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Abstract

In recent years, unsatisfiability-based algorithms have become prevalent as state of the
art for solving industrial instances of Maximum Satisfiability (MaxSAT). These algorithms
perform a succession of unsatisfiable SAT solver calls until an optimal solution is found. In
several of these algorithms, cardinality or pseudo-Boolean constraints are extended between
iterations. However, in most cases, the formula provided to the SAT solver in each iteration
must be rebuilt and no knowledge is reused from one iteration to the next.

This paper describes how to implement incremental unsatisfiability-based algorithms
for MaxSAT. In particular, we detail and analyze our implementation of the MSU3 algo-
rithm in the open-wbo framework that performed remarkably well in the MaxSAT Evalu-
ation of 2014. Furthermore, we also propose to extend incrementality to weighted MaxSAT
through an incremental encoding of pseudo-Boolean constraints. The experimental results
show that the performance of MaxSAT algorithms can be greatly improved by exploiting
the learned information and maintaining the internal state of the SAT solver between it-
erations. Finally, the proposed incremental encodings of cardinality and pseudo-Boolean
constraints are not exclusive for MaxSAT usage and can be used in other domains.
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1. Introduction

The number of application domains of Maximum Satisfiability (MaxSAT) has been growing
in the last few years. Application domains such as software upgradability [6], error local-
ization in C code [28], debugging of hardware designs [14], haplotyping with pedigrees [23],
and course timetabling [7] have benefited from the advancements in MaxSAT algorithms.

The success of the annual MaxSAT Evaluation has derived from a diversity of problem
instances, as well as an increase of performance in MaxSAT algorithms. Each year, in

c© 2015 IOS Press, the SAT Association, and the authors.



R. Martins et al.

particular on industrial tracks, the solver with the most solved instances in the previous
evaluation is surpassed by a new solver with better algorithmic techniques.

More recently, several unsatisfiability-based algorithms for MaxSAT have been proposed
with ever better performance [22, 4, 39, 5, 24, 47, 27, 46, 50]. These algorithms are iterative
in nature where a SAT solver is called in succession until an optimal solution to the MaxSAT
instance is found. However, at each iteration, these algorithms create a new instance of the
SAT solver and rebuild the formula losing most, if not all, of the knowledge that could be
derived from previous iterations. Despite being well-known that incremental approaches
have provided a huge leap in the performance of SAT solvers [55, 20, 49, 9], the notion of
incrementality has not yet been fully exploited in unsatisfiability-based MaxSAT solving.
One of the advantages of an incremental approach is to allow the SAT solver to retain
knowledge from previous iterations that may be used in the upcoming iterations. The
goal is to maintain the inner state of the SAT solver, as well as learned clauses that were
discovered during the solving process of previous iterations.

In many unsatisfiability-based MaxSAT algorithms, the working formula is modified be-
tween iterations with new cardinality or pseudo-Boolean constraints [47]. These constraints
are encoded in CNF so that a SAT solver can handle the resulting formula [10, 54, 21, 11,
8, 25]. In this paper we discuss the use of cardinality and pseudo-Boolean constraints in an
incremental fashion in order to improve the performance of MaxSAT algorithms. Although
we have proposed incremental cardinality constraints in our earlier work [43], in this paper
we extend it in several ways: (1) provide an analysis on the properties of the incremental
encoding, (2) propose and analyze an incremental pseudo-Boolean encoding for weighted
MaxSAT and (3) provide a detailed analysis of the incremental approaches on the MaxSAT
Evaluation 2014 instances.

The paper is organized as follows. Section 2 introduces preliminaries, notations, as well
as the MaxSAT algorithms and encodings used in the remainder of the paper. Section 3
proposes the incremental encodings for cardinality and pseudo-Boolean constraints. Pre-
vious related work on incrementality is referred in Section 4. An extended experimental
analysis on the MaxSAT Evaluation instances is provided in Section 5. Finally, the paper
concludes in Section 6.

2. Preliminaries

A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses, where a
clause is a disjunction of literals. Here, a literal is a Boolean variable xi or its negation ¬xi.
A Boolean variable may be assigned truth values true or false. A literal xi (¬xi) is said to
be satisfied if the respective variable is assigned value true (false) and to be unsatisfied if the
respective variable is assigned value false (true). A clause is satisfied if and only if at least
one of its literals is satisfied. A clause is called a unit clause if it only contains exactly one
literal. A formula ϕ is satisfied if all of its clauses are satisfied. The Boolean Satisfiability
(SAT) problem can be defined as finding a satisfying assignment to a propositional formula
ϕ or prove that such an assignment does not exist. Throughout this paper, we will refer to
ϕ as a set of clauses, where each clause c is a set of literals.

The Maximum Satisfiability (MaxSAT) problem is an optimization version of SAT where
the goal is to find an assignment to the input variables such that the number of unsatisfied
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(satisfied) clauses is minimized (maximized). In the context of this paper, it is assumed
that MaxSAT is defined as a minimization problem.

MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT and weighted
partial MaxSAT [34]. A partial MaxSAT formula ϕ has the form ϕh ∪ ϕs where ϕh and
ϕs denote the set of hard and soft clauses, respectively. The goal in partial MaxSAT is
to find an assignment to the input variables such that all hard clauses ϕh are satisfied,
while minimizing the number of unsatisfied soft clauses in ϕs. In the weighted versions of
MaxSAT, each soft clause ci is associated with an integer weight wi such that wi ≥ 1. In
this case, the goal is to find an assignment such that all hard clauses are satisfied and the
total weight of unsatisfied soft clauses is minimized.

Cardinality constraints are a well-known generalization of propositional clauses. In a
cardinality constraint, one encodes that at most k out of n literals can be assigned to true,
i.e.

∑n
i=1 li ≤ k where li is a literal. A generalization of cardinality constraints are pseudo-

Boolean constraints where each literal can have a weight, i.e.
∑n

i=1wi · li ≤ k. In this case,
the weighted sum of the literals assigned to true must be smaller than or equal to k.

Neither cardinality nor pseudo-Boolean constraints occur in MaxSAT formulations, but
their use in MaxSAT algorithms is common [22, 39, 4, 24, 47]. However, in order to it-
eratively use a SAT solver, most MaxSAT algorithms encode cardinality [10, 54, 8] and
pseudo-Boolean constraints into CNF [56, 21, 11, 25].

2.1 Using a SAT solver

Most of the current state of the art MaxSAT solvers are based on successive calls to a
SAT solver. A SAT solver call SAT(ϕ,A) takes as input a CNF formula ϕ and a set of
assumptions A. The set of assumptions A defines a set of literals that must be satisfied in
the model of ϕ returned by the solver call. Hence, the SAT call can terminate as soon as
the SAT solver determines that at least one of the literals in A must remain unsatisfied.
It is important to observe the difference between an assumption literal and a unit clause.
Note that an assumption just controls the value of a variable for a given SAT call, while a
unit clause defines the value of a variable for all of the calls to the SAT solver after the unit
clause has been added.

The result of a SAT call is a triple (st, ν, ϕC), where st denotes the status of the solver:
satisfiable (SAT) or unsatisfiable (UNSAT). If the solver returns SAT, then the model that
satisfies ϕ is stored in ν. On the other hand, if the solver returns UNSAT, then ϕC contains
an unsatisfiable formula that explains a reason for the unsatisfiability of ϕ 1.. Notice that
ϕ may be satisfiable, but the solver returns UNSAT due to the set of assumptions A (i.e.
there are no models of ϕ where all assumption literals are satisfied). In this case, ϕC
contains a subset of clauses from ϕ and a subset of assumptions from A. Otherwise, if ϕ is
unsatisfiable, then ϕC is a subformula of ϕ.

For all algorithms presented in this paper it is assumed that a SAT call has been made
to check the satisfiability of the set of hard clauses ϕh. If ϕh is not satisfiable, then the
MaxSAT instance does not have a solution.

1.A common approach to extract an unsatisfiable subformula is to use assumptions [19].
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Algorithm 1: Linear Search Unsat-Sat Algorithm

Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ)← (ϕh, ∅, 0)
2 foreach ci ∈ ϕs do
3 VR ← VR ∪ {ri} // ri is a new relaxation variable

4 cR ← ci ∪ {ri}
5 ϕW ← ϕW ∪ {cR}
6 while true do
7 (st, ν, ϕC)← SAT(ϕW ∪ {CNF(

∑
ri∈VR

wi · ri ≤ λ)}, ∅)
8 if st = SAT then
9 return ν // satisfying assignment to ϕ

10 λ← UpdateBound({wi : ri ∈ VR}, λ)

2.2 MaxSAT Algorithms

The classical approach for solving MaxSAT is branch and bound algorithms using MaxSAT
inference techniques and procedures to estimate the number of unsatisfied clauses to prune
the search [34]. However, in recent years, state of the art MaxSAT algorithms for indus-
trial/application instances rely on iteratively calling a SAT solver until an optimal solution
is found.

One of the approaches is to perform a linear search on the number of unsatisfied soft
clauses. In these algorithms, a new relaxation variable ri ∈ VR is initially added to each soft
clause ci. Notice that if an original soft clause ci is unsatisfied, then ri must be assigned to
true. Algorithm 1 illustrates a linear search on the total weight of unsatisfied soft clauses.
At each iteration of the algorithm, a pseudo-Boolean constraint is defined such that the
total weight of the unsatisfied soft clauses must be smaller than or equal to λ. The pseudo-
Boolean constraint is encoded into CNF and given to the SAT solver (line 7). Observe
that a pseudo-Boolean constraint is only necessary for weighted MaxSAT. If the MaxSAT
formula is an instance of the partial MaxSAT problem where all soft clauses ci have weight
1, then a cardinality constraint is used instead.

Algorithm 1 follows an Unsat-Sat linear search. At each step of the algorithm, λ defines
a lower bound on the value of the optimal solution. After an unsatisfiable answer from the
SAT solver, the value of λ is updated accordingly using function UpdateBound (line 10).
If ϕ is a partial MaxSAT formula, then function UpdateBound just updates λ with λ + 1.
Otherwise, if ϕ is a weighted MaxSAT formula, then UpdateBound returns the smallest
integer value υ such that υ > λ and SubSetSum({wi : ri ∈ VR}, υ) is true [5]. Function
SubSetSum(S, υ) solves the well-known subset sum problem, i.e. it returns true if there
is a subset S′ of S such that the sum of the elements of S′ equals υ. Since the subset
sum problem is NP-Hard, a pseudo-polynomial algorithm based on dynamic programming
is used. This allows to skip over lower bound values that are not possible to attain, given
the weights of the relaxed soft clauses in VR [5].

A converse approach to Algorithm 1 is the Sat-Unsat linear search where λ is defined as
an upper bound. In that case, λ is initialized with the sum of the weights of all soft clauses.
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Algorithm 2: WMSU3 Algorithm

Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ)← (ϕ, ∅, 0)
2 while true do
3 (st, ν, ϕC)← SAT(ϕW ∪ {CNF(

∑
ri∈VR

wi · ri ≤ λ)}, ∅)
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 foreach ci ∈ (ϕC ∩ ϕs) do
7 VR ← VR ∪ {ri} // ri is a new variable

8 cR ← ci ∪ {ri} // ci was not previously relaxed

9 ϕW ← (ϕW \ {ci}) ∪ {cR}
10 λ← UpdateBound({wi : ri ∈ VR}, λ)

Next, while the SAT call returns SAT, λ is decreased. The algorithm ends when the SAT
call returns UNSAT and the last found satisfying assignment is an optimal solution to ϕ.

Unsatisfiability-based algorithms 2. for MaxSAT take advantage of the certificates of un-
satisfiability produced by the SAT solver. Instead of relaxing all soft clauses at the beginning
of the algorithm, soft clauses are relaxed only when needed. Since the Fu and Malik [22]
algorithm was presented, there has been a growing diversity of unsatisfiability-based al-
gorithms being proposed. In this paper, we focus solely on the WMSU3 algorithm [42]
implemented in our tool open-wbo. This algorithm will be used to demonstrate the en-
hancements proposed in the paper. We refer to the literature for an extended overview on
unsatisfiability-based algorithms [47].

Algorithm 2 also follows a linear search Unsat-Sat, but soft clauses are only relaxed
when they appear in some unsatisfiable subformula ϕC . As in Algorithm 1, it starts with
a lower bound value λ at 0 and increases its value at each iteration using UpdateBound

(line 10). When the working formula becomes SAT, the algorithm ends. Otherwise, at
each unsatisfiable call on the working formula, non relaxed soft clauses that appear in ϕC
are relaxed (lines 6-9). As a result, besides the lower bound value λ, the left hand side
of the pseudo-Boolean constraint can also be modified at each iteration (line 3). However,
one should note that in the WMSU3 algorithm, some soft clauses might never have to be
relaxed. Therefore, the constraint size on the lower bound value λ is usually smaller than
in Algorithm 1.

Note that the MSU3 algorithm is a special case of WMSU3 for partial MaxSAT instances.
In this case, the weight of soft clauses is always 1. Therefore, one only needs to encode
a cardinality constraint in line 3. Moreover, the increase of the lower bound λ at each
iteration is always 1 (line 10).

2.3 Totalizer Encoding

As previously shown, cardinality constraints can occur when solving MaxSAT formulations.
In the presented algorithms, this happens when we have a partial MaxSAT formula. In this
case, the cardinality constraint must be encoded into CNF in order for the SAT solver to be

2.Also known as core-guided algorithms [47].
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(O : o1, o2, o3, o4, o5 : 5)

(A : a1, a2 : 2)

(C : l1 : 1) (D : l2 : 1)

(B : b1, b2, b3 : 3)

(E : l3 : 1) (F : f1, f2 : 2)

(G : l4 : 1) (H : l5 : 1)

Figure 1: Totalizer encoding for l1 + · · ·+ l5 ≤ k

able to deal with it. For the purpose of this paper, we describe the Totalizer encoding [10]
for cardinality constraints, as later in the paper we build upon this encoding to present
iterative encoding. However, other effective alternative encodings for cardinality constraints
exist [54, 8, 51].

The Totalizer encoding can be visualized as a tree as shown in Fig. 1. Here, the no-
tation for every node is (node name : node vars : node sum). To enforce the cardinality
constraint, we need to count how many input literals (l1, . . . , ln) are set to true. This
counting is done via a unary representation. Therefore, at every node its corresponding
node vars represent integers from 1 to node sum in ascending order. For example, at node
B, b2 being set to true means that at least two of the leaves under the tree rooted at B
have been set to true. The input literals (l1, . . . , l5) are at the leaves whereas the root node
has the output variables (o1, . . . , o5) giving the final tally of how many input literals have
been set.

Any intermediate node P , counting up to n1, has two children Q and R counting up to
n2 and n3 respectively such that n2 + n3 = n1. Also, their corresponding node vars will
be (p1, . . . , pn1), (q1, . . . , qn2) and (r1, . . . , rn3) in that order. In order to ensure that the
correct sum is received at P , the following formula is built for P :∧

0 ≤ α ≤ n2
0 ≤ β ≤ n3
0 ≤ σ ≤ n1
α + β = σ

¬qα ∨ ¬rβ ∨ pσ where, p0 = q0 = r0 = 1 (1)

Essentially, (1) dictates that if α many leaves have been set to true under the subtree
rooted at Q and β many leaves have been set to true under the subtree rooted at R then
pσ must be set to true to indicate that at least α + β many leaves have been set to true
under P . Observe that (1) only counts the number of input literals set to true. In other
words, it encodes the cardinality sum over the input literals. To enforce that at most k of
the input literals are set to true, we conjunct it with the following :∧

k+1≤i≤n
¬oi (2)

Observation 1 Two disjoint subtrees for the Totalizer encoding are independent of each
other. For example, the tree rooted at B counts how many literals have been set to true from
{l3, l4, l5} whereas, the tree rooted at A counts the literals that are set to true from {l1, l2}.

64



On Using Incremental Encodings in Unsatisfiability-based MaxSAT Solving

Note also that (1) counts up to n and then (2) restricts the sum to k. If we only want
to enforce the constraint for at most k then we need at most k + 1 output variables at the
root. In turn, we need at most k + 1 node vars at any intermediate node. Even with this
modification, the formula in (1) remains valid. However, the equality n2 + n3 = n1 may no
longer hold. With this modification, (2) simplifies to

¬ok+1

Without the simplification this encoding requires O(nlog n) extra variables and O(n2)
clauses. After the simplification the number of clauses reduces to O(nk) [13, 31]. From
here on, we will refer to this simplification as k-simplification.

Observation 2 Let ϕ1 and ϕ2 be two formulas, representing cardinality sums k1 and k2

respectively, generated using (1) and k-simplification. Observe that ϕ1 ⊂ ϕ2, whenever
k1 < k2.

2.4 Sequential Encoding

In this section, we briefly describe the sequential weight counter (SWC) encoding [25] of
pseudo-Boolean (PB) constraints into CNF. As with the cardinality encoding presented in
the previous section, we will also build on the SWC encoding for presenting our approach
for solving weighted MaxSAT formulas. Nevertheless, we note that this is only one of many
alternative encodings for pseudo-Boolean constraints into CNF [56, 21, 11].

The goal of the SWC encoding is to encode into CNF a PB constraint of the form∑n
i=iwixi ≤ k. In the SWC encoding, a new set of variables si,j is defined, where 1 ≤ i < n

and 1 ≤ j ≤ k. Variable si,j must be assigned value 1 if the weighted sum of the first i
literals is larger than or equal to j. Otherwise, si,j is assigned value 0.

Suppose we have the constraint 2x1 +3x2 +3x3 ≤ 5 and x1 = x3 = 1 and x2 = 0. In this
case, s2,4 can be assigned value 0 since the weighted sum of the first two literals is smaller
than 4. However, since the third literal x3 is assigned value 1, then s3,4 must be assigned
value 1.

The SWC encoding [25] is as follows:

(¬si−1,j ∨ si,j) for 2 ≤ i < n, 1 ≤ j ≤ k (3)

(¬xi ∨ si,j) for 1 ≤ i < n, 1 ≤ j ≤ wi (4)

(¬si−1,j ∨ ¬xi ∨ si,j+wi) for 2 ≤ i < n, 1 ≤ j ≤ k − wi (5)

(¬si−1,k+1−wi ∨ ¬xi) for 2 ≤ i ≤ n (6)

The clause set (3) ensures that if the weighted sum of the first i− 1 literals is at least j,
then it is also at least j if we consider the first i literals. This is true since the weights are
all non-negative. Next, clause set (4) ensures that if literal xi is assigned value 1, then the
weighted sum considering the first i literals is at least wi. Hence, all si,j where j ≤ wi are
assigned value 1 if xi = 1. Clause set (5) follows a similar reasoning. If the weighted sum of
the first i− 1 literals is at least j and xi is assigned value 1, then the weighted sum of the
first i literals is at least j+wi. Finally, clause set (6) limits the weighted sum of literals up
to k. If the weighted sum of the first i − 1 literals is at least k + 1 − wi, then xi must be
assigned value 0. Otherwise, the weighted sum of the literals would be larger than k and
the original PB constraint would not be satisfied.
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(A : a1, a2 → a1, a2, a3, a4 : 2→ 4)

(B : b1, b2 : 2)

(D : l1 : 1) (E : l2 : 1)

(C : c1, c2,→ c1, c2, c3 : 2→ 3)

(G : l3 : 1) (F : f1, f2 : 2)

(H : l4 : 1) (I : l5 : 1)

(J : j1, j2 : 2)

(K : l7 : 1) (L : l8 : 1)

(O : o1, . . . , o4 : 4)

Figure 2: Transforming l1 + · · ·+ l5 ≤ 1 and l7 + l8 ≤ 1 into l1 + . . .+ l5 + l7 + l8 ≤ 3

3. Iterative incrementality

Unsatisfiability-based algorithms for MaxSAT are based on relaxing unsatisfiable formulas
until a satisfiable formula is reached, such that the corresponding model is an optimal
solution of the MaxSAT instance. Until recently, unsatisfiability-based algorithms were non-
incremental, i.e. at each iteration of the algorithm, the SAT solver was rebuilt with a new
CNF instance to be solved. In this section we review the iterative encoding [43] of cardinality
constraints that allows an incremental implementation of the MSU3 algorithm for partial
MaxSAT instances. This incremental scheme has allowed a very simple unsatisfiability-
based algorithm to be the best non-portfolio solver for industrial unweighted and industrial
partial MaxSAT instances in the MaxSAT Evaluation 20143.. Furthermore, in this section,
we propose to extend the iterative encoding to pseudo-Boolean constraints, thus allowing
our implementation of WMSU3 to be the first fully incremental algorithm for weighted
MaxSAT.

3.1 Iterative Cardinality Encoding

One approach to implement incrementality is to use incremental weakening [43]. The main
idea is to use a conservative upper bound ku. In partial MaxSAT, ku would be an upper
bound on the number of unsatisfied soft clauses that could be defined by finding any model
to the hard clause set. In this case, the cardinality constraint that limits the number of
relaxation variables to be assigned value 1 would be encoded only once with ku on the right
hand side. However, at each iteration of the algorithm, one would limit the effective output
of the left hand side of the cardinality constraint by using assumptions [43].

There are two main drawbacks with this approach: (i) all soft clauses would have to
be initially relaxed and (ii) the conservative upper bound ku can be much larger than the
optimum value kopt. As a result, the size of the encoding of the cardinality constraint can
be much larger than the one used in the non-incremental approach.

3.Results available at http://www.maxsat.udl.cat/14/.
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Since incremental weakening does not allow the set of input literals in the cardinality
constraint to change, MaxSAT algorithms that only relax soft clauses when they appear in
some unsatisfiable subformula can not take full advantage of incremental weakening.

To remedy this situation, we propose to encode the cardinality constraint in an itera-
tive fashion. At each iteration of the MaxSAT algorithm, the encoding of the cardinality
constraint is augmented with clauses that allow the sum of the input literals to go up to k
for the current iteration. We call this approach iterative encoding.

Let us take a look at Fig. 2 to see how iterative encoding proceeds. Assume that for
a particular iteration, we needed to encode l1 + · · · + l5 ≤ 1. This can be accomplished
using the subtree rooted at A. Since the bound for this iteration is k = 1, we only need
k + 1 = 2, node vars at every node as described in k-simplification in Section 2.3. In the
next iteration, suppose we need to encode l1 + · · ·+ l5 + l7 + l8 ≤ 3. Observation 2 allows
us to augment the formula for subtree rooted at A to allow l1 + · · · + l5 to sum up to 4.
This is done by increasing the output variables of node A to sum up to 4 and adding the
respective clauses that encode sums 3 and 4. Similarly, for node C the output variables are
increased to sum up to 3 and the clauses that sum up to 3 are added to the formula. For
the additional input literals l7 and l8 we encode the subtree rooted at J . Observation 1
allows us to merge trees rooted at A and J by creating a new parent node O which sums
up to 4 since A and J have disjoint sets of input literals. To restrict the number of input
literals being set to true to 3, we only need to add ¬o4 as described in (2).

In general, if the cardinality constraint changes from x1 + · · · + xn ≤ k1 (k1 < n) to
x1 + · · ·+ xn + y1 + · · ·+ ym ≤ k2 where k1 ≤ k2 then we do the following 4 steps:

1. Remove the assumption over output literal ¬ok1+1 which restricts the sum of x1 . . . , xn
to k1.

2. Augment the formula for x1, . . . , xn to sum up to min(k2 + 1, n).

3. Encode the formula over y1, . . . , ym to sum up to min(k2 + 1,m).

4. Conjunct these two formulas and augment the resulting formula using (1) and k-
simplification in order to encode x1 + · · ·+ xn + y1 + · · ·+ ym ≤ k2.

Since the iterative encoding always adds clauses to the existing formula and changes as-
sumptions, it allows us to retain the internal state of the solver across iterations.

For partial MaxSAT instances, a linear search Unsat-Sat algorithm (Algorithm 1), in-
creases the lower bound by 1 at each iteration but does not change the set of input literals
of the cardinality constraint. Therefore, to apply iterative encoding to this algorithm we
only have to perform steps 1 and 2. On the other hand, MSU3 algorithm (Algorithm 2 for
partial MaxSAT instances) may change the set of input literals of the cardinality constraint
between iterations. Therefore, iterative encoding is applied to MSU3 by performing steps
1 to 4.

Since at every iteration, a bare minimum number of clauses necessary to encode the
cardinality constraint for that iteration is added, the size of the encoding remains small
throughout the run of the MaxSAT algorithm. The iterative encoding is not only faster but
allows us to solve more problem instances as compared to non-incremental approaches.
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(O : o1, . . . , ok : k)

(An−1 : a1, . . . , ak : k)

(An−2 : b1, . . . , bk : k)

(A2 : d1, d2 : 2)

(I1 : l1 : 1) (I2 : l2 : 1)

(In−1 : ln−1 : 1)

(In : ln : 1)

Figure 3: Worst-case Totalizer tree encoding for l1 + · · ·+ ln < k

Encoding Properties

The Totalizer encoding needs O(n log2n) additional variables and O(nk) clauses [10]. This
complexity is achieved assuming the tree built for the encoding is balanced. However, the
iterative Totalizer encoding described in this section does not guarantee a balanced tree
for the structure of the encoding. At each iteration, a new root node is created with the
existing tree as one child and a new tree branch (which encodes the additional set of input
literals) as the other child. In the worst case, at every iteration only one new input literal
has to be considered, resulting in a completely skewed tree as shown in Fig. 3.

The total number of nodes in a tree which encodes n input literals would be O(n). Since
at every intermediate node, only k many node vars are required, the iterative encoding
requires O(nk) encoding variables. At every intermediate node, O(k2) clauses are required
to encode the cardinality sum. Thus, in the worst case, the total number of clauses is
O(nk2). However, such an extreme case of completely unbalanced tree does not seem to
occur in practice.

Note that the arc-consistency property of the Totalizer encoding still holds for the
iterative version. Since the arc-consistency proof provided in the original paper does not
depend on the encoding tree being balanced, here we refer to the original proof [10]. The
proof is based on an induction step, but for it to go through, it is sufficient for the left and
right child to have strictly less variables than the parent node. Hence, the n input variables
can be split into 1 and n− 1 variables (or any other splitting procedure) and the proof still
holds.

3.2 Iterative Pseudo-Boolean Encoding

This section describes how to perform the incremental encoding of a PB constraint using
the SWC encoding described in section 2.4.

Consider that a PB constraint defined over n literals
∑n

i=1wixi ≤ k has already been
encoded into CNF and added to the SAT solver. The main goal is to be able to extend the
CNF encoding of the original PB constraint to represent a new PB constraint

∑m
i=1wixi ≤ k′

where m ≥ n and k′ ≥ k. Hence, in the iterative encoding we consider adding new weighted
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literals to the left hand side (the number of literals can increase to m) and increasing the
right hand side of the PB constraint from k to k′.

First we analyze how to encode an increase on the right hand side of the PB constraint
while maintaining the left hand side. We start by verifying which part of the initial encoding
remains valid with an increase of the right hand side value from k to k′. Clearly, clauses
defined in (3) to (5) are also valid with the new right hand side value k′. However, this
is not the case for clause set (6). Hence, in order to be able to perform an incremental
encoding, we propose to change (6) by adding a blocking variable bk. As a result, clause
set (6) is replaced by:

(bk ∨ ¬si−1,k+1−wi ∨ ¬xi) for 2 ≤ i ≤ n (7)

Therefore, in the SAT solver call, blocking literal ¬bk must be included as an assumption,
in order to guarantee that the weighted sum of literals is limited to k.

The incremental step to increase the right hand side of the PB constraint from k to k′

can then be done by adding the following clauses:

(¬si−1,j ∨ si,j) for 2 ≤ i < n, k < j ≤ k′ (8)

(¬si−1,j ∨ ¬xi ∨ si,j+wi) for 2 ≤ i < n, k − wi < j ≤ k′ − wi (9)

(bk′ ∨ ¬si−1,k′+1−wi ∨ ¬xi) for 2 ≤ i ≤ n (10)

(bk) (11)

Note that (8) and (9) correspond to expanding (3) and (5) up to k′. Notice also that
(11) disables all clauses in (7), thus removing the limit of k to the encoded PB constraint.
Finally, (10) introduces a new blocking variable bk′ and establishes the new limit of k′ to
the right hand side. In the next SAT solver call, ¬bk must be replaced by ¬bk′ in the
assumption set.

Now we consider adding new weighted literals to the left hand side, while keeping the
right hand side of the PB constraint k′. The goal is to extend the encoding of PB constraint∑n

i=1wixi ≤ k′ defined over a set of n weighted literals to a new PB constraint
∑n

i=1wixi+∑m
i=n+1wixi ≤ k′ defined over a set of m weighted literals. In this case, one just needs to

extend the original SWC encoding (3)-(6) to consider the new literals from n + 1 to m as
follows:

(¬si−1,j ∨ si,j) for n ≤ i < m, 1 ≤ j ≤ k′ (12)

(¬xi ∨ si,j) for n ≤ i < m, 1 ≤ j ≤ wi (13)

(¬si−1,j ∨ ¬xi ∨ si,j+wi) for n ≤ i < m, 1 ≤ j ≤ k′ − wi (14)

(bk′ ∨ ¬si−1,k′+1−wi ∨ ¬xi) for n < i ≤ m (15)

As a result of these steps, it is possible to iteratively encode a PB constraint without
having to rebuild the formula in the SAT solver between calls in the WMSU3 algorithm.
Clearly, this approach can also be applied to different MaxSAT or other optimization algo-
rithms using iterative calls to a SAT solver.
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Encoding Properties

In order to encode a PB constraint
∑n

i=1wixi ≤ k, the iterative encoding proposed in this
section generates almost the same CNF formula as in the non-incremental case for the same
iteration. The original encoding uses O(nk) additional variables [25]. In our case, a new
blocking variable is introduced whenever the right hand side of the PB constraint increases.
Hence, in the worst case, the right hand side is increased only by 1 in each iteration up to
k. Therefore, at most k blocking variables are used on the iterative encoding. As a result,
the proposed iterative encoding also uses O(nk) additional variables.

The original SWC encoding uses O(nk) clauses [25]. Our proposed iterative encoding
generates the same clauses as the original, except for the additional clauses added when
the right hand side increases. In particular, clause sets (10), (11) and (15) must be added
when a new blocking clause is created. Observe that the size of these clause sets is limited
to O(n) clauses. Considering that we have at most k blocking variables, the additional
number of clauses due to (10), (11) and (15) is O(nk) over all iterations used to build
the PB constraint. Hence, the overall number of clauses used in our iterative encoding is
maintained at O(nk).

Notice that at each iteration, the blocking variable from the previous iteration is assigned
to true (11). Therefore, the only blocking variable that remains unassigned is bk′ . However,
since we have ¬bk′ in the assumption set of the SAT solver call, the active clauses in each
SAT call are the same as in the original encoding. As a result, the property of generalized
arc-consistency by unit propagation also holds for the iterative encoding [25].

4. Related Work

The first use of incremental SAT solving can be traced back to the 90’s with the seminal
work of John Hooker [26]. Initially, only a subset of constraints is considered. At each
iteration, more constraints are added to the formula. Later, incremental approaches were
adopted by constraint solvers in the context of SAT [57, 19] and SAT extensions [31, 9].

Assumptions are widely used for incremental SAT [20, 49]. The minisat solver [19] inter-
face allows the definition of a set of assumptions. Alternatively, the interface of zchaff [37]
allows removing groups of clauses.

Although not implemented, the work of Fu and Malik in MaxSAT [22] discusses how
learned clauses may be kept from one SAT iteration to the next one. A technique called
incremental blocking was described and used with Fu-Malik algorithm in [43]. In incremental
blocking, at each iteration i, a new auxiliary variable bi, known as blocking variable, is
added as a positive literal to every clause in the encoding of the cardinality constraints. In
addition, ¬bi is added as an assumption to enforce the cardinality constraints. In the next
iteration i+1, when the cardinality constraints from the previous iteration are not required,
bi is added as a unit clause to disable these constraints. In Pseudo-Boolean Optimization
(PBO), early implementations include the use of incremental strengthening in minisat+ [21].
Linear search Sat-Unsat algorithms [31, 33] are implemented incrementally. A critical issue
is on keeping safe learned clauses in successive iterations of a core-guided algorithm [44].
Quantified Boolean Formula (QBF) solving has successfully been made incremental [36] and
further applied to verification [40].
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In the context of SAT, incremental approaches exist for building encodings and identify-
ing Minimal Unsatisfiable Subformulas (MUSes). For example, an incremental translation
to CNF uses unit clauses to simplify the pseudo-Boolean constraint before translating it to
CNF [38]. More recent work lazily decomposes complex constraints into a set of clauses [1].
The identification of MUSes has been made incremental by Liffton et al. [35]. Later on,
the SAT solver Glucose has been made incremental using assumptions and applied to MUS
extraction [9].

Incrementality is also present in other SAT-related domains such as Satisfiability Modulo
Theories (SMT), Bounded Model Checking (BMC) and Constraint Satisfaction Problems
(CSPs). The SMT-LIB v2.0 [12] defines the operations push and pop to work with a stack
containing a set of formulas to be jointly solved. The MaxSAT solver WPM [3] uses the SMT
solver Yices [18] which supports incrementality. The use of SAT solvers in BMC is known
to benefit from incrementality, either by implementing incremental SAT solving [55] or by
using assumptions [20]. Incrementality is naturally present in Dynamic CSPs (DCSPs) [17]
where the formulation of a problem evolves over time by adding and/or removing variables
and constraints. Nogoods can eventually be carried from one formulation to the next one.
DCSPs make use of an incremental arc consistency algorithm [16].

Recent independent work has addressed the incremental encoding of cardinality con-
straints in SAT-based MaxSAT solvers [53]. Instead of translating the entire cardinality
constraint into CNF, a divide-and-conquer approach is used to encode partial cardinality
constraints successively. The resulting sub-problems are solved and merged incrementally,
reusing not only intermediate local optima, but also additional constraints which are derived
from solving the individual sub-problems by the SAT solver. In contrast to their work, we
support incrementality for unsatisfiability-based algorithms.

5. Experimental Results

All of our experiments have been performed on the benchmarks taken from the industrial
category of the MaxSAT Evaluation 2014. The evaluation was performed on two AMD
Opteron 6276 processors (2.3 GHz) running Fedora 18 with a timeout of 1,800 seconds and
memory limit of 8 GB. We implemented the incremental and non-incremental encodings for
the Linear Search Unsat-Sat (LinearUS) and WMSU3 algorithms on top of open-wbo [45].
open-wbo is a modular open source MaxSAT solver that is publicly available at http://

sat.inesc-id.pt/open-wbo/. When considering only single engine solvers, open-wbo with
the incremental WMSU3 algorithm placed first4. in the unweighted and partial industrial
MaxSAT categories at the MaxSAT Evaluation 2014.

5.1 Unweighted MaxSAT

In this section we report our results on 55 industrial unweighted MaxSAT benchmarks and
on the 568 industrial partial MaxSAT benchmarks from the MaxSAT Evaluation 2014. From
here on, we will use the term unweighted to refer to both unweighted and partial MaxSAT
instances. We compare the performance of LinearUS and MSU3 against Eva [50], MSCG [39,

4.Version open-wbo-in in the MaxSAT Evaluation 2014.
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Table 1: Number of unweighed industrial instances solved by each solver

Benchmark #Inst LinearUS Inc-LinearUS MSU3 Inc-MSU3 Eva MSCG Clasp WPM
debugging 3 1 1 3 3 3 3 3 3
safarpour 52 6 2 36 42 38 40 39 29
aes 7 0 0 0 1 1 1 1 0
mesat 18 11 11 11 11 11 11 11 11
sugar 19 11 12 11 12 11 11 12 12
fir 32 28 28 28 32 29 32 32 26
simp 10 9 9 9 9 9 8 9 9
su 38 34 34 35 35 34 33 31 32
msp 40 8 11 9 9 19 11 9 11
mtg 30 30 30 30 30 30 30 30 30
syn 38 6 7 7 15 18 17 16 7
circuit 4 4 4 4 4 4 4 4 4
close solutions 50 28 32 46 48 48 49 49 46
des 50 35 33 36 41 41 42 45 35
haplotype 6 5 5 5 5 5 5 5 5
hs-timetabling 2 1 1 1 1 1 1 1 1
mbd 46 39 40 35 45 42 43 40 34
packup-pms 40 26 40 40 40 40 40 40 40
mqc-nencdr 25 25 25 25 25 25 25 25 23
mqc-nlogencdr 25 25 25 25 25 25 25 25 25
routing 15 15 15 15 15 15 15 15 15
protein ins 12 12 12 12 12 8 12 12 12
Multiple path 36 30 30 36 35 32 30 32 35
One path 25 25 25 25 25 25 25 25 25
Total 623 414 432 484 520 514 513 511 470

27, 46], Clasp [2], and WPM [4, 3]. These solvers have been selected for comparison because
they have shown remarkable performance5. in the MaxSAT Evaluation 2014.

Table 1 shows the number of instances solved by each solver (#Inst). The debugging

and safarpour benchmarks only contain soft clauses, while the remaining ones contain
both soft and hard clauses. The columns LinearUS and MSU3 indicate open-wbo with
non-incremental encodings using the unweighted version of these algorithms. The columns
Inc-LinearUS and Inc-MSU3 correspond to the incremental version of each algorithm.
Since the information in the SAT solver is preserved across iterations, both Inc-LinearUS
and Inc-MSU3 are able to solve more instances than their non-incremental counterparts.
Inc-LinearUS solves 18 more instances than LinearUS, whereas Inc-MSU3 solves 36 more
instances than MSU3. LinearUS is not competitive with other state-of-the-art MaxSAT
solvers, and even though Inc-LinearUS improves its performance it is not sufficient to close
the gap between Inc-LinearUS and other MaxSAT solvers. On the other hand, MSU3 is
more competitive than LinearUS and the incremental nature of Inc-MSU3 allows it to be
competitive with Eva, MSCG, and Clasp.

Fig. 4 shows a cactus plot with the running times of the solvers for unweighted MaxSAT.
The gap in performance between LinearUS and Inc-LinearUS and between MSU3 and Inc-
MSU3 is clear in the cactus plot. The iterative Totalizer encoding does not only significantly
increase the number of solved instances but it also decreases the running time of the solvers.
Due to the iterative encoding, MSU3 becomes a state-of-the-art MaxSAT algorithm for
unweighted instances.

5.Only single engine solvers have been considered in this evaluation, therefore we did not include ISAC+
(a portfolio MaxSAT solver) [30].
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Figure 4: Running times of MaxSAT solvers for unweighted MaxSAT instances

Impact of Incrementality

The scatter plot in Fig. 5 compares the impact of the iterative Totalizer encoding on the
LinearUS and MSU3 algorithms. Each point in the plot corresponds to a problem instance,
where the y-axis corresponds to the run time required by the non-incremental solver and
the x-axis corresponds to the run time required by the incremental solver. Instances that
are below the diagonal are solved faster when using the non-incremental solver, whereas
instances that are above the diagonal are solved faster when using the incremental solver.
For instances solved by both LinearUS and Inc-LinearUS, Inc-LinearUS is on average 2×
faster than LinearUS. A similar pattern can be observed for Inc-MSU3, where for instances
solved by both MSU3 and Inc-MSU3, Inc-MSU3 is on average 3× faster than MSU3.

The only difference between the incremental and non-incremental solvers is the incre-
mental nature of the underlying cardinality encoding. The iterative Totalizer encoding is
clearly the key ingredient in the performance boost of Inc-LinearUS and Inc-MSU3.

5.2 Weighted MaxSAT

For weighted MaxSAT, we perform our evaluation on the 410 industrial benchmarks from
the weighted partial MaxSAT category of the MaxSAT Evaluation 2014. We compare the
performance of LinearUS and WMSU3 against the MaxSAT solvers used in the previous
section.

The number of instances solved by each solver is given in Table 2. The pedigrees and
upgradeability benchmarks correspond to instances using a lexicographical optimization
criterion [41]. Solving these instances can be reduced to solving a sequence of unweighted
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Figure 5: Impact of the iterative Totalizer encoding

Table 2: Number of weighted industrial instances solved by each solver

Benchmark #Inst LinearUS Inc-LinearUS WMSU3 Inc-WMSU3 Eva MSCG Clasp WPM
pedigrees 100 64 98 91 99 100 100 90 94
upgradeability 100 31 66 99 100 100 100 100 100
hs-timetabling 14 1 1 2 2 1 1 3 3
packup-wpms 99 0 0 0 0 99 99 95 93
planning 29 28 29 28 29 29 28 27 29
timetabling 26 7 7 6 10 11 13 11 13
spot5-dir 21 4 8 6 7 14 14 13 17
spot5-log 21 4 7 5 6 14 10 14 11
Total 410 139 216 237 253 368 365 353 360

partial MaxSAT instances. For such instances, we used the iterative Totalizer encoding.
For the remaining instances, we used the iterative SWC encoding. The columns LinearUS
and WMSU3 indicate open-wbo with non-incremental encodings using the LinearUS and
WMSU3 algorithms, respectively. The columns Inc-LinearUS and Inc-WMSU3 indicate the
incremental version of each algorithm. Since the iterative Totalizer encoding can be used for
pedigrees and upgradeability, the performance of Inc-LinearUS is significantly improved
and the performance of Inc-WMSU3 is comparable to other solvers. Incrementality results in
Inc-LinearUS solving 69 more instances as compared to LinearUS and Inc-WMSU3 solving
9 more instances as compared to WMSU3 on these two benchmarks. LinearUS and WMSU3
are unable to solve any instance in the packup-wpms benchmark set. These instances have
large optimum values (in the order of hundreds of thousands). The lower bound increment
performed by LinearUS and WMSU3 is too small to handle such instances. Since the lower
bound increment strategy is the same for the incremental encoding, Inc-LinearUS and Inc-
WMSU3 also do not solve any instance of this benchmark set. For the remaining instances,
the iterative SWC encoding helps Inc-LinearUS to solve 8 more instances than LinearUS
and Inc-WMSU3 to solve 7 more instances than WMSU3. The table highlights the fact
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Figure 6: Running times of MaxSAT solvers for weighted MaxSAT instances

that the iterative encoding (whether used with Totalizer or SWC) always improves the
performance of the underlying MaxSAT algorithm.

Fig. 6 compares the performance of the solvers for weighted MaxSAT. The performance
of LinearUS, Inc-LinearUS, WMSU3 and Inc-WMSU3 is not comparable to the remaining
solvers. However, note that the iterative encoding is not specific to a particular MaxSAT
algorithm. We believe that the iterative encoding can improve the efficiency of any algorithm
that uses cardinality or pseudo-Boolean constraints. For example, MSCG [46] could be
enhanced with the iterative encoding. In the case of Inc-LinearUS and Inc-WMSU3, we can
see in the cactus plot that the iterative encoding does enhance the performance.

Impact of Incrementality

Fig. 7 shows a scatter plot that compares the impact of the incremental encoding on the
WMSU3 algorithm for weighted benchmarks. Instances with lexicographical optimization
criterion are represented as circles, while the remaining ones are shown as squares. Inc-
LinearUS dominates LinearUS with an average speedup of 10 for instances where the itera-
tive Totalizer encoding is used. For the remaining ones, Inc-LinearUS outperforms LinearUS
by a factor of 2. A similar pattern can be observed with Inc-WMSU3. Inc-WMSU3 dom-
inates WMSU3 with an average speedup of 31 for instances where the iterative Totalizer
encoding is used. For the remaining ones, Inc-WMSU3 outperforms WMSU3 by a factor
of 2. These results underscore the importance of incrementality for speeding up MaxSAT
algorithms.
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6. Conclusions and Future Work

The most effective MaxSAT algorithms for industrial instances are usually based on solving
a sequence of SAT formulas. More recently, there has been a surge of new unsatisfiability-
based algorithms where all but the last SAT formula are unsatisfiable. As a result, in most
cases, the SAT formula is completely rebuilt between iterations and knowledge acquired in
the previous iterations is lost.

In this paper we propose to apply incrementality to unsatisfiability-based MaxSAT al-
gorithms. This is achieved by incrementally encoding cardinality and pseudo-Boolean con-
straints, such that the SAT formula can be iteratively changed between iterations. As a
result, only one instance of the SAT solver is created, thus maintaining the learned clauses
and the internal state of the solver from one iteration to the next.

Experimental results on the MaxSAT Evaluation 2014 instances show that the incre-
mental algorithms clearly outperform the non-incremental versions for both weighted and
unweighted MaxSAT. Furthermore, the paper shows that by using incrementality, a very
simple MaxSAT algorithm can be competitive with more sophisticated algorithms for sev-
eral sets of instances. Considering the complementary results from the different solvers
and configurations, a portfolio-based MaxSAT solver can be easily built on the open-wbo
framework.

The proposed techniques are not specific to the WMSU3 algorithm. For example,
these techniques can be used in other unsatisfiability-based algorithms such as WPM [3],
BCD2 [48], and MSCG [46]. Moreover, the application of the proposed techniques are not
confined to MaxSAT solving. For example, they have been used in other application do-
mains such as automated fence insertion in programs under weak memory models [29]. As
future work, we propose to integrate these techniques into more application domains where
cardinality and pseudo-Boolean constraints need to be updated iteratively. Furthermore,
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we also plan to extend incrementality to other effective cardinality and pseudo-Boolean
constraints encodings.
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[7] Roberto Aśın and Robert Nieuwenhuis. Curriculum-based course timetabling with SAT
and MaxSAT. Annals OR, 218(1):71–91, 2014.
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