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Abstract
In this paper, we consider the problem of compactly representing nested instantia-

tions of propositional subformulas with different arguments as quantified Boolean formulas
(QBF). We develop a generic QBF encoding pattern which combines and generalizes ex-
isting QBF encoding techniques for simpler types of redundancy.

We obtain an equivalence-preserving transformation in linear time from the PSPACE-
complete language of nested Boolean functions (NBF), also called Boolean programs, to
prenex QBF. A transformation in the other direction from QBF to NBF is also possible in
at most quadratic time by simulating quantifier expansion.
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1. Introduction

It has become quite popular to solve difficult decision problems by representing them as
propositional formulas. Prominent examples include bounded model checking [2] and plan-
ning [6]. But for many interesting real-world problems, such encodings produce very large
formulas, which makes it important to avoid redundancy. Quantified Boolean formulas
(QBF) extend propositional logic with quantifiers over propositional variables, which often
allows more compact encodings. While some problems have a natural forall-exists semantics
which can elegantly be modeled by quantifiers [12], there also exist QBF encoding patterns
which can further compress propositional problem representations. Well-known examples
are the existentially quantified version of the Tseitin [14] and one-sided Tseitin [11] encoding
and the sharing of transition relations in bounded model checking by universal quantification
and iterative squaring [4, 5, 9]. These compression patterns, which we will later review in
more detail, handle two basic sources of redundancy, namely exact repetitions of a subfor-
mula and the more general case of instantiating one subformula multiple times with different
arguments (renaming). An example for the latter would be φ(A1, B1)∧φ(A2, B2)∧φ(A3, B3)
with three instances of a propositional formula φ(u, v). By relatively simple existing quan-
tifier patterns, such formulas can be represented with only one copy of φ.

In the following, we consider the generalization of this basic case to nested formula in-
stantiations, as in the example α(φ(A1, B1), β(φ(A2, B2)))∧β(φ(A3, B3)) where the repeated
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instantiations of φ are in turn arguments to some other formulas α and β. Is it still possible
to provide an equivalent QBF representation with only one copy of φ (and also only one
of β) in a systematic way? The important difference between the two examples is that all
three copies of φ must be true in the first example, whereas the second example contains no
direct requirements on the truth of φ. Depending on the definition of α and β, φ might need
to be true for some arguments, and false for others. As the main contribution of this paper,
we are going to develop a generic QBF encoding pattern for such nested instantiations. The
pattern will be formulated so that it immediately produces prenex QBF, sometimes denoted
by pQBF. Considering that most QBF solvers still focus on prenex input, this saves an
additional (linear-time) prenexing step.

Interestingly, the nested instantiation of propositional formulas is a powerful feature
that has a similar expressiveness as quantification over propositional variables. A PSPACE-
complete language can be obtained when allowing a set of initial functions represented
as propositional formulas and compound functions which are defined as composition of
previously defined or initial functions [3]. For example, let

f0(p1, p2) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)

be an initial function which computes the parity of two binary variables. Then the parity
of four variables can be computed by reusing f0:

f1(p1, p2, p3, p4) := f0(f0(p1, p2), f0(p3, p4))

The parity of 16 variables can be expressed compactly by reusing f1, and so on. In [3], from
which the example is taken, such function definitions are called a Boolean program, but that
term is more prominently used for a different concept in the context of verification, so we
prefer to speak of Nested Boolean functions (NBF).

As suggested informally in [8] and explained in Section 6 in more detail, it is easy to
transform quantified Boolean formulas into equivalent nested Boolean functions with a linear
number of function definitions by simulating quantifiers. With the QBF encoding pattern
for nested formula instantiations that we develop in this paper, we obtain an equivalence-
preserving transformation also in the other direction from NBF to QBF in linear time, which
can be a valuable tool for proving expressiveness results. For example, we have been able
to show in [8] close relationships between QBF and classes of quantified circuits (Boolean
circuits with additional quantifier nodes not necessarily in prenex form), and the proofs
of these results rely heavily on the NBF to QBF transformation that we are now going
to establish ([8] anticipates that transformation without further details and references a
preliminary workshop version of the paper at hand).

A further application of the transformation from NBF to QBF might be to encode
(parts of) problems initially as nested Boolean functions by exploiting the intuitive nature
of function composition, and then transform these NBF encodings in linear time into QBF
to solve them with readily available QBF solvers [10]. That means nested Boolean functions
might be used as an alternative input language for QBF solvers. A concrete example for
modeling with NBF will be shown at the end of this paper, in Section 7.

A transformation from NBF to QBF seems also possible by adapting existing results [13]
on BPLK and G, the proof systems based on the characterization of polynomial space as
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nested Boolean functions and quantified Boolean formulas, respectively. But in contrast to
our linear transformation, the translation presented in [13] has quadratic length and produces
non-prenex formulas of a rather complex structure, because the encoding of a function fi
contains the negated encoding of fi−1.

2. Preliminaries

A quantified Boolean formula is a propositional formula or a formula of the form ∀x Φ(x) or
∃y Φ(y) where x, y are propositional variables and Φ is itself a quantified Boolean formula.
Universal quantification ∀x Φ(x) is defined to be true if and only if Φ(0) is true and Φ(1) is
true, and existential quantification ∃y Φ(y) means that Φ(0) or Φ(1) is true. An example
of a syntactically correct QBF formula is ∀x (¬x ∨ (∃y (y ∨ x ∨ z))). For simplicity, we
often consider formulas in prenex form Φ = Q1v1...Qkvk φ with quantifiers Qi ∈ {∀, ∃}
and a propositional formula φ. We call Q := Q1v1...Qkvk the prefix and φ the matrix of Φ.
Prenex QBF formulas are sometimes denoted by pQBF, but we do not make that distinction
here, since pQBF ⊆ QBF and all our results that take a QBF formula as input are also valid
for non-prenex QBF.

Variables on which a quantifier is applied are called bound variables, and variables which
are not bound by a quantifier are free. In the last example, x and y are bound, and z
is free. If a QBF formula contains free variables, we call it open, and closed otherwise.
A closed QBF formula is either true or false. The reason is that if we did expand from
left to right all quantifiers according to their above definitions ∀x Φ(x) := Φ(0) ∧ Φ(1)
and ∃y Φ(y) := Φ(0) ∨ Φ(1), we would obtain a propositional formula (of exponential
size) that contains no variables, but only Boolean operators and truth values. Since being
true coincides with being satisfiable for such formulas, we can use the terms “true” and
“satisfiable” synonymously for closed QBF. In contrast, the truth value of an open QBF
formula depends on the value of the free variables. A formula Φ(z1, ..., zr) with free variables
z1, ..., zr is satisfiable if and only if there exists a truth assignment τ to the free variables
such that Φ(τ(z1), ..., τ(zr)) is true. Here, Φ(τ(z1), ..., τ(zr)) denotes the substitution of the
truth values in τ for the free variables in Φ.

QBF formulas Φ(z1, ..., zr) and Ψ(w1, ..., ws) with free variables z1, ..., zr and w1, ..., ws

are logically equivalent, written as Φ(z1, ..., zr) ≈ Ψ(w1, ..., ws) or simply Φ ≈ Ψ, if and only if
for every truth assignment τ to the free variables z1, ..., zr, w1, ..., ws both formulas evaluate
to the same truth value. When we consider propositional formulas as quantified Boolean
formulas in which all variables are free, this definition of logical equivalence is simply a
generalization of the usual equivalence criterion for propositional formulas. Accordingly, we
can also consider logical equivalence between a propositional formula and a QBF formula
with free variables that correspond to the variables in the propositional formula.

It is important to notice that bound variables are not directly considered when checking
for logical equivalence, which makes these variables local to the respective formula. This
makes it possible to add auxiliary variables to a formula, e.g. to abbreviate repeating parts
as described in the next section, without losing logical equivalence. This is a powerful
advantage of QBF over ordinary propositional calculus, because propositional formulas can
usually only be logically equivalent if they have exactly the same variables. This problem can
be avoided by considering only satisfiability equivalence ≈SAT , which requires that if one of
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the formulas is satisfied by an assignment to its variables, the other one must also have some
satisfying truth assignment (possibly of a different structure). Satisfiability equivalence is
sometimes too weak: for example, replacing a term inside a larger formula with a different
term is in general only sound if both terms are logically equivalent.

The length of a quantified Boolean formula is the number of variable occurrences, in-
cluding occurrences with quantifiers. For example, the formula ∀x (¬x∨ (∃y (y∨x∨z))) has
length 6. For the typically considered formulas in negation normal form (NNF), where a
negation sign can only appear immediately in front of a variable, this length measure differs
by at most a constant factor from the alternative definition of counting also propositional
operators and quantifier symbols.

For the equivalence operator (i.e. the bidirectional implication), we use the symbol
“=”. That means σ = π is (¬σ ∨ π) ∧ (σ ∨ ¬π) for formulas σ and π. For two tuples
of variables x = (x1, ..., xk) and y = (y1, ..., yk), we let x = y be an abbreviation for∧

i=1,...,n(xi = yi) ≈
∧

i=1,...,n((¬xi ∨ yi) ∧ (xi ∨ ¬yi)). To save parentheses, we assume
that “=” has a higher binding priority than one-sided implication, so α = β → γ means
(α = β)→ γ.

3. Basic QBF Encoding Patterns

The QBF encoding of nested Boolean functions that we develop in Section 5 can be seen as
a clever combination of existing QBF encoding patterns. The first of these basic patterns
is the well-known technique of using existentially quantified auxiliary variables to introduce
abbreviations for exact repetitions of subformulas [14]. Consider the following example:

(A ∨ ¬B ∨ C ∨D) ∧ (A ∨ ¬B ∨ C ∨ ¬E) ∧ (A ∨ ¬B ∨ C ∨ F )

Here, A∨¬B∨C is repeated three times. By introducing a new variable y as an abbreviation
for that term, we can get a logically equivalent formulation that contains only one copy of
A ∨ ¬B ∨ C:

∃y (y = (A ∨ ¬B ∨ C)) ∧ (y ∨D) ∧ (y ∨ ¬E) ∧ (y ∨ F ) (1)

If the abbreviated term occurs only in one polarity (which is always the case for non-atomic
subformulas of input formulas in NNF), it is in fact sufficient to use a one-sided implication
y → ψ to state that y is an abbreviation for exact occurrences of ψ [11]. That means we
obtain the logically equivalent formula

∃y (y → (A ∨ ¬B ∨ C)) ∧ (y ∨D) ∧ (y ∨ ¬E) ∧ (y ∨ F ) .

Propositional logic with existential quantification appears to be quite powerful. It is
well known that there are existentially quantified Boolean formulas in conjunctive normal
form (CNF) for which every logically equivalent propositional CNF formula is exponentially
longer. Closely related to the idea of defining abbreviations for exact repetitions of subfor-
mulas is the concept of fan-out in Boolean circuits. In fact, it has been shown that Boolean
circuits with arbitrary fan-out have the same expressive power as existentially quantified
CNF formulas in which the bound variables satisfy the Horn property [1, 7].

Universal quantification has been found helpful to express renamings of variables. Con-
sider the example

φ(A1, B1) ∧ φ(A2, B2) ∧ φ(A3, B3)
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where we have multiple instances of a propositional formula φ for different arguments. Such
situations can be compressed by replacing these instantiations with a single one that has
universally quantified variables as arguments, say φ(u, v). Whenever u and v represent a
tuple of arguments in the original formula, φ(u, v) must be true [4, 9]:

∀u∀v
(

3∨
i=1

((u = Ai) ∧ (v = Bi))

)
→ φ(u, v) (2)

As it is, this trick works only for conjunctions of multiple instantiations as in the example,
but not for expressions such as φ(A1, B1) → φ(A2, B2). The encoding that we present in
Section 5 generalizes the idea to arbitrary enclosing formulas, e.g. expressions of the form
ψ(φ(A1, B1), φ(A2, B2)) for arbitrary ψ.

Unless the polynomial hierarchy collapses, the full expressive power of quantified Boolean
formulas can only be obtained by encodings which combine existential and universal quantifi-
cation. A well-known approach which uses both kinds of quantifiers is non-copying iterative
squaring [9], which can be considered as a special case of compressing a conjunction of re-
named instances where the second argument of one instantiation is also the first argument
of the next instantiation. Consider the following example:

Φ(x0, xn) := ∃x1...∃xn−1 (φ(x0, x1) ∧ φ(x1, x2) ∧ ... ∧ φ(xn−2, xn−1) ∧ φ(xn−1, xn))

Expressions of this form occur, e.g., when we have a graph given by a transition relation φ
and we want to express that vertices x0 and xn are connected by a continuous path. The
idea of iterative squaring is to take the vertex y in the middle and reduce the problem to
finding two paths of half the length:

Φ2i(x0, xn) := ∃y (Φ2i−1(x0, y) ∧ Φ2i−1(y, xn))

Then the previous pattern can be used to compress the two instantiations of Φi into a single
one with universally quantified arguments:

Φ2i(x0, xn) := ∃y∀u∀v [(((u, v) = (x0, y)) ∨ ((u, v) = (y, xn)))→ Φ2i−1(u, v)]

From the classical proof of the PSPACE-hardness of QBF [9], it is well known that
non-copying iterative squaring can encode any computation of a polynomial-space Turing
machine into a polynomial-size QBF formula. The encoding pattern that we are going to
develop in this paper is just as powerful, but based on a different and perhaps more intuitive
characterization of polynomial space by nested Boolean functions.

4. Nested Boolean Functions

As mentioned in the introduction, nested Boolean functions are defined by composition of
previously defined or initial functions, the latter being given as propositional formulas.

Definition 1. (Nested Boolean Function)
A nested Boolean function (NBF) is a finite sequence D(fk) = (f0, ..., fk) of Boolean func-
tions. For fixed t ∈ {0, ..., k}, a NBF consists of
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• initial functions f0, ..., ft, which are each defined by fi(xi) := αi(x
i) for a propositional

formula αi over variables xi := (xi,1, ..., xi,ni), and

• compound functions ft+1, ..., fk of the form fi(x
i) := fj0(fj1(xi

1), ..., fjr(xi
r)) for previ-

ously defined functions fj0 , ..., fjr ∈ {f0, ..., fi−1}. The arguments xi
1, ...,x

i
r are tuples

containing variables in xi or the Boolean constants 0 and 1, such that the arity of xi
l

matches the arity of fjl and r is the arity of fj0 .

The argument variables are considered unique for each function definition, that means all
variables in xi are different from the ones in xj for any i, j with i 6= j. We call fk the
defined Boolean function. The length of a nested Boolean function D(fk) = (f0, ..., fk) is
|D(fk)| := |f0|+ ...+ |fk|, where |fi| is the total number of occurrences of constants, variables
and function symbols on the right hand side of the defining equation of fi .

Consider again the parity example from the introduction:

f0(p1, p2) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)
f1(p1, p2, p3, p4) := f0(f0(p1, p2), f0(p3, p4))

Then D(f1) = (f0, f1) has length 4 + 7. For technical reasons, the definition requires the
argument variables to be unique. We can still use the same names for arguments in different
functions, but we must keep in mind that they denote different objects. That means we
should understand the above parity example as

f0(p1, p2) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)
f1(q1, q2, q3, q4) := f0(f0(q1, q2), f0(q3, q4)) .

Using the notation of the previous definition, f1 now has arguments x1 = (q1, q2, q3, q4).
With x1

i , we denote those variables of x1 which are passed on to called functions in the
definition of f1. Here, x1

1 = (q1, q2) and x1
2 = (q3, q4) (these do not have to be disjoint in

general).
The semantics of NBF is now defined by a fallback to propositional logic. By iterated sub-

stitution, we can construct for each function in a NBF an associated propositional formula,
called the defined formula. For an initial function, this is the right-hand side of its defin-
ing equation. Then we construct defined formulas for the compound functions ft+1, ..., fk
in this order. For a definition of the form fi(x

i) := fj0(fj1(xi
1), ..., fjr(xi

r)), we treat the
defined formulas of the functions fj0 , ..., fjr ∈ {f0, ..., fi−1} as formula schemes with scheme
variables that are replaced by formulas according to the caller’s arguments.

Definition 2. (NBF Semantics)
We associate with each function fi ∈ (f0, ..., fk) in a NBF a defined formula def (fi). For
an initial function fi(xi) := αi(x

i), this is simply def (fi) := αi.
The case of a compound function requires some additional notation: for a propositional
formula φ, let φ[v1/σ1, ..., vm/σm] be the (simultaneous) substitution of σi for all occurrences
of a variable vi in φ for all i = 1, ...,m. We also write φ[v/σ] for tuples v = (v1, ..., vm) and
σ = (σ1, ..., σm).
Then we associate a compound function of the form fi(x

i) := fj0(fj1(xi
1), ..., fjr(xi

r)) with

def (fi) := def (fj0)[xj0,1/def (fj1)[xj1/xi
1], ..., x

j0,r/def (fjr)[xjr/xi
r]] .
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Here, the subscripts j0, ..., jr indicate the indices of the functions that are called in the defi-
nition of fi, and xj0 , ...,xjr are the arguments of those functions.
We let the interpretation of a NBF D(fk) = (f0, ..., fk) be the interpretation of the defined
formula def (fk).

For the preceding parity example

f0(p1, p2) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)
f1(p1, p2, p3, p4) := f0(f0(p1, p2), f0(p3, p4))

we obtain:

def (f0) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)
def (f1) := def (f0)[p1/ ((¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)) , p2/ ((¬p3 ∧ p4) ∨ (p3 ∧ ¬p4))]

= (¬ ((¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)) ∧ ((¬p3 ∧ p4) ∨ (p3 ∧ ¬p4)))
∨ (((¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)) ∧ ¬ ((¬p3 ∧ p4) ∨ (p3 ∧ ¬p4)))

The example nicely illustrates the rapid growth from iterated substitution: def (f0) has only
length 4, but def (f1) has already length 16. In general, the defined formula def (fk) of a
NBF D(fk) can have exponential length. The main contribution of this paper is to show
that for every nested Boolean function D(fk) = (f0, ..., fk), there exists a linear-size QBF Φ
which is logically equivalent to def (fk), that means Φ ≈ def (fk). In the following, we will
simply write Φ ≈ fk and use fi and def (fi) interchangeably.

Please notice that for a NBFD(fk) = (f0, ..., fk) and given arguments a1, ..., ank
∈ {0, 1},

we can evaluate whether fk(a1, ..., ank
) = 1 (that means def (fk)[xk,1/a1, ..., x

k,nk/ank
] = 1)

without constructing the whole defined formula def (fk). By immediately replacing subterms
whenever their values are known, the formula can be simplified on-the-fly, and polynomial
space is sufficient. In fact, the problem of evaluating a NBF has been shown to be PSPACE-
complete [3]. This immediately implies also the PSPACE-completeness of the NBF satisfi-
ability problem, i.e. the problem of determining whether there exists a choice of arguments
for which the defined formula is true.

5. Transformation from NBF to QBF

We now develop our transformation from NBF to QBF by considering the simple example
f(x1, x2) := ψ(φ(x1), φ(x2)) with two instances of φ for arguments x1 and x2. Our goal is
to gradually construct a logically equivalent formula that contains only one instance of φ.

We begin by introducing abbreviations b1 and b2 for φ(x1) and φ(x2), respectively. This
is achieved by existentially quantified auxiliary variables as in the first pattern (Eq. 1) from
Section 3:

∃b1∃b2 (ψ(b1, b2) ∧ (b1 = φ(x1)) ∧ (b2 = φ(x2)))

Now, we want to merge φ(x1) and φ(x2). The second pattern (Eq. 2) from Section 3
shows us how to compress a formula of the form φ(x1) ∧ φ(x2) into a universally quantified
formula ∀x (((x = x1) ∨ (x = x2)) → φ(x)), but the formula at hand has a different
structure (b1 = φ(x1)) ∧ (b2 = φ(x2)). Our idea is to use the previously mentioned pattern
only in its special case ψ(x1) ≈ ∀x ((x = x1) → ψ(x)) with ψ(x1) := (b1 = φ(x1)), and
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analogously for b2 = φ(x2). We can use the same universal variable in both cases, because
(∀uα(u)) ∧ (∀v β(v)) ≈ ∀u (α(u) ∧ β(u)).

∃b1∃b2∀x (ψ(b1, b2) ∧ (x = x1 → b1 = φ(x)) ∧ (x = x2 → b2 = φ(x)))

Using the pattern separately on single instantiations seems counter-productive in terms of
formula length, but we now have two occurrences of φ(x) on which we can again apply the
pattern for abbreviating exact repetitions by an existential variable (Eq. 1 from Section 3):

∃b1∃b2∀x∃y (ψ(b1, b2) ∧ (x = x1 → b1 = y) ∧ (x = x2 → b2 = y) ∧ (y = φ(x)))

The resulting formula contains only one copy of φ and is logically equivalent to the
original formula f(x1, x2), due to the correctness of the individual compression patterns
from Section 3. A detailed equivalence proof for our transformation will be given later
(Theorem 1). Please notice that in each of the three steps of this transformation, the newly
added quantifier(s) must be placed to the right of all previously introduced quantifiers,
because the new variable(s) must depend on all variables already present in the formula. To
be more precise: let Φ = Qφ be a prenex QBF formula with prefix Q and matrix φ. If we
find a formula Ψ = Q′ψ ∈ QBF which is logically equivalent to the matrix of Φ, that means
φ ≈ Q′ψ, we also have Φ ≈ QQ′ψ (this can be seen as temporarily treating the variables in
Q as free variables).

In a more complex scenario with multiple nested function definitions, the function f from
our example might itself occur multiple times with different arguments, e.g. in a definition
g(x1, ..., x4) := γ(f(x1, x2), f(x3, x4)). Such situations can be handled by applying the
previously presented steps recursively. That means we first use the technique to create
one single instance of f , say f(u, v), and then we replace that instance with its definition
ψ(φ(u), φ(v)) and proceed analogously with φ. In case that φ occurs also in the definition of
other functions from the same NBF, it is important for avoiding exponential growth that we
do not introduce multiple abbreviations of the form ∀x∃y (y = φ(x)). Instead, we associate
with every fi ∈ (f0, ..., fk) one uniquely named abbreviation yi = fi(x

i) which is used for
all instantiations of fi in the NBF. Please remember that when we write yi = fi(x

i), we
actually mean yi = def (fi) as pointed out earlier. The complete encoding is given in the
following definition:

Definition 3. (Transformation from NBF to QBF)
Let D(fk) = (f0, ..., fk) be a nested Boolean function. Then we map f0, ..., fk to a set of
prenex QBF formulas Φi(x

i) = Qi φi. Qi denotes the prefix and φi the matrix of the i-th
formula for all i = 0, ..., k.
For the initial functions f0, ..., ft which are defined by propositional formulas fi(xi) := αi(x

i)
over variables xi, we obtain:

Φ0(x
0) := ∃y0 (y0 = f0(x

0))

Φi(x
i) := ∃yi∀xi−1Qi−1 (φi−1(x

i−1, ...,x0, yi−1, ..., y0) ∧ (yi = fi(x
i))), i = 1, ..., t

108



Encoding Nested Boolean Functions as QBF

For compound functions fi(xi) := fj0(fj1(xi
1), ..., fjr(xi

r)), i = t+ 1, ..., k, we construct QBF
formulas of the following form:

Φi(x
i) := ∃yi∃bi,1...∃bi,r∀xi−1Qi−1

(φi−1(b
i−1, ...,bt+1,xi−1, ...,x0, yi−1, ..., y0)∧

(xi
1 = xj1 → bi,1 = yj1) ∧ ... ∧ (xi

r = xjr → bi,r = yjr)∧
((bi,1, ..., bi,r) = xj0 → yi = yj0))

Finally, we let Φ(xk) := Qk (φk ∧ yk) be the QBF encoding of D(fk).

Consider a simple example:
Let f0(x0,1, x0,2) := x0,1 ∧ x0,2 and f1(x1,1) := ¬x1,1 be initial functions, and let
f2(x

2,1, x2,2) := f1(f0(x
2,1, x2,2)) be a compound function.

Then we obtain the following QBF formulas:

Φ0(x
0) := ∃y0 (y0 = (x0,1 ∧ x0,2))

Φ1(x
1) := ∃y1∀x0∃y0 ((y0 = (x0,1 ∧ x0,2)) ∧ (y1 = ¬x1,1))

Φ2(x
2) := ∃y2∃b2,1∀x1∃y1∀x0∃y0 ((y0 = (x0,1 ∧ x0,2)) ∧ (y1 = ¬x1,1)

∧ ((x2,1, x2,2) = (x0,1, x0,2)→ b2,1 = y0) ∧ (b2,1 = x1,1 → y2 = y1))

Notice that Φ0, ...,Φ2 are all tautological, because Φi essentially says that there exists an
abbreviation yi for fi(xi), which is of course true for each choice of arguments xi. To obtain
a formula that is true whenever f2 is true, we need to add y2 as a unit clause. We will now
formally prove the equivalence of the resulting formula and the nested Boolean function.

Theorem 1. Let D(fk) = (f0, ..., fk) be a nested Boolean function, and let Φ be its QBF
encoding according to Definition 3.
Then fk(xk) ≈ Φ(xk), and the length of Φ(xk) and the time to construct it are both linear
in the length of (f0, ..., fk).

Proof: The linearity is obvious: for each initial function, we add universal quantifiers
∀xi of size at most |fi(xi)| and one existentially quantified variable that occurs once in the
corresponding formula. In the case of a compound function, notice that xi

1, ...,x
i
r are already

contained in the definition of the function, so |(xi
1 = xj1 → bi,1 = yj1) ∧ ... ∧ (xi

r = xjr →
bi,r = yjr)| ≤ 4 · |fi(xi)|.
To prove the correctness of this encoding, we now show by induction on i that for all
Φi(x

i) = Qi φi(b
i, ...,bt+1,xi, ...,x0, yi, ..., y0) the following holds: ∀xiQi φi is true and

Qi (φi ∧ ¬(yi = fi(x
i))) is false for all truth assignments τ to xi. The combination of these

two properties means that, for any τ and i, there is exactly one satisfying choice for yi,
namely yi := fi(τ(xi)). This implies fi(xi) ≈ Qi (φi ∧ yi), and thus the desired equivalence
fk(xk) ≈ Φ(xk).
For i = 0, both properties are obviously true, and for the remaining initial functions, i.e.
i = 1, ..., t (if t > 0), the claim clearly holds as well, because Qi φi ≈ (∀xi−1Qi−1φi−1) ∧
∃yi(yi = fi(x

i)) and the first part of this formula is true by the induction hypothesis. On the
other hand, Qi (φi ∧¬(yi = fi(x

i))) ≈ (∀xi−1Qi−1φi−1)∧∃yi((yi = fi(x
i))∧¬(yi = fi(x

i)))
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is trivially unsatisfiable.
For the compound functions, that is i = t+ 1, ..., k, consider in Φi the clauses (xi

1 = xj1 →
bi,1 = yj1) ∧ ... ∧ (xi

r = xjr → bi,r = yjr). Since xj1 , ...,xjr are universally quantified, these
clauses are satisfied for all values of the universal variables if and only if bi,l is chosen so
that bi,l = yjl whenever xi

l = xjl , l = 1, ..., r. Now notice that ∀xjlQjlφjl is a subformula
of Φi, and that this subformula is true due to the first part of the induction hypothesis.
Then the second part of the induction hypothesis implies that for all values of xjl , we
must have yjl = fjl(x

jl). In total, that means the clauses (xi
l = xjl → bi,l = yjl) in

Φi are satisfied if and only if bi,l = fjl(x
jl) whenever xi

l = xjl , and thus if and only if
bi,l = fjl(x

i
l). With bi,l being quantified in the outermost quantifier block of Φi, it is always

possible to assign bi,l so that bi,l = fjl(x
i
l). An analogous argument can now be applied to

the last clause ((bi,1, ..., bi,r) = xj0 → yi = yj0), and it follows that yi must be chosen so
that yi = fj0(bi,1, ..., bi,r) = fj0(fj1(xi

1), ..., fjr(xi
r)) = fi(x

i). Again, this choice is always
possible, since ∃yi is the outermost quantifier. Together with the induction hypothesis that
∀xi−1Qi−1 φi−1 is true, we have now shown that all clauses of Φi are satisfied for all values
of xi (which implies the first part of the induction claim), and that we must choose yi so
that yi = fi(x

i), which proves the second part of the claim. ut
There are several possible variations of our encoding. For example, it may be better

in practice to copy relatively simple initial functions instead of abbreviating them. That
means when we have a compound definition of the form fi(x

i) := fj0(fj1(xi
1), ..., fjr(xi

r))
and fj1 , ..., fjr are complex compound or initial functions, but fj0 is simple, we can replace
((bi,1, ..., bi,r) = xj0 → yi = yj0) in the original encoding with (yi = fj0(bi,1, ..., bi,r)), that
means we directly apply fj0 on the intermediate results. For example, if fj0(xj0,1, xj0,2) :=
xj0,1 → xj0,2, we would simply write yi = (bi,1 → bi,2). If we use copying in all places where
fj0 occurs, there is no need to introduce an abbreviation of the form ∀xj0∃yj0 (yj0 = fj0(xj0))
in the first place.

Another variation of our encoding is to allow quantifiers in the definition of Boolean func-
tions. When we allow the initial functions to be QBF instead of propositional formulas, the
transformation remains as it is, since an expression of the form ∀xi∃yi (yi = fi(x

i)) behaves
no differently with respect to xi and yi if fi is represented not as a propositional formula,
but as a QBF formula with free variables xi. For compound functions with quantifiers, e.g.
fi(x

i) := ∃v fj0(fj1(v,xi
1), ..., fjr(v,xi

r)), we have the problem that the previously presented
encoding of compound functions generates clauses that contain variables belonging to fi in
combination with variables from preceding functions. This makes it impossible to formulate
the encoding as a non-prenex formula where quantifiers such as ∃v from the definition of fi
remain local to the encoding of fi. A possible solution to this problem will be presented in
the following section. In the case of the defined function fk, quantification is not a problem,
since fk ≈ Φ implies Qfk ≈ QΦ.

6. Transformation from QBF to NBF

We now have an efficient transformation from NBF to QBF. Interestingly, a transformation
in the other direction is very easy to understand and implement, but seems to require a slight
length increase for technical reasons. The idea is to simulate the expansion of quantifiers
by suitable function definitions. Let ∃x φ(x, z1, ..., zr) be an existentially quantified Boolean
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formula with a propositional matrix φ over the existential x and free variables z1, ..., zr. Then
∃x φ(x, z1, ..., zr) ≈ φ(0, z1, ..., zr) ∨ φ(1, z1, ..., zr) by the well-known Shannon expansion.
This can easily be expressed by a nested Boolean function: if we define f(x, z1, ..., zr) :=
φ(x, z1, ..., zr) and g∃(a, b) := a∨b, it follows that g∃(f(0, z1, ..., zr), f(1, z1, ..., zr)) is logically
equivalent to the existentially quantified formula. Universal quantifiers can be handled
analogously by the dual expansion ∀x φ(x, z1, ..., zr) ≈ φ(0, z1, ..., zr) ∧ φ(1, z1, ..., zr) and a
function term g∀(f(0, z1, ..., zr), f(1, z1, ..., zr)) with g∀(a, b) := a ∧ b.

In propositional logic, we would have to explicitly write down the two expanded terms
φ(0, z1, ..., zr) and φ(1, z1, ..., zr) as propositional formulas, which would cause exponential
growth when applied multiple times, but with nested Boolean functions, it is sufficient to
define f(x, z1, ..., zr) := φ(x, z1, ..., zr) only once. We need, however, two copies of the
function symbol and its arguments. Since arguments are also counted when determining the
length of a NBF, the resulting transformation is not linear, but requires size O(|v| · |Φ|) for
a QBF formula Φ with |v| quantified variables. We call this v-linear. It is not clear whether
a truly linear transformation from QBF to NBF is also possible.

Proposition 2. For every formula Φ ∈ QBF, there exists a nested Boolean functionD(fk) =
(f0, ..., fk) with Φ ≈ fk, and the length of D(fk) is v-linear in the length of Φ, that means
O(|v| · |Φ|) if Φ contains |v| quantified variables.

By the simulation of quantifiers, we can also handle the previously suggested extension
of compound definitions with quantifiers. For example, a definition of the form

fi(x
i) := ∃v fj0(fj1(v,xi

1), ..., fjr(v,xi
r))

would then be rewritten into two definitions f (1)i , f
(2)
i :

f
(1)
i (v,xi) := fj0(fj1(v,xi

1), ..., fjr(v,xi
r))

f
(2)
i (xi) := g∃(f

(1)
i (0,xi), f

(1)
i (1,xi))

7. NBF Modeling Example

We would like to finish the discussion of NBF with a short example that illustrates the
potential of NBF as a modeling language. The problem which we consider is a variant of the
well-known bounded reachability or s-t-reachability problem for directed graphs G = (V,E).
We consider the nodes as vectors of Boolean variables, e.g. (0, 0), (0, 1), (1, 0) and (1, 1) for a
graph with four vertices. The edges are implicitly given by a graph transition relation δ which
is represented as a propositional formula. For the four vertices from above, consider the
example δ(u,v) := δ((u1, u2), (v1, v2)) := (u2∧¬v1∧¬v2)∨ (u1∧¬u2∧v2). There is an edge
between two vertices (u1, u2) and (v1, v2) if and only if δ((u1, u2), (v1, v2)) = 1. Then our
sample graph has four edges, ((0, 1), (0, 0)), ((1, 1), (0, 0)), ((1, 0), (0, 1)) and ((1, 0), (1, 1)).
Given two nodes s, t ∈ V and some bound k > 0, the bounded reachability problem is to
determine whether there exists a continuous path from s to t in G which has length 2k.

In QBF, we can use the previously mentioned non-copying iterative squaring pattern to
encode the problem into a formula of polynomial size (in k and the size of G) that contains
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only one copy of the potentially large transition relation δ. We obtain

Φ0(a,b) := δ(a,b)

Φi(a,b) := ∃y∀u∀v [(((u = a) ∧ (v = y)) ∨ ((u = y) ∧ (v = b)))→ Φi−1(u,v)]

for i = 1, ..., k. Notice that this is only a formula scheme which indicates the structure of
the resulting QBF formula. For k = 2, the actual QBF is the following:

Φ2(a,b) = ∃y2∀u2∀v2 [(((u2 = a) ∧ (v2 = y2)) ∨ ((u2 = y2) ∧ (v2 = b)))→
∃y1∀u1∀v1 [(((u1 = u2) ∧ (v1 = y1)) ∨ ((u1 = y1) ∧ (v1 = v2)))→
δ(u1,v1)]]

With nested Boolean functions (and the ability to use quantifiers as in Section 6), non-
copying iterative squaring can be encoded as:

f∧(x1, x2) := x1 ∧ x2
f0(a,b) := δ(a,b)

f1(a,b) := ∃y f∧(f0(a,y), f0(y,b))

f2(a,b) := ∃y f∧(f1(a,y), f1(y,b))

. . .

Unlike the formula scheme for QBF, this expression is the actual NBF. We do not need to
merge subterms by universally quantified variables as in QBF, since function definitions are
never copied in NBF.

At this point, one could certainly argue that the QBF and NBF representations of
bounded reachability are essentially the same, with NBF only having an advantage due to
counting instantiations of subexpressions as references instead of copies as in QBF. So, let
us slightly modify the given problem: is there a continuous path from s to t in G which
has length 2k and which contains at least one vertex x that satisfies some property p? That
means, is there a path x0, ...,x2k with s = x0, t = x2k and p(xi) = 1 for some i ∈ {0, ..., 2k}?
We assume that p is given as a propositional formula.

In NBF, we can add an additional argument ok to the functions f0, ..., fk which indicates
whether the vertex satisfying p has already been found. Then we have an initial function f0
defined as follows:

f0(a,b, ok) := δ(a,b) ∧ (ok ∨ p(a) ∨ p(b))

Notice that the term on the right is just a propositional expression, and thus contains two
copies of p. If we wanted to avoid this, we could define another initial function fp(x) := p(x)
and let f0 be a compound function. When dividing a path into two halves, if the ok flag
is already set, we can set the flag for both halves. Otherwise, if ok is not set, the crucial
vertex must be in one of the halves, and the ok flag can be set in the other half. We obtain
the following encoding (i = 1, ..., k):

fi(a,b, ok) := ∃y [(fi−1(a,y, ok) ∧ fi−1(y,b, 1))∨
(fi−1(a,y, 1) ∧ fi−1(y,b, ok))]
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Notice that the vertex y is part of both halves, so if it is the one satisfying p, it will be
found eventually. For simplicity of the encoding, we omit checking y right away.

Notice that strictly following the syntax definition of NBF prevents us from mixing
function instantiations and propositional operations, so we are technically not allowed to
write the definition of fi as above. We would require initial functions f∧(x1, x2) := x1 ∧ x2
and f∨(x1, x2) := x1 ∨ x2, as well as an intermediate function for each fi (i = 1, ..., k):

gi(a,b, okl, okr) := f∧(fi−1(a,y, okl), fi−1(y,b, okr))

fi(a,b, ok) := ∃y f∨(gi(a,b, ok, 1), gi(a,b, 1, ok))

We assume that real NBF solvers would allow the user to mix function instantiations and
propositional operations and automatically rewrite the input into a proper NBF. Alter-
natively, our NBF to QBF transformation could be adapted to directly accommodate this
richer syntax.

While the above NBF encoding is surprisingly short and simple, the same idea is consid-
erably harder to implement in QBF. Non-copying iterative squaring in QBF relies on the
idea of reusing variables in both halves of a split in the search space, which makes it difficult
to pass different arguments to both subproblems. Our idea is to introduce for each split an
existentially quantified variable l which is true when we should look for the crucial vertex
in the left half. In addition, we need a universally quantified variable ok to pass the flag to
both subproblems. In total, we obtain, the following QBF formula scheme:

Φ0(a,b, ok1) := δ(a,b) ∧ (ok1 ∨ p(a) ∨ p(b))

Φi(a,b, oki+1) := ∃yi∃li∀ui∀vi∀oki [

(((ui = a) ∧ (vi = yi) ∧ (oki = (¬li ∨ oki+1)))∨
((ui = yi) ∧ (vi = b) ∧ (oki = (li ∨ oki+1))))

→ ϕi−1(ui,vi, oki)], i = 1, ..., k

Φ(a,b) := Φk(a,b, 0)

For k = 2, the actual QBF is the following:

Φ(a,b) = ∃y2∃l2∀u2∀v2∀ok2 [

(((u2 = a) ∧ (v2 = y2) ∧ (ok2 = ¬l2))∨
((u2 = y2) ∧ (v2 = b) ∧ (ok2 = l2)))→
∃y1∃l1∀u1∀v1∀ok1 [

(((u1 = u2) ∧ (v1 = y1) ∧ (ok1 = ¬l1 ∨ ok2))∨
((u1 = y1) ∧ (v1 = v2) ∧ (ok1 = l1 ∨ ok2)))→
δ(u1,v1) ∧ (ok1 ∨ p(u1) ∨ p(v1))]]

It should be obvious that this formulation is significantly more complex to understand and
write down, and thus more error-prone, than the corresponding NBF formulation. Notice
that we are already using the “syntactic sugar” of being able to compare vectors of Boolean
variables, which is not needed in the NBF representation.
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Things are becoming really complicated with QBF when one subformula occurs with
different polarities. For example, we could further modify our reachability problem and add
the (admittedly rather artificial) requirement that the vertex in the middle of the path from
s to t, i.e. vertex x2k−1 , must not be connected back to s by a path of length 2k−1. In NBF,
this is easy to achieve:

fk(a,b, ok) := ∃y [((fk−1(a,y, ok) ∧ fk−1(y,b, 1)) ∨ (fk−1(a,y, 1) ∧ fk−1(y,b, ok)))

∧¬fk−1(y,a, 1)]

In QBF, however, it is difficult to avoid embedding a negated copy of Φk−1 in addition
to the positive Φk−1. We need to apply some of the tricks we used in our NBF to QBF
transformation: store the value of Φk−1 in an existential variable and restrict its polarity
according to uk,vk and okk. For k = 2, the resulting formula is already quite complex:

Φ(a,b) = ∃y2∃l2∀u2∀v2∀ok2∃r [

(((u2 = a) ∧ (v2 = y2) ∧ (ok2 = ¬l2))→ r)∧
(((u2 = y2) ∧ (v2 = b) ∧ (ok2 = l2))→ r)∧
(((u2 = y2) ∧ (v2 = a) ∧ ok2)→ ¬r)∧
(r ↔ (∃y1∃l1∀u1∀v1∀ok1 [

(((u1 = u2) ∧ (v1 = y1) ∧ (ok1 = ¬l1 ∨ ok2))∨
((u1 = y1) ∧ (v1 = v2) ∧ (ok1 = l1 ∨ ok2)))→
δ(u1,v1) ∧ (ok1 ∨ p(u1) ∨ p(v1))]))]

Clearly, such QBF instances should not be constructed manually, and that is the point of
our NBF to QBF transformation: specify on a higher level in NBF how subformulas are
instantiated and let an automated transformation implement suitable subformula-sharing
on the QBF level.

8. Conclusion

We have seen how existing QBF encoding techniques for the compression of propositional
formulas can be combined and generalized into an encoding pattern for nested instantiations
of propositional subformulas with different arguments. For example, a propositional formula
of the form α(φ(A1, B1), β(φ(A2, B2))) ∧ β(φ(A3, B3)) can be represented in a systematic
way as a logically equivalent QBF formula which contains only one copy of each subformula
α, β and φ.

We obtain an equivalence-preserving transformation in linear time from the PSPACE-
complete language of nested Boolean functions or Boolean programs to prenex QBF. Con-
sidering that the paradigm of function composition is rather different from quantification,
it might be more intuitive for some application problems to encode (parts of) the prob-
lems as NBF rather than QBF. That means nested Boolean functions could be used as an
alternative input language for QBF solvers.

A transformation in the other direction from QBF to NBF is quite easy by the simulation
of quantifier expansion, but there are currently no NBF solvers available. Trying to design
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and implement a solver for NBF seems to be an interesting objective for future work, because
the different paradigm of NBF might open new perspectives and lead to the discovery of
new solving techniques that could also be valuable for QBF solvers.
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