
Journal on Satisfiability, Boolean Modeling and Computation 7 (2010) 83-88

QuBE7.0

system description

Enrico Giunchiglia enrico.giunchiglia@unige.it

Paolo Marin paolo.marin@unige.it

Massimo Narizzano massimo.narizzano@unige.it

DIST - Università di Genova

Viale Causa 13, 16145 Genova

Italy

Abstract

In this paper we outline QuBE7’s main features, describing first the options of the
preprocessors, and then giving some details about how the core search-based solver (i)
performs unit and pure literal propagation; and (ii) performs the “Conflict Analysis proce-
dure” for non-chronological backtracking, generalised from the SAT to the QBF case. We
conclude with the experimental evaluation, showing that QuBE7.0 is the a state-of-the-art
single-engine QBF solver.

Keywords: QBF, solver, preprocessor

Submitted March 2010; revised May 2010; published August 2010

1. Introduction

Quantified Boolean Formulas are a powerful extension of the Satisfiability (SAT) problem
in which variables are universally as well as existentially quantified. QuBE is a state-of-
the-art QBF solver, and since its advent, it has been kept up-to-date for solving more and
more complex problems. In the last QBF Evaluations it has always been in the top-ranked
solvers. In this paper we outline the latest QuBE’s features, starting from the techniques
that can be enabled/disabled during the preprocessing phase. We then move on to the
core search-based solver, giving some details about the differences from the older QuBE6.x
version, which are mainly (i) in the algorithm for propagating unit and pure literals; and (ii)
in the “Conflict Analysis procedure” [12, 11] that we generalised from the SAT to the QBF
case, performed to compute the asserting clause (resp. term) when it non-chronologically
backtracks from a conflict (solution). We conclude with the experimental analysis in which,
after fixing the bugs found during the latest evaluation, we ran QuBE7 on the same test-bed
of QBFEVAL10, showing that QuBE is still a very effective, mono-engine, sequential QBF
solver. QuBE7 is available at http://www.star-lab.it/̃qube.

2. QuBE7

In the QBF Evaluation 2008, QuBE6.1 [6] resulted the most powerful mono–engine QBF
Solver: it ran hors concourse (since the evaluation was run by people in our same Depart-
ment) and was able to solve more than twice the number of instances solved by the second
solver in the rank [7]. QuBE7 is the natural evolution of QuBE6.1. It is the composition

c©2010 Delft University of Technology and the authors.

E. Giunchiglia et al.

QuBE7

sQueezeBF qubeEngine

QDIMACS file

options[]

[UN]SATsolved?to solve?

to preprocess?

QDIMACS file

Figure 1. QuBE7 framework

of two different reasoning tools: the preprocessor sQueezeBF [9] and the new search-based
core solver qubeEngine.

The framework of QuBE7 is shown in Fig. 1: given in input a Conjunctive Normal
Form (CNF) QBF (QDIMACS format, see [7]) and some optional parameters; QuBE7 can
return either the value of the input QBF or an equi-satisfiable preprocessed version of it
(if the user selects to run only the preprocessor). The input parameters allow the user
to enable/disable the built-in preprocessor (i.e. the user can choose to solve the instance
without preprocessing), and to select which techniques of the preprocessor to use (see § 2.1).
In the future, it will also be possible to select by command-line other options, such as the
heuristic function qubeEngine calls during the search, whether to enable or not the non-
chronological backtracking and learning from solution, and so on.

2.1 Preprocessor

A detailed description of sQueezeBF techniques can be found in [9, 10]. In Fig. 2(a) we
show the main algorithm of sQueezeBF. sQueezeBF takes as input a QBF ϕ, and returns a
simplified QBF, that may be empty (i.e., equivalent to true) or contain an empty clause
(i.e., equivalent to false). sQueezeBF starts saving the current state of the formula at
line 2, and then it applies four operations sequentially, i.e., Simplify(ϕ), Eq-Subs(ϕ), Eq-
Rw(ϕ), Q-resolution(ϕ). The process is repeated until no further simplification is possible
(line 9).

Simplify (line 3) gets as input the formula and simplifies it propagating all the unit
and pure literals. Moreover, it also eliminates subsumed clauses —i.e., clauses that are a
superset of another clause in ϕ, see [15])— or self-subsumed clauses, as in [10, 3].

Eq-Subs (line 4) looks first for patterns of clauses that correspond to the definitions
of the output value of logical gates AND, OR, and XOR; then it sorts their symbolic
definition building a forest in which each node is a defined variable and the edges connect
each defined variable to the variables defining it. The defined variables (together with their
definitions) can then be removed from the formula by substituting them with the right hand
side of the definition. This process starts from the roots of the forest, excluding the defined
variables whose substitution causes an increase of the size of the formula. This technique
was introduced for SAT in [3].

Eq-Rw (line 5) processes the equivalences that are discarded by Eq-Subs because leading
to an increase of the size of the formula. Briefly put, its strategy is to re-encode the original
(Tseitin [14]) definition into a new encoding related to the one introduced by Plaisted in [13]
(see [10] for more details).

84

QuBE7.0

0 function sQueezeBF(ϕ)
1 do

2 ϕ’ = ϕ
3 ϕ = Simplify(ϕ)
4 ϕ = Eq-Subs(ϕ)
5 ϕ = Eq-Rw(ϕ)
6 ϕ = Q-resolution(ϕ)
7 if ϕ ≡ true return ϕ
8 if ϕ ≡ false return ϕ
9 while ϕ’ 6= ϕ
10 return ϕ

(a) The algorithm of sQueezeBF.

0 function qubeEngine(ϕ)
1 µ = ∅
2 while (true)
3 Propagate(µ,ϕ)
4 if (empty /∈ ϕ)
5 µ.push(Heuristic(ϕ))
6 if (empty ∈ ϕ)
7 Backtrack(µ,ϕ)
8 else if (µ.top(B) == 0)
9 BuildPrimeImplicant(µ,ϕ)
10 Backtrack(µ,ϕ)
11 if (emptyClause ∈ ϕ)
12 return false

13 if (emptyTerm ∈ ϕ)
14 return true

(b) The algorithm of qubeEngine.

0 function Propagate(µ,ϕ)
1 start:
2 while ((l = µ.next(B)) 6= 0)
3 ResolveBinaries(l,µ,ϕ)
4 if (empty ∈ ϕ) return

5 while ((l = µ.next(S)) 6= 0)
6 Subsume(l,ϕ)
7 while ((l = µ.next(N)) 6= 0)
8 ResolveNaries(l,µ,ϕ)
9 if (empty ∈ ϕ) return

10 if (µ.top(B) 6= 0) goto start
11 while ((l = µ.next(P)) 6= 0)
12 Search4pure(l,µ,ϕ)
13 if (µ.top(B) 6= 0) goto start

(c) The algorithm of propagate.

Figure 2. Main Algorithms in QuBE7. ϕ is the QBF being solved, whereas µ stands for the

current assignment.

Q-resolution (line 6) can remove an existential variable x by replacing the sets of clauses
Sx (where x occurs positively) and Sx (where x occurs negatively) with the set Sx ⊗ Sx

obtained by resolving on x all the pairs of clauses from Sx and Sx, resulting in an equivalent
problem. This is executed only when the total amount of literals in the resolvents (|Sx⊗Sx|)
is less than the total amount of literals in the antecedents (|Sx| ∪ |Sx|). This technique was
introduced for QBF in Quantor [1].

2.2 Search-Based Solver qubeEngine

QuBE7 solving engine is based on the QDLL algorithm [2], and inherits the techniques
developed for the search-based solver included in QuBE6, such as pure/don’t care liter-
als detection, non-chronological backtracking and learning both for conflict and solution
analysis [8]. Data structures for unit propagation and pure literal detection are “lazy” as

85

E. Giunchiglia et al.

described in [5], but differs from that of QuBE6 as it stores binary and n-ary constraints
(from now on we will refer to clauses and terms as constraints) separately. Watched data
structures are split as well. Further, data structures and algorithms are designed to im-
prove data locality, in particular the loop executed in propagate (see Fig. 2(c)) performs
the most expensive operations (e.g. unit propagation on n-ary constraints or detection of
pure literals) when no cheap operation (e.g. unit propagation on binary constraints) is pos-
sible. To this purpose, the assignment stack µ keeps an index to the last literal assigned by
each routine, that can get the literal they still have to propagate by using µ’s method next
passing as argument B, S, N or P respectively for unit propagation on binary constraints,
subsumption of the n-ary clauses in the input QBF, unit propagation on n-ary constraints,
and pure literals detection.

The main loop (Fig. 2(b)) takes as input the formula ϕ, and calls sequentially the
following functions:

Propagate (line 3), which simplifies ϕ until no further steps are possible or an empty
constraint is found (see below for a more detailed description).

Heuristic (line 5), which picks an unassigned variable according to a scoring function,
and put that on the assignment stack. The score is computed as in QuBE6, where it depends
on the number of constraints where the variable occurs.

Backtrack (line 7), which is called in case an empty constraint was found. The proce-
dure to calculate the asserting constraint is an extension to QBF of that of MiniSat [4].
The idea is that, starting from an empty clause (resp. term), only the existential (resp.
universal) literals can be resolved, and the Unique Implication Point must be existential
(resp. universal) as well. In practice, we keep the highest decision level d of the existential
(resp. universal) variables we met while backtracking, marking as unassigned the universal
(resp. existential) variables and resolving the existential (resp. universal) variables till we
have only one existential (resp. universal) literal l having level d in the current “asserting”
clause (resp. term) X: In the problematic case in which the asserting clause (resp. term)
X contains also an unassigned universal (existential) literal occurring to the left of l in the
prefix (this is possible only if l was assigned as a unit), we cannot use X as asserting clause
(resp. term) for assigning l as unit, and thus we keep backtracking resolving l.

BuildPrimeImplicant (line 9), which is called in case there is no empty constraint and
there is not a new variable to propagate. It builds a prime implicant according to the
procedure described in [8], afterwards the procedure Backtrack is called (line 10).

If any constraint in the formula is still empty, meaning that the conflict analysis com-
puted either a 0-length clause or term, the function returns the satisfiability value of the
given formula (lines 12 and 14).

In Propagate (see Fig. 2(c)) the literals in the assignment stack are used to detect new
unit and pure literals in a lazy way. This means that unit propagation on binary constraints
is always performed first when a new literal is assigned (line 3). If this propagation does
not make any constraint empty, the assigned literals are used to subsume the clauses in the
input QBF (line 6). Then constraint propagation is done on the n-ary constraints (line 8):
if an empty constraint is found, the procedure terminates, or if a new unit literal is added to
the stack it goes back to do BCP on binary constraints. Only at this point pure literals are
detected and propagated (line 12), causing again unary propagation on binary constraints
(assuming at least one literal is put on the stack by Search4pure at line 12).

86

QuBE7.0

2.3 Command-line Options

QuBE7 available options are:

-ss : enables SelfSubsumption resolution
-qr : enables Variable Elimination by Q-Resolution
-es : enables equivalence substitution of AND/OR gates
-3e : enables equivalence substitution of XOR gates
-er : enables equivalences rewriting
-all : enables all the above preprocessing techniques
-noprepro : disables sQueezeBF, and gives the input formula to qubeEngine
-solve : solves by using qubeEngine

Invoking QuBE7 without options produces a QBF resulting from the application of
Simplify to the input QBF. For determining the value of the input QBF with the best
performances, the default options to use are -all -solve.

3. Experimental Analysis

As environment, we used a farm of 9 identical PCs, each with an Intel Core 2 Duo 2.13 GHz,
4 GB RAM, running GNU Linux Debian 2.6.18.5; the time limit was set to 1200 s and the
memory limit to 2 GB. We compare QuBE7.0 with the solvers that participated the QBF
Evaluation 2010 on the same pool of (568) fixed-structure QBF instances selected for the
main track of the same evaluation [7]. In Table 1 are shown the results. For each solver (first
column) are reported the number of problems solved within the given time and memory
limits, and the cumulative time needed (resp. second and third columns). In columns 4
and 5 (resp. 6 and 7) are listed in the same way the number of SAT (UNSAT) problems
solved and the time needed. aqme-10 is a multi-engine solver, and is the only one able
to solve more problems than QuBE7.0. For more detailed informations about the other
solvers, please refer to QBFLIB [7].

References

[1] A. Biere. Resolve and expand. In Proc. SAT 2004, 3542 of LNCS, pages 59–70.
Springer, 2004.

[2] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate Quantified Boolean
Formulae. In Proc. of the 15th National Conference on Artificial Intelligence (AAAI-
98), pages 262–267, 1998. AAAI Press.

[3] N. Eén and A. Biere. Effective Preprocessing in SAT Through Variable and Clause
Elimination. In Proc. SAT 2005, 3569 of LNCS, pages 61–75. Springer, 2005.

[4] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT 2003, 2919 of
LNCS, pp. 502–518. Springer, 2004.

[5] I. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, and A. Tacchella. Watched data
structures for QBF solvers. In Proc. SAT 2003, 2919 of LNCS, pages 25–36. Springer,
2004.

87

E. Giunchiglia et al.

Table 1. Results on the QBFEVAL10 Testset.

Solver Total Sat Unsat

Time # Time # Time

aqme-10 434 32091.1 184 15825.6 250 16265.5

QuBE7 403 44204.3 180 26342.4 223 17861.9

depqbf 370 21515.3 164 13771.8 206 7743.5

qmaiga 361 43058.1 180 20696.6 181 22361.4

depqbf-pre 356 18995.9 172 12453.8 184 6542.1

AIGSolve 329 22786.6 171 12091.5 158 10695.1

struqs-10 240 32839.7 109 13805.5 131 19034.2

nenofex-qbfeval10 225 13786.9 109 8241.9 116 5545.1

quantor-3.1 205 6711.4 100 4130.6 105 2580.7

[6] E. Giunchiglia, P. Marin, and M. Narizzano. QuBE6.x, 2008. www.star-lab.it/~qube.

[7] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas satisfi-
ability library (QBFLIB), 2001. www.qbflib.org.

[8] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence
Research (JAIR), 26:371–416, 2006.

[9] E. Giunchiglia, P. Marin, and M. Narizzano. An effective preprocessor for QBF pre-
reasoning. In 2nd International Workshop on Quantification in Constraint Program-
ming (QiCP 2008), 2008.

[10] E. Giunchiglia, P. Marin, and M. Narizzano. sQueezeBF: An Effective Preprocessor
for QBFs Based on Equivalence Reasoning. In Proc. SAT 2010, 6175 of LNCS, pages
85–98. Springer, 2010.

[11] S. Malik and L. Zhang. Conflict Driven Learning in a Quantified Boolean Satisfiability
Solver. Computer-Aided Design, International Conference on, pages 442–449, 2002.

[12] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 530–535, 2001.

[13] D. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Translation. Jour-
nal of Symbolic Computation, 2, pages 293–304, 1986.

[14] G. Tseitin. On the Complexity of Proofs in Propositional Logics. Seminars in Mathe-
matics, 8, 1970.

[15] L. Zhang. On Subsumption Removal and on-the-fly CNF Simplification. In Proc. SAT
2005, 3569 of LNCS, pages 482–489. Springer, 2005.

88

www.star-lab.it/~qube
www.qbflib.org

	Introduction
	QuBE7
	Preprocessor
	Search-Based Solver qubeEngine
	Command-line Options

	Experimental Analysis

