
Journal on Satisfiability, Boolean Modeling and Computation 8 (2012) 117-122

Contrasat – A Contrarian SAT Solver

system description

Allen Van Gelder http://www.cse.ucsc.edu/~avg/

Computer Science Dept., University of California

Santa Cruz, CA 95064

U.S.A.

Abstract

The SAT solver Contrasat is a small variation of the well-established Minisat solver.
It was entered in the Minisat hack track of the 2011 SAT competition, and was judged to
be first place in one category. This paper describes the code change and its motivation.
The characterization as “contrarian” is explained. Experimental results are summarized.

Keywords: SAT solver, CDCL, Minisat, volunteer, Contrasat

Submitted September 2011; revised February 2012; published March 2012

1. Introduction

The satisfiability (SAT) problem has been much studied from the empirical point of view
for practical solving, although the problem is NP -complete. The Minisat hack track has
been included the 2009 and 2011 SAT competitions to explore small changes in the well-
established Minisat solver [2]. For 2011, the base version was 2.2.0 (which label can only
be found in doc/ReleaseNotes-2.2.0.txt and is absent from the source code, itself).
Contrasat employs a small code change to Minisat, and was entered in the 2011 Minisat
hack track. This system description applies to Contrasat 2.2.0.B. Several URLs have
information relevant to this report:

A http://www.cse.ucsc.edu/~avg/Contrasat/ Contrasat source code and other information;
B http://satcompetition.org/2011 comprehensive information on the 2011 SAT

Competition, including source codes of submitted
solvers;

C http://www.cril.univ-artois.fr/SAT11/ results from the 2011 SAT competition.

Since the initial report on Chaff [4], it has been an accepted dogma for high-performance
SAT solving (at least within the CDCL family, which includes Chaff and Minisat) that
so-called “Boolean constraint propagation” (BCP) should be made as fast as possible, since
it occupies about 80% of the processing time. (“Boolean constraint propagation” is usually
called “unit-clause propagation” in earlier literature.) We call Contrasat a “contrarian”
solver because it challenges this dogma. The only change to the reference Minisat code
slows down the BCP processing by a significant factor.

After describing the code change, we explain the motivation, then summarize some
results from the 2011 SAT competition, and present some additional experiments.

c©2012 Delft University of Technology and the authors.

http://www.cse.ucsc.edu/~avg/Contrasat/
http://satcompetition.org/2011
http://www.cril.univ-artois.fr/SAT11/

A. Van Gelder

2. Modified Unit-Clause Propagation Procedure

The standard procedure for BCP maintains uncheckedLits, set of literals that should be
assigned true and are waiting to be propagated. BCP is “seeded” by adding an assumed
literal (the decision literal) to the initially empty uncheckedLits. Repeatedly, while the
set is not empty and no clause has been falsified, BCP removes a literal p, assigns it to
true, and checks certain clauses that contain p to see if they are now unit clauses, in the
sense that the clause has at most one literal that is not falsified by existing assignments,
now including p. Whenever such a clause C is found, its unassigned literal, say q, is said to
be the implied literal of C, and is added to uncheckedLits. We call C the antecedent of
q. Actually, most solvers record that q is true when it is added to uncheckedLits, rather
than when it is removed. This timing difference is further discussed later.

This section describes how Contrasat modifies the standard procedure. To follow the
details, the reader should be familiar with the general workings of CDCL solvers such as
Chaff [4] and Minisat [2].

The most common data structure for implementing uncheckedLits is a first-in, first-
out (FIFO) queue. Adding and deleting require only constant time per operation, using an
array. As mentioned, the literal is actually assigned when it enters uncheckedLits, rather
than when it is removed, but the order of assigned literals is the same if uncheckedLits is
a FIFO queue.

Ever since the Chaff developers observed that 80% percent of the solver’s time is typi-
cally spent in BCP [4], it has been an article of faith that BCP should be as fast as possible.
Much low-level implementation effort has been directed toward this goal. Most of this work
is unpublished and found only in the publicly available source codes.

Contrasat adopts the contrarian view that the choice of which antecedent clause to
remove from uncheckedLits is important, and uses a minimizing priority queue to select
the heuristically best antecedent. The priority queue is implemented as a binary heap,
which uses an array. Operations for adding and removing elements take O(log k) time
when the heap contains k elements, so significant efficiency might be sacrificed in managing
uncheckedLits.1.

Let C = [p0, p1 , pj , . . .] be the antecedent clause (p2 is absent in binary clauses). The
Minisat implementation is such that p0 is the implied literal, not yet propagated while this
element is in uncheckedLits, and p1 is the literal whose propagation caused C to become
a unit clause. (These are known as the watched literals of C.) When C is a ternary clause
or wider and has some previously watched literal, the new Contrasat code ensures that p2
is the most recently assigned previously watched literal. If C is now in uncheckedLits or
is already an antecedent, all of the literals p1, p2, . . ., are assigned true.

Priority is a two-integer tuple, (level, trail pos) with lexicographic order. The
major integer for comparison of priority-queue elements is level, which stores the maximum
decision level found among the non-watched literals, p2 , . . ., p41 , or 0 for binary clauses.2.

The minor integer, trail pos, stores the order in which p1 was assigned true.3.

1. Minisat, written in C++, already has a Heap template, making it easy to define a new Heap class based
on user-supplied data type and priority function.

2. The SAT 2011 Competition version only checked p2 , but is otherwise identical to 2.2.0.B. The cut-off
of 40 is heuristic and defined at compile time.

3. Since p1 is always assigned at the current decision level, either global or local trail position can be used.

118

Contrasat – A Contrarian SAT Solver

Use of the priority queue can change both the assignment order and antecedents, which
can greatly influence what clause is learned when a conflict eventually occurs. The rationale
for our design is discussed in the next section.

3. Motivation

Suppose that a conflict is discovered after making an assumption, say x = true, during
the following unit-clause propagation. CDCL solvers derive (learn) a new clause, say D.
Depending on D, varying amounts of backtracking will be “justified.” As introduced in
Grasp [3], backtracking is “justified” for as many decision levels as D continues to have
only one unassigned literal. If at least one level of backtracking is justified by this criterion,
then D is called an asserting clause.

Audemard et al. observed that on certain occasions, clauses other than the recorded
antecedents could be used to derive a different clause that would justify further backtracking
[1]. They found that certain additional clauses, called inverse arcs, could be recorded
during unit-clause propagation that might later enable an heuristically “better” clause to
be learned.

Van Gelder introduced the term volunteer to describe any clause C during unit-clause
propagation such that all literals had been assigned values, at most one literal had been
assigned true, but C was not the recorded antecedent for its true literal [6]. A volunteer is
a possible alternative antecedent.

Inverse arcs are a subset of volunteers. For any antecedent C, the implied literal q is
always later in the trail than all other literals in C. For an inverse arc C, the implied literal
q is not only earlier in the trail than some other literal p in C, it is also at an earlier decision
level than p. Contrasat has the same general goal of enabling further backtracking, but
does not detect inverse arcs.

The solver Precosat, authored by Armin Biere, won at least one category of the 2009
SAT competition, and placed highly in several categories. The code is open source and
contains a procedure that tries to use volunteers. A difficulty with implementing inverse
arcs is the possibility of a cycle in the sequence of resolutions. Examples suggest that
detection of such cycles is not simple [6]. Therefore, the Precosat procedure imposes a
restriction on candidate volunteers that ensures that a cycle cannot be produced. As far as
we know, these details are unpublished except that the code is open source.

Recall that, for this discussion, C is a volunteer for literal q. That is, at the time q

was assigned, C most likely had some other unassigned literals besides q, so some other
clause, say A, became the antecedent of q. (It is also possible that A and C implied q

at essentially the same time, but due to an accident of data structures, A was noticed
before C.) Suppose we now have a conflict clause D, which has already been through
recursive conflict-clause minimization [5, 7], and we are hoping to remove q from it. If the
antecedent A could make progress, this would have been detected during recursive conflict-
clause minimization. Precosat considers C to be a candidate volunteer if all literals in C

other than q were implied or assumed to be false before q was propagated. This ensures
that q did not contribute to implying the negation of any literal in C, as observed first by
Biere. This in turn ensures that resolving with C cannot cause a cycle in the sequence of
resolutions. Again we omit further details, since this is still only motivation.

119

A. Van Gelder

We can observe the following: If C passes the Precosat test for being a candidate
volunteer, then q, and any other unassigned literals of C, were in the set uncheckedLits
simultaneously at some point. Stated another way, some order of processing the the unit
clauses that were waiting to propagate their implied literals could have resulted in C be-
coming the recorded antecedent of q. The needed implied literals p1, . . ., pj were either
already propagated or ready to be propagated simultaneously with q.

This leads to the idea behind Contrasat. By implementing uncheckedLits as a priority
queue, the door is opened to selecting “better quality” antecedents to go with the implied
literals, compared to oblivious FIFO order. The door is also opened to selecting literals to
be implied in an order that results in an earlier conflict or a “better quality” falsified clause.
If good enough heuristics can be found for the priority function, improved search will more
than pay back for the increased overhead of managing the priority queue.

The following formula fragment and search fragment with variables s–z illustrate the
influence of the priority queue. See URL A in Section 1 for more details.

C1 = [s , v , x , y]C2 = [y, u , x] C3 = [z, v , x] C4 = [y, v , z]
C5 = [u, v , w] C6 = [x, t , u] C7 = [s, z] C8 = [w, v , y]

Assume the search begins: Level 1 : assume v, end. Level 2 : assume w, imply(u, C5), end
(“(u, C5)” means C5 is the antecedent for u). We next examine level 3 in more detail.

With the traditional FIFO for uncheckedLits, the continuation may be: Level 3 : as-
sume t, enq(x, C6), deq(x, C6), imply(x, C6), enq(y, C2), enq(z, C3), deq(y, C2), imply(y,
C2), enq(s , C1), deq(z, C3), enq(s, C7), deq(s , C1), deq(false, C7). The first UIP clause
derived is [x , u , v]. C8 is an inverse arc, but precosat declines to try it, because trail
positions of y and w show a loop risk. In this case resolving [x , u , v] with C8 would lead
to a loop after further resolution with C2. Backtrack to level 2 is the final outcome.

Consider instead a priority queue (priority shown after antecedent, when relevant). Level
3 : assume t, enq(x, C6), deq(x, C6), imply(x, C6), enq(y, C2, 2, 2), enq(z, C3, 1, 2), deq(z,
C3), imply(z, C3), enq(y, C4, 1, 3), enq(s, C7, 0, 3), deq(s, C7), imply(s, C7), enq(y , C1,
3, 4), deq(y, C4), imply(y, C4), deq(y, C2) (already implied), deq(false, C1). The first UIP
clause derived is [x , v]. Backtrack to level 1 is the outcome. Different examples can allow
FIFO to backtrack more than the priority queue.

The actual priority function implemented (as of this system description) is quite crude,
but seems to have achieved some success. A small amount of work is expended to try to
place a recently assigned literal in the third position (subscript 2) of every clause, rather
than have that literal be arbitrary. The maximum decision level of the non-watched literals
in subscripts 2 through 41 (limited by clause length) becomes the major priority field at the
time the clause becomes a unit clause. If one of these literals has a large decision level, this
clause is less attractive for far backtracking than another clause whose inspected literals
have a smaller decision level.

Note that if the clauses are both in the priority queue, the second literals must have
been propagated at the current decision level. If both major priority fields are at the same
decision level, then the tie-break on priority is: which second literal was propagated earliest?
The intuition behind this choice is that long implication chains are probably unfavorable.

In summary, Contrasat tries to achieve the benefits of using volunteers after a conflict
without ever really processing volunteers, as such. Instead it tries to choose them as an-

120

Contrasat – A Contrarian SAT Solver

Table 1. Excerpt of results from 2011 SAT Competition, Applications, Satisfiable, with 116 in-

stances. Three “top” solvers and two well known reference solvers are shown.

number SAT adjusted average 50-th best number UNSAT
Solver solved cpu seconds cpu seconds solved

Contrasat-A 99 418 52 100
CIR Minisat 99 516 47 103
MPhaseSAT64 99 579 104 102
...

Precosat (2009) 96 669 117 110
Minisat (2.2.0) 95 560 53 99

adjusted average based on 99 best times, 5000 for time-outs.

tecedents to begin with, before the conflict. This approach is supported by theory: Van
Gelder has shown that any clause that is a logical consequence of the antecedents and vol-
unteers combined has a resolution derivation in which each literal is resolved upon at most
once [6]. Both an antecedent and a volunteer for the same literal are not really necessary.

4. Some Experimental Data

Contrasat participated in the Application category of the 2011 SAT Competition. Phase
2 (the final) had 300 benchmarks and a time-out of 5000 CPU seconds for single-thread
solvers. In the “Satisfiable” subcategory, four solvers (all single-thread as it happens) solved
99 instances to share the lead. Three of these were Minisat hacks. Contrasat was awarded
first place in this subcategory, based on least total CPU time. Notably, the reference solver,
Minisat 2.2.0, solved only 95 satisfiable instances, while five hacks (not all shown in tables)
solved between 95 and 99, so apparently the hacks were accomplishing something. One
might wonder about the statistical significance of this outcome, but that question goes
beyond the scope of this system description. An excerpt from the 2011 SAT Competition
results is shown in Table 1.

Recall that Contrasat checks the decision levels of non-watched literals to determine
priority, with a cut-off for long clauses. We evaluated cut-offs of 1 (the competition version),
5, 10, 20, and 40. The data were not available before the competition, or we would have
entered a different cut-off.

The experiments were done on a 48-core processor with 2.0 GHz clock and 188 GB
memory, shared with other users. This platform was found to be 2.25 times slower than
that used for the 2011 SAT Competition, so their 5000-second time limit translates to about
3 hours on our platform.

We tested on 106 “Application” instances in the SAT11 directory, which were new for
SAT 2011 (Section 1, URL C), and were solved by some Minisat hack or the reference
Minisat during the competition (a sort of “virtual best hack”); 55 were unsatisfiable,
51 were satisfiable. Unsatisfiable and satisfiable instances are summarized separately in
Table 2. It is evident that unsatisfiable and satisfiable instances behave quite differently.

On unsatisfiable instances, Contrasat with cut-offs of 20 and 40 produced fewer con-
flicts and shorter conflict clauses, and it ran faster, compared to the reference Minisat.
Propagations took less time, on average, although the propagation procedure does extra

121

A. Van Gelder

Table 2. Contrasat with various cut-offs for checking decision levels of literals. Minisat is

shown as reference. Time-out was 3 CPU hours.

UNSAT, average over 55 instances SAT, average over 51 instances
Contrasat cut-off Mini- Contrasat cut-off Mini-

Statistic 1 5 10 20 40 sat 1 5 10 20 40 sat

number solved 49 50 48 50 50 50 44 44 43 44 43 45
cpu seconds 1339 1253 1287 1055 1150 1234 2006 2068 2349 1973 1948 1764
mega-props./sec. 0.952 1.019 1.020 1.059 1.034 0.983 0.701 0.788 0.727 0.717 0.656 0.664
mega-conflicts 246 198 194 186 199 239
conflict cl. length 57 55 56 56 54 60

work. Conflict data for satisfiable instances is omitted because no refutation exists for these
instances and the numbers fluctuate widely. See URL A (Section 1) for additional data.

5. Conclusion

We described Contrasat, a Minisat hack that does the “unthinkable”: it spends extra
time in unit-clause propagation. With cut-offs of 20 and 40 it outperforms the reference
Minisat on unsatisfiable instances, which was the design goal. However, this conclusion
is tentative without extensive testing on a wide range of benchmarks, which is beyond the
scope of this system description. Although it won the satisfiable application subcategory
in the 2011 SAT Competition, this victory is something of an accident because it won on
speed, not by solving more instances. Minisat beat Contrasat on a different suite of 51
satisfiable application benchmarks.

References

[1] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Säıs. A generalized frame-
work for conflict analysis. In Proc. SAT 2008, LNCS 4996, Cambodia, Springer, 2008.

[2] N. Eén and N. Sörensson. An Extensible SAT-solver. In Giunchiglia, E. and Tac-
chella, A., editors, SAT 2003, Selected Revised Papers, LNCS 2919, pages 502–518, Sta.
Margherita Ligure, Italy, Springer, 2004.

[3] J. P. Marques-Silva and K. A. Sakallah. GRASP–a search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48:506–521, 1999.

[4] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proc. 38th DAC, pages 530–535, 2001.

[5] N. Sörensson and A. Biere. Minimizing learned clauses. In Proc. SAT, LNCS 5584,
pages 237–243, Swansea, Wales, Springer, 2009.

[6] A. Van Gelder. Generalized conflict-clause strengthening for satisfiability solvers. In
Proc. SAT, LNCS 6695, pages 329–342, Ann Arbor, MI, USA, Springer, 2011.

[7] A. Van Gelder. Improved conflict-clause minimization leads to improved propositional
proof traces. In Proc. SAT, LNCS 5584, pages 141–146, Swansea, Wales, Springer, 2009.

122

	Introduction
	Modified Unit-Clause Propagation Procedure
	Motivation
	Some Experimental Data
	Conclusion

