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Abstract

We present a detailed description of a theory solver for Linear Integer Arithmetic
(LA(Z)) in a lazy SMT context. Rather than focusing on a single technique that guar-
antees theoretical completeness, the solver makes extensive use of layering and heuristics
for combining different techniques in order to achieve good performance in practice. The
viability of our approach is demonstrated by an empirical evaluation on a wide range of
benchmarks, showing significant performance improvements over current state-of-the-art
solvers.
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1. Introduction

Due to its many important applications, Linear Arithmetic is one of the most well-studied
theories in SMT. In particular, current state-of-the-art SMT solvers are very effective in
dealing with quantifier-free formulas over Linear Rational Arithmetic (LA(Q)), incorporat-
ing very efficient decision procedures for it [13, 16]. However, support for Linear Integer
Arithmetic (LA(Z)) is not as mature yet. Although several SMT solvers support LA(Z),
experiments show that they are not very good at handling £A(Z)-formulas which require
a significant amount of integer reasoning (that is, formulas for which a £A(Q)-model with
non-integer values can be easily found), and that they can easily get lost in searching for
a solution of small and apparently-simple problems. In our opinion, as recently observed
also in [12], this indicates that the theory solvers for LA(Z) currently used (e.g. [14, 21]),
although theoretically complete, are not very robust in practice.

In this paper, we present a new theory solver for LA(Z) which explicitly focuses on
achieving good performance on practical examples. The key feature of our solver is an
extensive use of layering and heuristics for combining different known techniques, in order
to exploit the strengths and overcome the limitations of each of them. Such approach was
inspired by the work on (Mixed) Integer Linear Programming solvers, in which heuristics
play a crucial role for performance [1]. We give a detailed description of the main techniques
that we have implemented, and discuss issues and choices for an efficient integration of the
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solver in a lazy SMT system based on the DPLL(7) architecture [23, 20]. Finally, we
demonstrate the viability of our approach by evaluating our implementation (as part of
our new SMT solver MATHSATS5) on a wide range of benchmarks, showing significant
performance improvements over current state-of-the-art solvers.

The rest of the paper is organized as follows. In §2 we introduce the necessary back-
ground concepts and terminology used in lazy SMT. In §3 we describe the general architec-
ture of our LA(Z)-solver and the relationships among its different modules. Details about
the two main modules are then given in §4 and §5. In §6 we describe the experimental
evaluation, and in §7 we conclude. The discussion of related work is distributed in the
technical sections (§4 and §5).

2. Lazy Satisfiability Modulo Theories

Our setting is standard first order logic. A 0-ary function symbol is called a constant. A
term is a first-order term built out of function symbols and variables. If ¢1,...,t, are terms
and p is a predicate symbol, then p(t1,...,t,) is an atom. In this paper, we shall only deal
with atoms that are either O-arity predicates (i.e. Boolean constants), or linear equations
and inequalities Y, a;x; 4+ ¢ > 0, where e {=, <}, ¢ and the q;’s are rational numbers and
the z;’s are uninterpreted integer constants. A formula ¢ is built in the usual way out of
the universal and existential quantifiers, Boolean connectives, and atoms. A literal is either
an atom or its negation. We call a formula quantifier-free if it does not contain quantifiers,
and ground if it does not contain free variables.

We also assume the usual first-order notions of interpretation, satisfiability, validity,
logical consequence, and theory, as given, e.g., in [15]. We write I' = ¢ to denote that the
formula ¢ is a logical consequence of the (possibly infinite) set I' of formulas. A first-order
theory, T, is a set of first-order sentences. A structure A is a model of a theory T if A
satisfies every sentence in 7. A formula is satisfiable in T (or T -satisfiable) if it is satisfiable
in a model of 7. (We sometimes use the word “T-formula” for a ground formula when we
are interested in determining its 7 -satisfiability.)

Given a first-order formula ¢, the propositional abstraction of ¢ is a propositional formula
1) obtained from ¢ by replacing each theory atom in ¢ with a fresh Boolean constant. We
assume to have a mapping 728 (“theory to Boolean”) from theory atoms to fresh Boolean
constants and its inverse B27 (“Boolean to theory”) which can be used to obtain the
propositional abstraction v from a formula ¢ and vice versa.

In what follows, we might denote conjunctions of literals iy A ... Al, as sets {l1,...,l,}
and vice versa. If n = {ly,...,l,}, we might write -7 to mean —l; V ...V —l,. Moreover,
following the terminology of the SAT and SMT communities, we shall refer to predicates of
arity zero as propositional variables, and to uninterpreted constants as theory variables.

Given a first-order theory T for which the (ground) satisfiability problem is decidable,
we call a theory solver for T, T-solver, any tool able to decide the satisfiability in T of
sets/conjunctions of ground atomic formulas and their negations — theory literals or T -
literals — in the language of 7. If the input set of T-literals u is 7-unsatisfiable, then a
typical T-solver not only returns unsat, but it also returns the subset n of 7-literals in p
which was found T-unsatisfiable. (7 is hereafter called a theory conflict set, and —n a theory
conflict clause.) If p is T-satisfiable, then T-solver not only returns sat, but it may also be
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able to discover one (or more) deductions in the form {l,...,l,} =7, s.t. {l1,...,0l,} Cp
and [ is an unassigned T-literal. If so, we call (\/}_, —l; V1) a theory-deduction clause.
Importantly, notice that both theory-conflict clauses and theory-deduction clauses are valid
in 7. We call them theory lemmas or T -lemmas.

Satisfiability Modulo (the) Theory T — SMT(T) — is the problem of deciding the
satisfiability of Boolean combinations of propositional atoms and theory atoms. We call an
SMT(T) tool any tool able to decide SMT(T). Notice that, unlike a T-solver, an SMT(T)
tool must handle also Boolean connectives.

Hereafter we adopt the following terminology and notation. The symbols ¢, 1 denote
T-formulas, and pu, 1 denote sets of T-literals; P, 1P denote propositional formulas, u?,
7P denote sets of propositional literals (i.e., truth assignments) and we often use them as
synonyms for the propositional abstraction of ¢, ¥, u, and n respectively, and vice versa
(e.g., ¢P denotes T2B(p), p denotes B2T (pP)). If T2B(p) = L, then we say that ¢ is
propositionally unsatisfiable.

2.1 The Online Lazy SMT Schema

The currently most popular approach for solving the SMT(7) problem is the so-called
“lazy” approach [23, 4], also frequently called “DPLL(T)” [20].

The lazy approach works by combining a propositional SAT solver based on the DPLL
algorithm [10] with a 7-solver. Essentially, DPLL is used as an enumerator of truth assign-
ments 4 propositionally satisfying the propositional abstraction ¢P of the input formula ¢,
and the T-solver is used for checking the T-satisfiability of each p; & B2T (p?): if the cur-
rent u; is T-satisfiable, then ¢ is T-satisfiable; otherwise, if none of the u;’s are T-satisfiable,
then ¢ is T-unsatisfiable.

Figure 1 represents the schema of a modern lazy SMT solver based on a DPLL engine
(see e.g. [25]). It is an abstraction of the algorithm implemented in most state-of-the-art
lazy SMT solvers, including BARCELoGIC [5], CVC3 [3], OPENSMT [9], YICES2 [13], Z3
[11] and MATHSATS.

The input ¢ and p are a T-formula and a reference to an (initially empty) set of 7-
literals respectively. The DPLL solver embedded in 7-DPLL reasons on and updates
P and pP, and T-DPLL maintains some data structure encoding the bijective mapping
T2B/B2T on atoms.

T-preprocess simplifies ¢ into a simpler formula while preserving its 7T -satisfiability. If
this process produces some conflict, then 7-DPLL returns unsat. 7 -preprocess may
combine most or all the Boolean preprocessing steps available from SAT literature
with theory-dependent rewriting steps on the 7-literals of . This step involves also
the conversion of ¢ to CNF, if required.

T-decide-next-branch selects some literal [P and adds it to pP. It plays the same role as the
standard literal selection heuristic decide-next-branch in DPLL [25], but it may take
into consideration also the semantics in T of the literals to select.

T-deduce, in its simplest version, behaves similarly to deduce in DPLL [25], i.e. it iteratively
performs Boolean Constraint Propagation (BCP). This step is repeated until one of
the following events occur:
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SatValue 7T-DPLL (7-formula ¢, reference 7 -assignment 1)

1. if T-preprocess (¢, u) == conflict then
2. return unsat

3. end if

4. ¢ = T2B(p)

5. P =7T2B(n)

6. loop

7. T-decide-next-branch (p?, uP)

8. loop

9. status = T-deduce (¢, u?)

10. if status == sat then

11. w = B2T (uP)

12. return sat

13. else if status == conflict then
14. (blevel, n) = T-analyze-conflict (¢?, uP)
15. if blevel < 0 then

16. return unsat

17. else

18. T-backtrack (blevel, P, uP, n?)
19. end if

20. else

21. break

22. end if

23. end loop

24. end loop

Figure 1. An online schema of 7-DPLL based on modern DPLL.

(i) pP propositionally violates P (uP AP |= L). If so, T-deduce behaves like deduce
in DPLL, returning conflict.

(ii) pP satisfies P (uP = ¢P). If so, T-deduce invokes T-solver on B2T (uP): if
T-solver returns sat, then 7-deduce returns sat; otherwise, 7-deduce returns
conflict.

(iii) no more literals can be deduced. If so, T-deduce returns unknown.

A slightly more elaborated version of 7-deduce can invoke T-solver on B27 (u) also

if uP does not yet satisfy ¢P: if T-solver returns unsat, then 7-deduce returns conflict.

(This enhancement is called Farly Pruning, EP.)

Moreover, during EP calls, if 7-solver is able to perform deductions in the form n =7 1
def

s.t. n C pand [P = T2B(l) is an unassigned literal in ¢, then T-deduce can append
[P to uP and propagate it. (This enhancement is called T -propagation.)

T-analyze-conflict is an extension of analyze-conflict of DPLL [25], in which conflict analysis
is performed either on the clause falsified during BCP in 7T-deduce (case (i) above),
or on the propositional abstraction n’? & T2B(1/) of the T-conflict set i’ produced
by T-solver (case (ii) above). In both cases, T-analyze-conflict produces a conflict set
1P and the corresponding value blevel of the decision level where to backtrack.

T-backtrack behaves analogously to backtrack in DPLL [25]: once the conflict set n? and
blevel have been computed, it adds the clause —nP to P, either temporarily or per-
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manently, and backtracks up to blevel. (These features are called 7T-learning and
T-backjumping.)

An important enhancement of 7-deduce is to use a technique called layering [7, 8],
which consists of using a collection of T-solvers Sy, ..., Sy organized in a layered hierarchy
of increasing expressivity and complexity. Each solver S; is able to decide a theory 7; which
is a subtheory of 7;4+1, and which is less expensive to handle than 7;1;. The solver Sy is
the only one that can decide the full theory 7. If the solver S; detects an inconsistency,
then there is no need of invoking the more expensive solvers S;11,...,Sn, and unsat can be
returned immediately.

Another important extension of 7-deduce is a technique called “splitting on-demand” [2].
With splitting on-demand, 7T-solvers are not required to be always able to decide the
T-consistency of the current set of constraints p: rather, they might sometimes return
unknown, together with a list of new T-lemmas containing new T -atoms, which will be
then taken into account in the DPLL search, by branching on the new atoms and perform-
ing BCP and conflict detection on the new lemmas. The idea of splitting on-demand is
that of exploiting DPLL for performing disjunctive reasoning, instead of handling it inside
the T-solvers, whenever this is needed for checking the 7-consistency of p. This not only
simplifies the implementation of T-solvers, but it also allows to take advantage for free of
all the advanced techniques (like conflict-driven backjumping and learning) for search-space
pruning implemented in modern DPLL engines.

Finally, we remark that during EP calls in 7T-deduce the 7-solvers are allowed to be
imprecise in detecting conflicts, in the sense that they are allowed to return sat even when
the current truth assignment p is 7-inconsistent, as long as precision is recovered in non-EP
calls (i.e. when p? |= ©P) [23]. This makes it possible to implement a further enhancement
to T-deduce, called Weak Farly Pruning, in which during EP calls the T-solvers use an
approximate but cheaper consistency check algorithm, in order to limit the overhead of
frequent EP calls. Weak EP is particularly effective on “hard” theories, including LA(Z).

3. General Architecture of the LA(Z)-solver

Figure 2 shows an outline of the general architecture of our 7-solver for LA(Z) (hereafter,
simply LA(Z)-solver).

The solver is organized as a layered hierarchy of submodules, with cheaper (but less
powerful) ones invoked earlier and more often. The general strategy used for checking the
consistency of a set of LA(Z)-constraints is as follows.

First, the rational relaxation of the problem is checked, using a Simplex-based LA(Q)-
solver similar to that described in [13]. If no conflict is detected, the model returned by the
LA(Q)-solver is examined to check whether all integer variables are assigned to an integer
value. If this happens, the £LA(Q)-model is also a LA(Z)-model, and the solver can return
sat.

Otherwise, the specialized module for handling linear Diophantine equations is invoked.
This module is similar to the first part of the Omega test described in [21]: it takes all the
equations in the input problem, and tries to eliminate them by computing a parametric
solution of the system and then substituting each variable in the inequalities with its para-
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Figure 2. Architecture of the LA(Z)-solver.

metric expression. If the system of equations is infeasible in itself, this module is also able
to detect the inconsistency.

Otherwise, the inequalities obtained by substituting the variables with their parametric
expressions are normalized, tightened and then sent to the L A(Q)-solver, in order to check
the LA(Q)-consistency of the new set of constraints.

If no conflict is detected, the branch and bound module is invoked, which tries to find a
LA(Z)-solution via branch and bound [22]. This module is itself divided into two submod-
ules operating in sequence. First, the “internal” branch and bound module is activated,
which performs case splits directly within the L£A(Z)-solver. The internal search is per-
formed only for a bounded (and small) number of branches, after which the “external”
branch and bound module is called. This works in cooperation with the DPLL engine, us-
ing the splitting on-demand approach of [2]. Splitting on-demand is also used for handling
disequalities, by generating a lemma (¢t # 0) — (t+1 < 0)V(—t+1 < 0) for each disequality
(t # 0) seen by the LA(Z)-solver.

4. The Diophantine Equations Handler

The module for handling systems of LA(Z) equations (commonly called Diophantine equa-
tions) implements a procedure that closely resembles the equality elimination step of the
Omega test [21].

Given a system E < {3 aja; +¢j = O};.n:1 of m equations over n variables, it tries to
solve it by performing a sequence of variable elimination steps using the procedure described
in Algorithm 1. The algorithm runs in polynomial time [21], and can be easily made
incremental.
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Algorithm 1: Solving a system of linear Diophantine equations

Input: a system of Diophantine equations F.
Output: a parametric solution S for F, or unsat if F' is inconsistent.

1.

2.

3.

9.

Let F=FE,S =0,¢é, = null.
If F' is empty, the system is consistent; return sat with S as a solution.

Rewrite all equations ey, 4 > ;anix; + ¢, = 0 in F such that the GCD g of

. . def .
A1, - -5 Ghn, € 1S greater than 1 into e}, = 3, %xi + % =0.

. If there exists an equation ey, S > i anix; + ¢, = 0 in F such that the GCD of the

ap;’s does not divide ¢, then F' is inconsistent (see, e.g., [21]); return unsat.

. ep A . . . def
. Otherwise, if é is null, pick an equation e, = > i anizi + ¢, = 0 from F, and set

éh = €p.

. Let api be the non-zero coefficient with the smallest absolute value in éj,.

If |apk| = 1, then é;, can be rewritten as

—xp + Z —sign(apk)ap;z; — sign(apg)cn, = 0, (1)
ik

where sign(apg) = Then, remove é, from F', add it to S, replace xj with

|ank|
Ei#k —sign(apk)an;x; — sign(an)cp in all the other equations of F', and set é;, = null.

. If lapg| > 1, then rewrite é;, as

apkTr + Z(ahka(fln + ap;)zi + (ankch +¢;) =0 =
ik
apg + (T + Z af xi+ ) + (Z ap;xi +cp) =0.
ik itk
where afw and aj, are respectively the quotient and the remainder of the division of
an; by apg (and similarly for cz and ¢} ). Create a fresh variable z;, and add to S the
equation
—x, + Z —aj.x; — ¢ + 2 = 0.
i#k
Then, replace x; with Z#k —azixi - c;]l + x; in all the equations of F'.

Go to Step 2.

Theorem 1 Algorithm 1 always terminates. Moreover, it returns unsat if and only if the
wput system of Diophantine equations is inconsistent.
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Proof. (Sketch) For correctness, we can observe that:

(i) At every iteration of the loop 2-8, the initial system FE is equisatisfiable with the
system F'U S.

(ii) S is always consistent, since all its equations are of the form

def

e; = —x; + Z ai;jr; +c; =0, (2)

i#]

where z; does not occur in any equation that was added to S after e; (and therefore
it can be easily put in triangular form).

Termination can be established by observing that, after the substitution of z; with
> 2k —a‘flixi — cz + x; performed in Step 8, the equation é; selected in Step 5 becomes

appTe + Z ap; T + c,. (3)
itk

Since (i) the a},’s are the remainders of the division of the ay;’s by ank, and (ii) the coefficient
apk, was chosen to be the minimum in absolute value in éj,, then each |a},| is strictly smaller
than the corresponding |ap;|. Therefore, after a finite number of applications of Step 8,
the equation é, will contain a variable whose coefficient has an absolute value of 1, and
therefore it will be eliminated from F' by an application of Step 7 [21]. O

Example 1 Consider the following system of Diophantine equations

pu ) e = 321 + 3xg + 1dzs — 7 =0
€9 o Tx1+ 1229 + 3123 — 17 =0

In order to prove its unsatisfiability, a run of Algorithm 1 can proceed as follows:

1. ey is processed. Since there are no variables with coefficient 1 or -1, Step § is applied.
x1 1s selected, ey is rewritten as

3(1’1 + x9 + 413 — 2) + (2:(}3 — 1) =0,
a fresh variable x4 is created, the equation
—I1 —x2—4x3+2+x4=0

is added to S, and x1 is substituted with —xo — 4x3 + 2+ x4 in all the equations in F,
thus obtaining:

S:{ —x1—To—4dx3+2+x24=0

P ey Z3uy+203-1=0
6/2@53324-3333—1—7%4—3:0

s
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2. € is processed. As before, Step 8 is applied, this time selecting x3, since it is the
variable with the smallest coefficient in absolute value. Then, €} is rewritten as

2(xs +x4) + (24— 1) =0,
a fresh variable x5 is created, the equation
—x3— 24+ 25 =0

is added to S, and x3 is substituted with —x4 4+ x5 in all the equations in I, thus
obtaining:

{ —x1—x0 —4x3+2+24=0
S =
—x3—x4+2x5 =0

F— e{§2x5+x4—1:0
el Y Bpg +4xy + 325 —3=0
3. €' is processed. This time, since x4 has coefficient 1, Step 7 is applied, € is moved
to S and x4 is substituted with —2x5 + 1 in €4, thus obtaining:

—x1—xo—4rs+2+x4=0
S = —r3—x4+2x5=0
—x4—2x5+1=0

F={ e <50y — 525 +1=0

4. Since the GCD of the coefficients of the variables in e does not divide the constant

value of €, the equation in inconsistent, so the algorithm returns unsat.

If Algorithm 1 returns unsat, the £A(Z)-solver can return unsat. If it returns sat, instead,
S can be used to eliminate all the equalities from the problem, using each equation e; of S
as a substitution z; — Zi# ai;Ti + ¢j.

This elimination might make it possible to tighten some of the new inequalities gen-
erated. Given an inequality ), a;x; + ¢ < 0 such that the GCD g of the a;’s does not
divide the constant c, a tightening step [21] consists in rewriting it into -, %a; + [£] < 0.
Tightening is important because it might allow the £.A4(Q)-solver to detect more conflicts,

as shown in the following example.

Example 2 Consider the following sets of LA(Z)-constraints:

Ed_ef 2:61—5563:0 ]d_ef —2%1—$Q—$3+7§0
Tl z29—324=0 S| 2z F 23 —8<0
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E U I is satisfiable over the rationals, but unsatisfiable over the integers. Therefore, the
LA(Q)-solver alone can not detect the inconsistency. Thus, E is given to Algorithm 1,
which returns the following solution:

—x1+ 223+ 25=0
S = —x9+ 324 =0
—x3+ 2x5 =0,

where x5 is a fresh variable. Using S, we can eliminate the equalities by substituting x1, o
and x3 into the inequalities in I, thus obtaining:

I = —3x4 — 1225 4+7<0
o 3xs+ 1225 — 8 <0

On the integers, the two inequalities in I can be tightened by dividing the constant by the
GCD of the coefficients, and then taking the ceiling of the result:

7 —%m — %xg, + 11 <0 which becomes —x4 —4x5+3 <0
o %:1:4 + %m +[—=3]1 <0 which becomes x4+ 4dx5—2<0

After this, the LA(Q)-solver can immediately detect the inconsistency of 1”. o

From the point of view of the implementation, the communication between the Diophan-
tine equation handler and the £A(Q)-solver is made possible by the fact that, differently
from what is described in [13], our LA(Q)-solver does not assume that only elementary
bounds of the form (z — ¢ < 0) are asserted and retracted during search, but rather it
supports the addition and deletion of arbitrary constraints. -

4.1 Generating explanations for conflicts and substitutions

An important capability of the Diophantine equations handler is its ability to produce
explanations for conflicts, expressed in terms of a subset of the input equations. This is
needed not only when an inconsistency is detected by Algorithm 1 directly (in order to
return to DPLL the corresponding £.A(Z)-conflict clause), but also when an inconsistency
is detected by the LA(Q)-solver after the elimination of the equalities and the tightening
of the inequalities. In this case, in fact, the explanation returned by the £.A4(Q)-solver can
not be used directly to generate a conflict clause to give back to DPLL, since it might
contain some inequalities that were generated by the equality elimination and tightening
step. When this happens, each of these inequalities must be replaced with the original
inequality and the set of equations that were used to obtain it. Therefore, the Diophantine
equations handler must be able to identify the set of input equations that were used for
generating a substitution in the returned solution S.

1. The distinction between tableau equations and elementary bounds introduced in [13] is still used, but
such transformation is performed internally in the £A(Q)-solver rather than at preprocessing time [17].
As a matter of fact, the original motivation for this decision was to ease the generation of proofs of
unsatisfiability; however, having such more general interface turns out to be convenient (from an imple-
mentation point of view) also in the present context.

10



A PRACTICAL APPROACH TO SAT MobpurLo LA(Z)

In order to describe how explanations are generated and to prove that the procedure is
correct, we introduce an abstract transition system whose inference rules mirror the basic
steps performed by Algorithm 1. We then show how the states and the transitions of such
system can be annotated with additional information used to produce explanations. Finally,
we give a proof of the correctness of the generated explanations.

The basic steps performed by Algorithm 1 can be described as manipulations of a set
of equations E according to the following rules:

Scaling of an equation

Eu{d,ax;+c=0} —
EU{(X;aiwi+c=0), (3 Yo+ =0)} (4)
if g= GCD(aj,...,an,c)and g > 1.

Combination of two equations

EU{(>_; anizi+c1=0),(3; aziwi + c2 =0)} —
FU {(Zl a1;x; +c1 = 0), (ZZ a2;T; + Co = 0)}U
{O2;(krari + koagi)x; + (kic1 + kaca) = 0},

kl, ko € 7.

Decomposition of an equation

EUu{d azi+c=0} = FEU{>  az; +c=0}U

{O ik alz; + xp — z + 1 =0), (apz + doizk @i+ =0)}
if aj, = argmin;{|a;| : a; # 0}, z¢ is fresh,

a; = agak +a} for all 7, and ¢ = c%a;, + .

(6)

It is easy to see that Algorithm 1 implements a specific strategy of application of the
above rules, namely:

e Step 3 corresponds to repeated applications of (4);
e Step 7 is an application of (5) multiple times; and
e Step 8 corresponds to an application of (6) followed by multiple applications of (5).

In order to generate explanations, we annotate each state of the above transition system
with some additional information. In particular, let X be a set of variables containing all
the variables in the initial equations and all the variables introduced by an application of
(6), let L be a set of variables disjoint from X, and let A be a mapping from variables in
L to linear combinations of variables in X and of integer constants. Moreover, let o be a
partial mapping from variables in X to linear combinations of variables in X and of integer
constants. An annotated state is a triple (E’, \, o), where E’ is a set of pairs (e, ¢) in which
e is an equation and / is a linear combination of variables from L. The initial state of the
system is built as follows:

o E' ={(e;,l;) :e; € E and |; € L is fresh};

0
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e For all (e;,l;) in F', set A(l;) — e;;
e ¢ is initially empty.
We define inference rules for annotated states, corresponding to the rules (4)—(6):

Scaling of an equation

(E'U{(>aiwi+c=0,0)}, X\, o) —
(B"U{ (X aiwi +¢=0,0), (3 Yai+ £ =0, %f}}, A, o) (7)
if g=GCD(ay,...,an,c) and g > 1.

Combination of two equations

<E, U {(Zl a1;x; +c1 = 0,€1>, <ZZ a2;T; + co = O,£2>}, A, 0'> —

(E"U{(> 2 atixi +c1 = 0,41), (3, aziwi + c2 = 0,42) YU (8)
{<Zi(/€1a1i + kgagi)wi + (k:101 + ]‘JQCQ) =0,k + k2€2>}, A, O'>
ki, ko € 7.

Decomposition of an equation

(EPU{(>aiwi+c=0,0} N\ o) = (E'U{(>, aizi +c=0,0)}U
{( ik afwi + 2 — 2 + ¢ = 0,00),
(apme + 304 afwi + ¢ = 0,0}, N, 0')
if a, = argmin;{|a;| : a; # 0}, z; is fresh, (9)
a; = agak + aj for all 7,c = clay + c”
and o'(z) = Zi#"«‘ ajzitap+cl iz = a'ct
o(x) otherwise.

The purpose of the variables in L and of the mapping A is to give a name to each of the
original equations. We observe in fact that at the beginning each equation is associated to
a unique l; € L through A, and that none of the above rules modifies A. Intuitively, each
expression £ in a pair (e, £) of E’ encodes the linear combination of input equations from
which e was generated. When e is inconsistent, therefore, ¢ identifies exactly the subset of
input equations responsible for the inconsistency. Analogously, when Algorithm 1 returns a
solution S, each ¢; associated to an equation e; in S identifies the subset of input equations
which were used to generate the substitution encoded by e;. This argument is formalized
by the following theorem.

Theorem 2 Let (E',\,0) be an annotated state. Let o* be the function that takes a linear
combination and recursively replaces each fresh variable x; introduced by (9) with o(xy),
until no more fresh variables are left. Finally, let \* be the function that takes a linear
combination ¢ of variables from L and replaces each | with A(I). Then, for every element
(e, ) of E', the following holds:

A (0) = o™ (e). (10)
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Proof. First, observe that (10) holds for the initial state of the system, since each element
of E' is in the form (e;,l;) such that A(l;) = e;. We now show that any application of the
rules (7)—(9) preserves (10).

In order to show that this is the case for (7) and (8), it is enough to observe that,
for any linear combinations e; and ey and coefficients k1 and ko, kio*(e1) + koo™(e2) =
o*(kie1 + kgez), and similarly for \*.

As regards (9), let e & (>_; aizi + ¢ =0,£) be the element that triggers the application
of the rule, and suppose that (10) holds for it. Let

(= Z ajzi + ), — x4+ ¢! = 0,0€) and (11)
ik
(" < apay + Z ajx; +c" =0,0) (12)
ik

be the results of the decomposition, where x; is fresh. Since (9) updates o by setting
o(@e) = X i alz; + zp + ¢4, by the definition of o* we have that:
(i)
o*(e) = U*(Z alz; + xp + ¢! — o(xr)) = 0%(0) =0,
i+k
which is clearly equal to \*(0¢) = 0, and thus (10) holds for (11); and
(i)

a*(e") = o*(ago(xy) + Z ajx; +c") =

itk
0*(%(2 alz; +xp + ) + Z ajz; +c") =c*(e),
itk ik
which is equal to A*(¢) by hypothesis. Therefore, (10) holds also for (12). O

Corollary 1 Let (e, 0 & > aili) be an element of E', and let Ey, be the set of equations
e; = 0 such that A(I;) = e; for each l; in L. If e is inconsistent, then Ef, is inconsistent.

Corollary 2 Let S be a solution returned by Algorithm 1, let S' = {{e;, ¢; d:efzj aijl;) | e; €
S} be its “annotated version”, and let Ey, be the set of equations e; = 0 such that A\(l;) = e;
for each lj in {{;};. Let I be a set of inequalities, and let I' be the set of inequalities obtained
from I after applying the substitutions in S and tightening the results. If I' is inconsistent,

then I U Ej, 1s inconsistent.

The two corollaries above give us a way of producing explanations with the Diophantine
equation handler. Using Corollary 1, we can generate an explanation for an inconsistency
detected directly by Algorithm 1 by taking the conjunction of all the input equations whose
labels occur in the linear combination ) . a;l; associated to the inconsistent equation e.
Using Corollary 2, instead, we can identify, for each inequality generated by the equality
elimination and tightening step, the set of equations used to generate it, by looking at the

13
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labels in the linear combinations ) ; @ijl;j associated to each substitution e; used. Thanks
to this, we can generate an explanation for an inconsistency detected by the £A(Q)-solver
by first generating a LA(Q)-explanation containing fresh inequalities generated by the elim-
ination and tightening step, and then by replacing each of these fresh inequalities with the
original inequality and the set of equations used to generate it.

4.2 Incrementality

It can be observed that our equality elimination procedure bears some similarities with
algorithms for computing canonical forms of matrices over Z, such as Hermite or Smith
normal forms [22, 24]. In particular, our algorithm could be recast as a matrix manipulation
procedure, which would then enable the use of very efficient matrix-based algorithms for
its implementation, such as e.g. those given in [24].> An advantage of the formulation
proposed here, however, is that it allows for efficient incremental addition and removal of
equations. These features are very important in an SMT setting [23, 13], and it is not
obvious how to integrate them efficiently into matrix-based algorithms. In contrast, the
modifications needed for making Algorithm 1 fully incremental are very simple, and can be
intuitively described as follows. Let E be a system of equations for which Algorithm 1 has
already found a solution of .S, and let e be a new equation not in £. Then, the consistency of
EU{e} can be checked by (i) applying the current substitutions in S to e, obtaining e’; and
(ii) applying Algorithm 1 from Step 3 by setting F to be {¢'}. If EU{e} is inconsistent, then
this is due to an equation that was generated from e’ after some applications of Steps 7 or 8,
possibly after having added some new substitutions to S. Then, the previous solution S for
E can be recovered by simply dropping such substitutions. Similarly, if E'U{e} is consistent
and S’ is its solution, then S’ is of the form S U S”, where S” is the set of substitutions
generated after the addition of ¢/. Therefore, also in this case after the removal of e the
solution for F can be efficiently restored.

5. The Branch and Bound Module

When the equality elimination and tightening step does not lead to an inconsistency, the
branch and bound module is activated. This module works by scanning the model produced
by the L£LA(Q)-solver in order to find integer variables that were assigned to a rational
non-integer constant. If no such variable is found, then the £A(Q)-model is also a LA(Z)-
model, and the solver returns sat. Otherwise, let xp be an integer variable to which the
LA(Q)-solver has assigned a non-integer value gx. Then, the branch and bound module
(recursively) divides the problem in two subproblems obtained by adding respectively the
constraints (xy — [gx] < 0) and (—z + [grx] < 0) to the original formula, until either a
LA(Z)-model is found by the £A(Q)-solver, or all the subproblems are proved unsatisfiable.

A popular approach for implementing this is to apply the splitting on-demand technique
introduced in [2], by generating the LA(Z)-lemma (z; — |gx| < 0) V (—zx + [¢gx] < 0), and
sending it back to the DPLL engine. The idea is that of exploiting the DPLL engine for
the exploration of the branches introduced by branch and bound, rather than handling the
case splits within the LA(Z)-solver. As already observed in §2, this not only simplifies the

2. We are grateful to an anonymous reviewer for this observation.
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implementation, since there is no need of implementing support for disjunctive reasoning
within the LA(Z)-solver, but it also allows to exploit all the advanced search-space-reduction
techniques implemented in modern DPLL engines.

However, using splitting on-demand has also some drawbacks. The first is that it does
not easily allow to fully exploit the equality elimination and tightening step described in
the previous section. Eliminating equalities introduces new integer variables and generates
new inequalities which are local to the current LA(Z)-solver call, and unknown to the
DPLL engine. If we generate branch-and-bound lemmas from such internal state of the
LA(Q)-solver, there is a high risk that the generated lemmas will be only locally useful,
since in our current implementation the tightened inequalities and the variables generated
by the Diophantine equation handler are discarded upon backtracking. In fact, this is a
more general problem of the splitting on-demand approach, even if no equality elimination
is involved: the generation of all branch-and-bound lemmas is aimed at finding a LA(Z)-
model for the set of constraints in the current DPLL branch, and the lemmas might cease
to be useful after backtracking.

Example 3 Consider the following set of LA(Z)-constraints:

T — 229 +3x3 =0
r1+3r3+1<0
—2x4—21+1<0
T4 +23<0

S is consistent in LA(Q). Suppose that the LA(Q)-solver then returns the following model
us for it:

1

xl—g

_ 1

def .’L‘Q—_i
Hus = _ _ 2
.’1}'3——5

_ 2

334—5

After eliminating the first equation in S and tightening the result inequalities, the following
system S’ and LA(Q)-model g are obtained: *

zo+1<0 To = —1
S/dZEf —2x4 — 2294+ 323+1<0 MS/dZEf xgz—g
T4 +23<0 964=%

Suppose that the branch and bound module selects the variable x4, and that the first branch
to be explored is that corresponding to the addition of the constraint (x4 — [2] < 0). If the
starting point of branch and bound is S’, then a LA(Z)-model can be found immediately by
the LA(Q)-solver (after adding (x4 — | 2] < 0)). If branch and bound is implemented via
splitting on-demand, however, the branch and bound exploration is started from the original
set of constraints S': in this case, adding the constraint (x4 — L%J < 0) is not enough to find a

3. pgs is actually what MATHSATS5 produces when starting from the model ugs, following the Simplex
algorithm as given in [13].
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LA(Z)-model (with the algorithm of [13]), and the following LA(Q)-model " is generated:

r1 = 1
n def T = —%
xr3 = *%
Ty = 0
In order to find a LA(Z)-model, therefore, more search is needed. o

A second issue is that of non-chronological backtracking. While this feature is crucial for
the performance of modern DPLL-based SAT solvers as it in general allows to significantly
prune the search space, as already observed in [23] in an SMT context it might sometimes
hurt performance, in particular for satisfiable problems. Suppose that the conjunction
of constraints p corresponding to the current branch is £A(Z)-satisfiable, but the current
LA(Q)-model value g, for the integer variable z is not an integer, and suppose that adding
(—xp+[qr] < 0) allows the LA(Q)-solver to find a LA(Z)-model, but adding (z—|gr] < 0)
results in a LA(Q)-inconsistency. Then, if DPLL branches on (xj — |gi] < 0) first, non-
chronological backtracking might undo the assignments of a (potentially large) subset of the
literals in p, which would then have to be re-assigned and re-sent to the £A(Q)-solver. In
the worst case, after backjumping DPLL might flip the truth value of some of the literals in
w, possibly resulting in more conflicts before finding the £A(Z)-consistent truth-assignment
[ again.

Finally, the use of splitting on-demand makes it more complex to use dedicated heuristics
for exploring the branch-and-bound search tree. It is well-known in the Integer Program-
ming community that a careful selection of the variables on which to perform case splits,
based on information provided by the LA(Q)-solver, can have a significant impact on perfor-
mance (see e.g. [1]). With splitting on-demand, such heuristics would need to be integrated
with those commonly used in DPLL, which might not be straightforward.

In principle, these drawbacks could be addressed by carefully modifying the heuristics
used by the DPLL engine for variable selection, backjumping, and management of learnt
clauses. However, integrating dedicated L£.A(Z)-specific heuristics in the “general” DPLL
engine might not only be difficult to implement, but it also might introduce inefficiencies
and/or hard-to-understand interactions with the generic heuristics commonly used in SAT.
Therefore, we have adopted a different solution, which is based on a mechanism to handle
the branch-and-bound search within the LA(Z)-solver itself, without the intervention of
the DPLL engine. This “internal” branch and bound submodule is invoked only for a
bounded (and small) number of case splits, * and does not perform any non-chronological
backtracking. In our experiments, we have seen that for many satisfiable problems only
a few branch-and-bound case splits are enough to find a LA(Z)-model, especially if the
“right” variables are selected. Performing such case splits internally makes it much easier
to implement different heuristics for variable selection. In our current implementation,
we use a history-based greedy strategy, which selects the variable that resulted in the
minimum number of violations of integrality constraints in the previous branches, inspired

4. In our actual implementation, we use a bound that is proportional to the number of variables in the
input problem.
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by the “pseudocost branching” rule described in [1]. More specifically, let ”i: and nj, be
respectively the number of left and right branches on the variable x; in the branch and
bound search, ° and let (g.); and (g}); be respectively the number of integer variables with
non-integer values after having performed the i-th left (resp. right) branch on zj. Then,

the score of zj, is defined as the minimum between (Zﬁl(gi:)z)/nﬁC and (Z?:Zl(g,Z)z)/nZ,
and our heuristic always selects the variable with the smallest score.

Finally, another advantage of using an internal branch and bound search is that it also
allows to perform some simplifications of the current set of constraints (before starting the
internal branching) which can significantly help in finding a LA(Z)-model. In particular,
we currently try to detect and remove redundant constraints from the LA(Q)-solver before
starting the branch-and-bound search.

If the “internal” branch and bound finds a conflict, an explanation can be recursively gen-
erated by combining, for each node of the branch-and-bound tree, the LA(Q)-explanations
for the conflicts on the two sub-branches.® If the limit on the number of case splits is
reached, then the splitting on-demand approach is used, generating a branch-and-bound
lemma and sending it to the DPLL engine. This allows us to keep the good features of
the splitting on-demand approach for problems that cannot be easily solved with a few
branch-and-bound case splits.

5.1 Adding Cuts from Proofs

A severe drawback of branch and bound is that it might fail to terminate (continuing to
generate new branch-and-bound lemmas) if the input problem contains some unbounded
variable. This is not “simply” a theoretical possibility, but it also happens quite often in
practice, even for very small and simple problems.

Example 4 Consider the following set of LA(Z)-constraints:

5$1—5$2—$3—3§0
=521+ dxs +23+2<0
{L‘3§0

—x3§0

It is easy to see that S is LA(Z)-inconsistent: by projecting out x3, we obtain

gt 51 —dxe —3 <0 which can be tightened to x1 — x9 <0
| —bHx1 4+ 522 +2<0 which can be tightened to —x1 + 22 +1<0

which is trivially LA(Q)-inconsistent. However, the application of branch and bound to
S results in an infinite branch-and-bound tree, because for every integer model value for
x1 (resp. w2) there exists a mon-integer value for xo (resp. x1) that LA(Q)-satisfies the
first two constraints of S (the LA(Q)-model for xs will always be zero due to the last two
constraints of S ). o

5. Here, we call left branch the branch on (xzx — |gr] < 0), and right branch that on (—xx + [gr] < 0).

6. More specifically, if —m A (zx — |gr] < 0) is the LA(Q)-explanation of the left branch and —n, A (—zk +
[gr] < 0) is the LA(Q)-explanation of the right branch, then —m A -, is the LA(Z)-explanation of the
current node.
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A common approach for overcoming this limitation is that of complementing branch and
bound with the generation of cutting planes [1, 22], which are inequalities that exclude some
LA(Q)-models of the current set of constraints without losing any of its £A(Z)-models. In
particular, Gomory’s cutting planes (Gomory cuts) are very often used in practice [14, 1]."

In our LA(Z)-solver, instead, we follow a different approach, which has been recently
proposed in [12] and shown to outperform SMT solvers based on branch and bound with
Gomory cuts. The idea of the algorithm is that of extending the branch and bound approach
to split cases not only on individual variables, but also on more general linear combinations
of variables, thus generating lemmas like (3, apxr — |qx] < 0) V (=X, axzr + [ar] <0).

The core of the cuts from proofs algorithm is the identification of the defining constraints
of the current solution of the rational relaxation of the input set of £A(Z)-constraints. A
defining constraint is an input constraint ), ¢;x; + ¢ > 0 (where e {<,=}) such that
> cixz; + ¢ evaluates to zero under the current solution for the rational relaxation of the
problem. After having identified the defining constraints D, the cuts from proofs algorithm
checks the satisfiability of the system of Diophantine equations Dpg 4 {3 cizi +¢ =
0] (>, ciwi +c><0) € D}. If Dg is unsatisfiable, then it is possible to generate a proof of
unsatisfiability for it, expressed as a LA(Z)-inconsistent linear combination of a subset of
the constraints in Dp, whose result is an equation ), ¢jz; + ¢ = 0 such that the GCD g of
the ¢’s does not divide ¢/. From this equation, the following extended branch and bound
lemma is generated:

(Z Cé \‘—CIJ <O)\/( ZC{L + ’V—c/—‘ <0)
L — | — | < — —Lx; — | <0).
—~g" Ly —~g" |y

In the original algorithm of [12], proofs of unsatisfiability are generated by computing
Hermite Normal Forms [22]. However, this is not necessary: in our solver, in fact, we
can reuse the module for handling Diophantine equations, thanks to its proof-production

capability. This makes the implementation very simple.

Example 5 Consider again the set S of LA(Z)-constraints of Example /4, and suppose that
the LA(Q)-solver returns the following LA(Q)-model for S':

1‘120

def __2
Hs = T2 = —%
1‘320

The set of defining constraints D for (S, ug) is then:

=521+ dxs +23+2<0
DY 25<0
—$3SO,

resulting in the following inconsistent system of Diophantine equations Dg:

D =521+ dxe+23+2=0
E= $3:O

7. Gomory cuts guarantee termination provided that the strategies for pivoting in the Simplex and for
generating the cuts satisfy certain conditions, which are given e.g. in [22].
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The Diophantine equations handler generates —5x1 +5xa+2 = 0 as proof of unsatisfiability
of Dg, resulting in the following branch-and-bound lemma:

(—$1+$2+1 SO)\/(.’El—LBQ SO) (13)

After adding (13) to DPLL, the LA(Q)-solver detects the LA(Q)-inconsistency of both
SU(—z1+22+1<0) and SU (z1 —x2 <0). o

For more information on the cuts from proofs algorithm, we refer the reader to [12]. Here
we only mention that, as already observed in [12], we found that in practice it is a good
idea to interleave the generation of “extended” branches with that of “regular” branches
on individual variables. Currently, we use a simple heuristic in which an extended branch
is tried only after two regular branches. The investigation of alternative strategies is part
of future work.

5.2 Termination of the Branch and Bound Module

In order to prove the termination for the cuts from proofs algorithm, the authors of [12]
assume that all the input variables are bounded. From the theoretical point of view, this
is not a limitation, since as shown e.g. in [22] it is always possible to statically determine
bounds for all unbounded variables of an arbitrary set of L£A(Z)-constraints. In fact, by
adding such bounds it is also possible to guarantee the termination of the “regular” branch
and bound technique. However, not only are such bounds in general so large to have
no practical value for ensuring termination within reasonable amounts of time and space
[14], but they might also be detrimental for performance, as they would force the LA(Z)-
solver to manipulate very large numbers requiring arbitrary-precision arithmetic, which can
otherwise often be avoided in practice [17]. The advantage of using cuts from proofs over
regular branch and bound is that with the former the need of such theoretical bounds is
much less likely in practice.™

For these reasons, in our current implementation we do not precompute bounds for all
the unbounded variables in the input problem. Therefore, in principle our solver might
fail to terminate. In order to overcome this limitation, we plan to investigate the pos-
sibility of combining the cuts from proofs algorithm with other techniques (like Gomory
cuts or the recently-proposed algorithm of [19]) which ensure termination without requiring
precomputed bounds for all the variables.

6. Experiments

We have implemented the L£A(Z)-solver presented here within our new SMT solver MATH-
SATS5. In the latest SMT solvers competition SMT-COMP 2010,% MATHSATS5 ranked first
in both divisions involving LA(Z), QF_LIA (quantifier-free LA(Z)) and QF _UFLIA (quan-
tifier free LA(Z) with uninterpreted functions), solving significantly more benchmarks than
the other competitors. In this section, we perform a more detailed experimental evaluation

8. In fact, we have not been able to conceive a simple example for which the cuts from proofs algorithm
needs precomputed bounds.
9. http://smtcomp.org/2010/

19


http://smtcomp.org/2010/

A. GRIGGIO
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73 887 / 1312 8983.43
SATEEN 435 / 1312 1908.38

Figure 3. Comparison among different SMT solvers, all benchmarks.

of its performance. We have run the experiments on a machine with a 2.6 GHz Intel Xeon
processor, 16 GB of RAM and 6 MB of cache, running Debian GNU/Linux 5.0. We have

used a time limit of 600 seconds and a memory limit of 2 GB.

6.1 Description of the benchmark instances

We concentrate our evaluation on a subset of the problems in the QF_LIA category of the
library of SMT problems SMT-LIB '’-. Out of the more than 5200 problems in this category,
we have selected the subset of instances for which either the £A4(Q)-solver is not enough
for deciding satisfiability, or which cannot be greatly simplified by applying some ad-hoc
preprocessing techniques (like e.g. [18]), in order to test the effectiveness of LA(Z)-specific
algorithms. In particular, we use the following families of benchmarks:

CAV09, which are the randomly-generated conjunctions of L A(Z)-inequalities which were
used in [12]. Most of the instances are satisfiable.

10. http://smtlib.org
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Figure 4. Comparison among different SMT solvers (CAV09 and CONVERT benchmarks).

CONVERT, which have been obtained by encoding in SMT(L.A(Z)) some bit-vector for-
mulas from the QF BV category of the SMT-LIB, using the encoding of [6].'! Most
of the instances are satisfiable.

CUT_LEMMAS, which are crafted instances encoding the LA(Z)-validity of some cutting
planes. All the instances are unsatisfiable.

RINGS_PREPROCESSED, which are crafted instances checking distributivity and as-
sociativity of addition and multiplication in modular arithmetic. They are prepro-

11. The non-easily-linearizable operators have been replaced with fresh variables.
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Figure 5. Comparison among different SMT solvers (CUT_LEMMAS and

RINGS_PREPROCESSED benchmarks).

cessed versions of the rings instances in the SMT-LIB, in which all the term-level
if-then-else constructs have been eliminated in a simple way, '* in order to prevent the
application of the preprocessing technique of [18]. All the instances are unsatisfiable.

In total, our benchmark set consists of 1312 instances.

12. Each ite(c,t, e) has been replaced by a fresh variable v, and the constraint (¢ = v =t) A (-¢c — v =€)
has been added to the formula.
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ALL benchmarks
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Configurations:

‘default’: all heuristics enabled  ‘int.cuts’: use cuts from proofs in the internal b.&b.
‘no int.”: disable internal b.&b.  ‘int.cuts unl.’: internal b.&b. w/o timeout, with cuts
‘no eq.”: disable equality elim. ‘baseline’: disable equality elim. and internal b.&b.

Figure 6. Comparison among different L A(Z)-heuristics in MATHS AT (all benchmarks).

6.2 Evaluation

In the first part of our evaluation, we compare MATHSATS5 with state-of-the-art SMT
solvers for LA(Z), namely SATEEN [18] (winner of the 2009 SMT-COMP competition on
QF _LIA), Z3 [11] (winner of 2008 '**) and YICES2 (the new version of the popular YICES
solver [13]). ' The results are collected in Figures 3-5. The plots show the accumulated
time (on the X axis) for solving a given number of instances (on the Y axis) within the
timeout, both for each individual benchmark family as well as for all the benchmarks. They
show that, with the exception of the CUT_LEMMAS family on which Y1CES2 has very good
performances, MATHSATS5 outperforms the other solvers: overall, MATHSATS can solve
about 38% more problems than the closest competitor YICES2, with a significantly shorter

13. We have however used version 2.4 of Z3, which is newer than the one of SMT-COMP’08.
14. We would have liked to compare also with the tool of [12], but it was not possible to obtain it.
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Figure 7. Comparison among different £.A(Z)-heuristics in MATHSAT5 (CAV09 and CON-
VERT benchmarks).

total execution time. We remark that MATHSATS implements the same £.A(Q)-procedure
of [13] as Z3 and YICES2, and its performance on SMT(LA(Q)) is comparable to that of
these two solvers.

In the second part of our experiments, we compare different configurations of MATH-
SATS5, in order to evaluate the effectiveness of our techniques and heuristics. The results
are shown in Figures 6-8. We ran MATHSATS5 with equality elimination and tightening
disabled (‘no eq.’), with the internal branch and bound disabled (‘no int.”), with both dis-
abled (‘baseline’), using the cuts from proofs technique of [12] also in the internal branch

2
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Figure 8. Comparison among different £.A4(Z)-heuristics in MATHSAT5 (CUT_LEMMAS and
RINGS_PREPROCESSED benchmarks).

and bound, and not only in splitting on-demand (‘int.cuts’), and with an unlimited internal
branch and bound (‘int. cuts unl.’, thus effectively disabling splitting on-demand). The
results show that all the techniques and heuristics described in this paper contribute to the
performance of the solver. The default configuration is not the best one only for the CAV09
family, for which applying the cuts from proofs technique of [12] more eagerly allows to solve
9 more instances (out of 600). However, this worsens performance in general, especially on
the instances of the CONVERT family.
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7. Conclusions

We have presented a new theory solver for Linear Integer Arithmetic in a lazy SMT context,
whose distinguishing feature is an extensive use of layering and heuristics for combining dif-
ferent techniques. Our experimental evaluation demonstrates the potential of the approach,
showing significant improvements on a variety of benchmarks wrt. approaches used in cur-
rent state-of-the-art SMT solvers.
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