(48,6) 0(-)

ra
n

d
o
m

wmax2sat 120 120(45,5) 119(196,9) 120(139,3) 120(50,2) 118(277,4) 21(814,8) 2(819,3) 0(-) 0(-) 0(-) 0(-)
wmax3sat 40 40(99,5) 40(91,9) 40(136,7) 40(60) 40(177,7) 33(561,2) 1(1699,8) 1(915,8) 0(-) 0(-) 0(-)

wpmax2sat 90 90(5,5) 90(6,4) 89(7,2) 90(27,7) 90(21,7) 83(255,8) 42(171,2) 43(294,7) 4(25,9) 0(-) 0(-)
wpmax3sat/hi 30 30(84,1) 30(72,1) 30(52,8) 30(78,4) 30(79,6) 29(451,4) 11(653,4) 13(415,2) 0(-) 1(216,6) 0(-)

Overall 1776 1440(96,9) 1389(164,7) 1335(136,3) 1303(119,6) 1289(197,3) 1038(249,4) 817(164,5) 735(176,7) 582(52,6) 467(110,2) 441(76,6)

1
18

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400

so
lv

in
g
 t

im
e

number of solved instances

ahmaxsat−ALL
ahmaxsat−ls

ahmaxsat−NONE
wmaxsatz2013

CCLS_to_akmaxsat
akmaxsat

wmaxsatz2009
MiniMaxSat

ILP−2013
scip−maxsat

maxHS
eva500a

open−wbo

(a) Random and crafted instances.

0

200

400

600

800

1000

1200

1400

1600

1800

250 300 350 400 450 500 550 600 650

so
lv

in
g

 t
im

e

number of solved instances

MiniMaxSat
ahmaxsat−ALL

ahmaxsat−ls
ahmaxsat−NONE

wmaxsatz2013
ILP−2013

scip−maxsat
wmaxsatz2009

maxHS
akmaxsat
eva500a

open−wbo

(b) Crafted instances.

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800

so
lv

in
g

 t
im

e

number of solved instances

ahmaxsat−ls
ahmaxsat−ALL

ahmaxsat−NONE
akmaxsat

wmaxsatz2013
wmaxsatz2009

MiniMaxSat
ILP−2013

scip−maxsat
maxHS

open−wbo
eva500a

(c) Random instances.

Figure 13: Comparison of the cumulative solving time of the solvers on the MSE 2014
benchmark.

119

A. Abramé and D. Habet

the partial-crafted ones. The iterative SAT solvers, which show mixed results in this study,
usually dominate the industrial instance categories which are not considered here.

If we consider only the BnB solvers, we can see (Table 2) that the two variants of
ahmaxsat solve more instances than any of the other compared solvers. The next best
performing solver is wmaxsatz 2013, which solves 105 instances less than ahmaxsat-all.
Then come akmaxsat, wmaxsatz 2009 and MiniMaxSat which solve respectively 137,
151 and 402 less instances than ahmaxsat-all. If we consider the average solving time
on the whole benchmark, ahmaxsat-none, wmaxsatz 2013, akmaxsat, wmaxsatz 2009
and MiniMaxSat are respectively 70%, 41%, 23%, 104% and 157% slower than ahmaxsat-
all.

We can observe some specificities among these solvers. wmaxsatz 2009 is globally
efficient, without clearly dominating the other solvers on any instance category. wmaxsatz
2013 is also well balanced. It dominates other solvers on random partial max-3sat instance
and performs honorably on crafted ones. akmaxsat performs well on non-partial random
instances, especially on the max3sat ones. But it seems less competitive on (weighted)
partial random instances and on crafted ones. MiniMaxSat is efficient on structured
instances and especially on partial ones, but it is not competitive on random instances.

5.2.2 Extended Benchmark

We have tested the BnB solvers on the generated instances described above. The results
are presented in Table 3. Our solver ahmaxsat-all is the most efficient, with 2472 in-
stances solved over 4350. It is followed by akmaxsat which solves 63 instances less. Then
come maxsatz2013, ahmaxsat-none, wmaxsatz2009 and MiniMaxSat with respec-
tively 603, 778, 907 and 2070 less instances solved than ahmaxsat-all. One can note that
ahmaxsat-all is significantly more efficient than the other solvers on random/max2sat
instances (both unweighted and weighted) as well as on the crafted/maxcut ones. However
it solves less random/max3sat instances than akmaxsat.

Figure 14 shows the cumulative run-time of each of the tested solvers. It shows that
our solver is closely followed by akmaxsat, while wmaxsatz 2013, ahmaxsat-none and
wmaxsatz 2009 are significantly less efficient. It also confirms the lack of efficiency of

Table 3: Results of ahmaxsat-all, MiniMaxSat, wmaxsatz 2009, wmaxsatz 2013,
akmaxsat and ahmaxsat-none on the generated instances. For each solver, the number
of solved instances is given with in brackets the average solving time.

Instance classes # a
h
m

a
x
sa

t
-a

ll

a
k
m

a
x
sa

t

w
m

a
x
sa

t
z

20
13

a
h
m

a
x
sa

t
-n

o
n
e

w
m

a
x
sa

t
z

20
09

M
in

iM
a
x
S
at

m
s

crafted 1350 412(457,4) 405(516,3) 236(670,2) 206(707,8) 248(649,1) 146(766,1)
random/max2sat 1150 679(412,7) 644(477,5) 540(477,5) 461(524,4) 431(547,5) 11(949,1)
random/max3sat 350 224(505,4) 237(508,7) 217(478,7) 203(520,7) 184(554,1) 88(712,3)

w
m

s random/max2sat 1150 921(340,9) 857(339,2) 673(422,9) 588(515,7) 528(502,5) 60(959,2)
random/max3sat 350 236(476,1) 266(411,8) 203(425,7) 236(467,9) 174(397,0) 97(596,8)

Overall 4350 2472(402,4) 2409(424,8) 1869(469,8) 1694(527,4) 1565(523,6) 402(724,8)

120

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

MiniMaxSat on random instances. The scatter plots presented in Figure 15 compare
instance per instance the solving time of ahmaxsat-all with the ones of the other solvers.
It shows that ahmaxsat-all is more efficient than wmaxsatz 2009 and MiniMaxSat on
almost every instances and than akmaxsat and wmaxsatz 2013 on the majority of them.

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500

so
lv

in
g

 t
im

e

number of solved instances

ahmaxsat−ALL
akmaxsat

wmaxsatz2013
ahmaxsat−NONE

wmaxsatz2009
MiniMaxSat

Figure 14: Comparison of the solver cumulative run times on the new generated instances.

1

10

100

1000

1 10 100 1000

a
k

m
a
x

s
a
t

ahmaxsat−ALL

1

10

100

1000

1 10 100 1000

m
a
x

s
a
tz

2
0

1
3

ahmaxsat−ALL

1

10

100

1000

1 10 100 1000

w
m

a
x

s
a
tz

2
0

0
9

ahmaxsat−ALL

1

10

100

1000

1 10 100 1000

m
in

im
a
x

s
a
t

ahmaxsat−ALL

Figure 15: Comparison of the solving time of ahmaxsat-all with the one of the other
solvers on the new generated instances. All axis are in log scale.

121

A. Abramé and D. Habet

6. Conclusion

We have given in this paper an overview of our solver ahmaxsat which was ranked first
in three of the nine categories of the Max-SAT Evaluation 2014. We have described the
four main original components it includes and we have shown how they are used together in
its LB estimation procedure. We have also given some other details such as the branching
heuristic of ahmaxsat or the way it implements the failed literals mechanism.

The results of the experimental evaluation we have conducted confirm the ones of the
Max-SAT Evaluation 2014 and show that ahmaxsat is more efficient than the existing BnB
Max-SAT solvers on a large panel of the considered instances. Especially, our solver is very
efficient on unweighted random max2sat and crafted instances (non-partial and partial).

Even if BnB solvers perform well on random and some crafted instances compared to the
other kind of Max-SAT solvers, they are outperformed on structured (industrial and some
crafted) instances. One possible way to improve BnB solvers on structured instances would
be to increase the amount of learning by keeping some of the transformations performed
during the LB computation in the upper nodes of the search tree. In order to do so, we
have analyzed and characterized in a recent work the impact of the max-resolution rule on
the unit propagation process efficiency [6]. We will continue in this direction in the future.
We will also study the impact of the new learned information on the formula size and try
to exploit it in designing new branching heuristics.

References

[1] André Abramé and Djamal Habet. Inference rules in local search for Max-SAT. In Pro-
ceedings of the 24th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2012), pages 207–214. IEEE Computer Society, 2012.

[2] André Abramé and Djamal Habet. Efficient application of Max-SAT resolution on
inconsistent subsets. In Barry O’Sullivan, editor, Proceedings of the 20th International
Conference on Principles and Practice of Constraint Programming (CP 2014), 8656 of
Lecture Notes in Computer Science, pages 92–107. Springer International Publishing,
2014.

[3] André Abramé and Djamal Habet. Local max-resolution in branch and bound solvers
for Max-SAT. In Proceedings of the 26th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2014), pages 336–343. IEEE Computer Society, 2014.

[4] André Abramé and Djamal Habet. Maintaining and handling all unit propagation rea-
sons in exact Max-SAT solvers. In Stefan Edelkamp and Roman Barták, editors, Pro-
ceedings of the 7th Annual Symposium on Combinatorial Search (SOCS 2014), pages
2–9. AAAI Press, 2014.

[5] André Abramé and Djamal Habet. On the extension of learning for Max-SAT. In
Ulle Endriss and João Leite, editors, Proceedings of the 7th European Starting AI
Researcher Symposium (STAIRS 2014), 241 of Frontiers in Artificial Intelligence and
Applications, pages 1–10. IOS Press, 2014.

122

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

[6] André Abramé and Djamal Habet. On the resiliency of unit propagation to max-
resolution. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015), pages 268–274.
AAAI Press, 2015.

[7] Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.

[8] Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved branch and bound algorithms
for Max-SAT. In Enrico Giunchiglia and Armando Tacchella, editors, Proceedings of the
6th International Conference on the Theory and Applications of Satisfiability Testing
(SAT 2003), 2919 of Lecture Notes in Computer Science, pages 502–518. Springer,
2003.

[9] Teresa Alsinet, Felip Manyà, and Jordi Planes. A Max-SAT solver with lazy data struc-
tures. In Christian Lemâıtre, Carlos Reyes, and Jesùs Gonzàlez, editors, Proceedings of
the 9th Ibero-American on Artificial Intelligence (IBERAMIA 2004), 3315 of Lecture
Notes in Computer Science, pages 334–342. Springer Berlin / Heidelberg, 2004.

[10] Carlos Ansótegui and Joel Gabàs. Solving (weighted) Partial MaxSAT with ILP. In
Carla P. Gomes and Meinolf Sellmann, editors, Proceedings of the 10th International
Conference on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR 2013), 7874 of Lecture Notes in
Computer Science, pages 403–409. Springer, 2013.

[11] Carlos Ansótegui, Yuri Malitsky, and Meinolf Sellmann. MaxSAT by improved
instance-specific algorithm configuration. In Carla E. Brodley and Peter Stone, edi-
tors, Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI 2014),
pages 2594–2600. AAAI Press, 2014.

[12] Gilles Audemard, Lucas Bordeaux, Youssef Hamadi, Said Jabbour, and Lakhdar Sais.
A generalized framework for conflict analysis. In Hans Kleine Bning and Xishun Zhao,
editors, Proceedings of the 11th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2008), 4996 of Lecture Notes in Computer Science,
pages 21–27. Springer Berlin Heidelberg, 2008.

[13] Maŕıa Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artificial
Intelligence, 171(8-9):606–618, 2007.

[14] Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local search for
partial MaxSAT. In Carla E. Brodley and Peter Stone, editors, Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI 2014), pages 2623–2629. AAAI
Press, 2014.

[15] Shaowei Cai, Kaile Su, and Abdul Sattar. Local search with edge weighting and
configuration checking heuristics for minimum vertex cover. Artificial Intelligence,
175(910):1672–1696, 2011.

123

A. Abramé and D. Habet

[16] Byungki Cha, Kazuo Iwama, Yahiko Kambayashi, and Shuichi Miyazaki. Local search
algorithms for partial MAXSAT. In Benjamin Kuipers and Bonnie L. Webber, ed-
itors, Proceedings of the 14th National Conference on Artificial Intelligence and 9th
Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI 97), pages
263–268. AAAI Press / The MIT Press, 1997.

[17] Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler
SAT instances. In Jimmy Lee, editor, Proceedings of the 17th International Conference
on Principles and Practice of Constraint Programming (CP 2011), 6876 of Lecture
Notes in Computer Science, pages 225–239. Springer Berlin Heidelberg, 2011.

[18] Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP solvers in MaxSAT.
In Matti Järvisalo and Allen Van Gelder, editors, Proceedings of the 16th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2013), 7962 of
Lecture Notes in Computer Science, pages 166–181. Springer, 2013.

[19] Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT
solving. In Christian Schulte, editor, Proceedings of the 19th International Conference
on Principles and Practice of Constraint Programming (CP 2013), 8124 of Lecture
Notes in Computer Science, pages 247–262. Springer, 2013.

[20] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Proceedings of the 6th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2003), 2919 of Lecture Notes
in Computer Science, pages 502–518. Springer, 2003.

[21] Eugene C. Freuder and Richard J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58(13):21–70, 1992.

[22] Zhaohui Fu and Sharad Malik. On solving the Partial MAX-SAT problem. In Armin
Biere and Carla P. Gomes, editors, Proceedings of the 9th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2006), 4121 of Lecture Notes
in Computer Science, pages 252–265. Springer Berlin Heidelberg, 2006.

[23] Carla Gomes, Willem-Jan van Hoeve, and Lucian Leahu. The power of semidefi-
nite programming relaxations for MAX-SAT. In J. Christopher Beck and Barbara
Smith, editors, Proceedings of the 3rd Interantional Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems (CPAIOR 2006), 3990 of Lecture Notes in Computer Science, pages 104–118.
Springer Berlin / Heidelberg, 2006.

[24] Pierre Hansen and Brigitte Jaumard. Algorithms for the maximum satisfiability prob-
lem. Computing, 44:279–303, 1990.

[25] Federico Heras and Javier Larrosa. New inference rules for efficient Max-SAT solving.
In Anthony Cohn, editor, Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI 2006), pages 68–73. AAAI Press, 2006.

124

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

[26] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSat: A new weighted
Max-SAT solver. In João Marques-Silva and Karem Sakallah, editors, Proceedings of
the 10th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2007), 4501 of Lecture Notes in Computer Science, pages 41–55. Springer Berlin
/ Heidelberg, 2007.

[27] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT: An efficient
weighted Max-SAT solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

[28] Federico Heras and João Marques-Silva. Read-once resolution for unsatisfiability-based
Max-SAT algorithms. In Toby Walsh, editor, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI 2011), pages 572–577. AAAI Press,
2011.

[29] John N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated
Reasoning, 15(3):359–383, 1995.

[30] Robert G. Jeroslow and Jinchang Wang. Solving propositional satisfiability problems.
Annals of Mathematics and Artificial Intelligence, 1:167–187, 1990.

[31] Steve Joy, John Mitchell, and Brian Borchers. A branch and cut algorithm for Max-
SAT and Weighted Max-SAT. In Dingzhu Du, Jun Gu, and Panos M. Pardalos, ed-
itors, Satisfiability Problem: Theory and Applications, volume 35 of DIMACS series
on Discrete Mathematics and Theoretical Computer Science, pages 519–536. American
Mathematical Society, 1997.

[32] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A
Partial Max-SAT solver. Journal on Satisfiability, Boolean Modeling and Computation,
8(1/2):95–100, 2012.

[33] Adrian Kügel. Improved exact solver for the Weighted MAX-SAT problem. In Daniel Le
Berre, editor, Proceedings of the 1st Pragmatics of SAT Workshop (POS 2010), 8 of
EasyChair Proceedings in Computing, pages 15–27. EasyChair, 2010.

[34] Javier Larrosa and Federico Heras. Resolution in Max-SAT and its relation to local
consistency in weighted CSPs. In Leslie Pack Kaelbling and Alessandro Saffiotti, edi-
tors, Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pages 193–198. Professional Book Center, 2005.

[35] Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient
Max-SAT solving. Artificial Intelligence, 172(2-3):204–233, 2008.

[36] Chu Min Li, Felip Manyà, Nouredine Mohamedou, and Jordi Planes. Exploiting cycle
structures in Max-SAT. In Oliver Kullmann, editor, Proceedings of the 12th Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT 2009),
5584 of Lecture Notes in Computer Science, pages 467–480. Springer Berlin / Heidel-
berg, 2009.

[37] Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi Planes. Resolution-
based lower bounds in MaxSAT. Constraints, 15(4):456–484, 2010.

125

A. Abramé and D. Habet

[38] Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit propagation to compute
lower bounds in branch and bound Max-SAT solvers. In Peter van Beek, editor, Pro-
ceedings of the 11th Interantional Conference on Principles and Practice of Constraint
Programming (CP 2005), 3709 of Lecture Notes in Computer Science, pages 403–414.
Springer Berlin / Heidelberg, 2005.

[39] Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint inconsistent subformulas
for computing lower bounds for Max-SAT. In Anthony Cohn, editor, Proceedings of the
21st National Conference on Artificial Intelligence (AAAI 2006), pages 86–91. AAAI
Press, 2006.

[40] Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules for Max-SAT. Journal
of Artificial Intelligence Research, 30:321–359, 2007.

[41] João Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, August 1999.

[42] Ruben Martins, Vasco Manquinho, and Inês Lynce. On partitioning for maximum
satisfiability. In Luc De Raedt, Christian Bessière, Didier Dubois, Patrick Doherty,
Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas, editors, Proceedings of the
20th European Conference on Artificial Intelligence (ECAI 2012), 242 of Frontiers in
Artificial Intelligence and Applications, pages 913–914. IOS Press, 2012.

[43] Ruben Martins, Vasco Manquinho, and Inês Lynce. Community-based partitioning for
MaxSAT solving. In Allen Van Gelder Matti Järvisalo, editor, Proceedings of the 16th
International Conference on Theory and Applications of Satisfiability Testing (SAT
2013), 7962 of Lecture Notes in Computer Science, pages 182–191. Springer Berlin /
Heidelberg, 2013.

[44] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT
solver,. In Carsten Sinz and Uwe Egly, editors, Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2014), 8561 of
Lecture Notes in Computer Science, pages 438–445. Springer International Publishing,
2014.

[45] António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT
with soft cardinality constraints. In Barry O’Sullivan, editor, Proceedings of the 20th
International Conference on Principles and Practice of Constraint Programming (CP
2014), 8656 of Lecture Notes in Computer Science, pages 564–573. Springer, 2014.

[46] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient sat solver. In Proceedings of the 38th Design
Automation Conference (DAC 2001), pages 530–535. ACM, 2001.

[47] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided
MaxSAT resolution. In Carla E. Brodley and Peter Stone, editors, Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAA1 2014), pages 2717–2723.
AAAI Press, 2014.

126

ahmaxsat: An Efficient Branch and Bound Solver for Max-SAT

[48] Rolf Niedermeier and Peter Rossmanith. New upper bounds for maximum satisfiability.
Journal of Algorithms, 36(1):63 – 88, 2000.

[49] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[50] Daniele. Pretolani. Efficiency and stability of hypergraph sat algorithms. In David S.
Johnson and Michael A. Trick, editors, Cliques, Coloring, and Satisfiability: Proceed-
ings of the Second DIMACS Implementation Challenge, 26 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 479–498. American
Mathematical Society, 1993.

[51] Haiou Shen and Hantao Zhang. Study of lower bound functions for max-2-sat. In
Deborah L. McGuinness and George Ferguson, editors, Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI 2004), pages 185–190. AAAI Press, 2004.

[52] Kevin Smyth, Holger Hoos, and Thomas Stützle. Iterated robust tabu search for max-
sat. In Yang Xiang and Brahim Chaib-draa, editors, Proceedings of the 16th Australian
Conference on Artificial Intelligence (AI 2003), 2671 of Lecture Notes in Computer
Science, pages 995–995. Springer Berlin / Heidelberg, 2003.

[53] Niklas Sörensson and Niklas Eén. Minisat 2.1 and minisat++ 1.0 — sat race 2008
editions. Technical report, 2008.

[54] Dawn M. Strickland, Earl Barnes, and Joel S. Sokol. Optimal protein structure align-
ment using maximum cliques. Operations Research, 53(3):389–402, 2005.

[55] Dave Tompkins and Holger Hoos. UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In Holger Hoos and David
Mitchell, editors, Proceedings of the 7th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2004), 3542 of Lecture Notes in Computer
Science, pages 898–898. Springer Berlin / Heidelberg, 2004.

[56] Allen Van Gelder. Generalized conflict-clause strengthening for satisfiability solvers.
In Karem Sakallah and Laurent Simon, editors, Proceedings of the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2011), 6695 of
Lecture Notes in Computer Science, pages 329–342. Springer Berlin / Heidelberg, 2011.

[57] Hans van Maaren and Linda van Norden. Sums of squares, satisfiability and maximum
satisfiability. In Fahiem Bacchus and Toby Walsh, editors, Proceedings of the 8th
International Conference on Theory and Applications of Satisfiability Testing, 3569
of Lecture Notes in Computer Science, pages 294–308. Springer Berlin / Heidelberg,
2005.

[58] Richard Wallace and Eugene C. Freuder. Comparative studies of constraint satisfaction
and davis-putnam algorithms for maximum satisfiability problems. In David S. Johnson
and Michael A. Trick, editors, Cliques, Coloring, and Satisfiability: Proceedings of the
Second DIMACS Implementation Challenge, 26 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 587–615. American Mathematical
Society, 1996.

127

A. Abramé and D. Habet

[59] Zhao Xing and Weixiong Zhang. Maxsolver: An efficient exact algorithm for (weighted)
maximum satisfiability. Artificial Intelligence, 164(1-2):47–80, 2005.

[60] Hui Xu, Rob A. Rutenbar, and Karem Sakallah. sub-sat: a formulation for relaxed
boolean satisfiability with applications in routing. In Proceedings of the 2002 Interna-
tional Symposium on Physical Design (ISPD 2002), pages 182–187. ACM, 2002.

[61] Mutsunori Yagiura and Toshihide Ibaraki. Efficient 2 and 3-flip neighborhood search al-
gorithms for the max sat. In Wen-Lian Hsu and Ming-Yang Kao, editors, Proceedings
of the 4th Annual International Conference on Computing and Combinatorics (CO-
COON 1998), 1449 of Lecture Notes in Computer Science, pages 105–116. Springer,
1998.

[62] Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan
examples using weighted MAX-SAT. Artificial Intelligence, 171(2-3):107–143, 2007.

128

	Introduction
	Definitions and Notations
	State of the Art of Branch and Bound Solvers
	Branching Heuristic
	Extending the Current Assignment
	Lower Bound Computation
	UP-based Detection of the Inconsistent Subsets
	Transforming Inconsistent Subsets

	Our BnB Max-SAT Solver: ahmaxsat
	Handling All Variable Propagation Sources
	Reducing the Number and the Sizes of the Compensation Clauses
	Increased Learning
	Local Max-Resolution
	Overview of ahmaxsat
	Inference Rules to Extend the Current Assignment
	Lower bound computation
	Branching Heuristic
	Hard Clauses Handling

	Experimental Study
	Impact of ahmaxsat Components
	ahmaxsat vs. State of the Art
	MSE 2014 Benchmark
	Extended Benchmark

	Conclusion

