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Abstract

This paper is devoted to investigate resolution for quantified generalized clause-sets
(QCLS). The soundness and refutation completeness are proved. Then quantified gener-
alized Horn clause-sets are introduced for which a restricted resolution, called quantified
positive unit resolution, is proved to be sound and refutationally complete. Moreover, it is
shown that the satisfiability for quantified generalized Horn clause-sets is solvable in poly-
nomial time. On the one hand, the work of this paper can be considered as a generalization
of resolution for generalized clause-sets (CLS). On the other hand, it also can be considered
as a generalization of Q-resolution for quantified boolean CNF formulae (QCNF).
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1. Introduction

Boolean formulae and quantified boolean formulae (QBF) are widely used in computer sci-
ence and AI. Many problems (such as reasoning, planing, verification, etc) can be expressed
as satisfiability problems of boolean formulae or quantified boolean formulae. These formu-
lae use boolean variables which can be assigned two values: true, false (or 1, 0). However,
satisfiability problems with constraint variables which have more than two values occur at
many places, for example in coloring problems. A popular method to deal with these prob-
lems is to translate them into boolean satisfiability problems, but this method hides to a
certain degree the structure of the original problem. Hence it is not suitable for theoretical
studies on the structure of the original problem. So, formulae with non-boolean variables
(such as signed formulae, generalized clause-sets, etc.) have been introduced recently and
some interesting results have been obtained (see e.g. [2, 13, 14, 18]). Among these non-
boolean variables, negative monosigned literals can make formulae be processed efficiently
[14]. Kullmann has generalized boolean formulae to generalized clause-sets (CLS) by us-
ing negative monosigned literals instead of boolean literals and obtained many interesting
results [15, 16, 17] et al.

There have been some important algorithms which are proved to be powerful to solve
some hard instances of satisfiability problem. Among these algorithms, the resolution ap-
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proach plays an important role. The resolution calculus was first presented in a more
general form by Robinson in [20], while the propositional version of the method was already
introduced by A. Blake [3] in 1937, and later used by W. V. Quine et al under the name of
“consensus”(e.g., [19]). The generalization of resolution to quantified boolean CNF formu-
lae, called Q-resolution, was first introduced in [9]. Resolution and Q-resolution have not
only been applied in some SAT or QSAT solvers (e.g., [5, 21]), but also adopted to prove
some theoretical results (e.g., [10, 11, 12]). The generalization of resolution to generalized
clause-sets was sdudied in [13].

For some problems such as gaming, reasoning, planning and so on, quantifiers can make
formulae, which are encodings of these problems, more compact. Usually these formulae
(with quantifiers) are quantified boolean formulae (QBF). In case when non-boolean vari-
ables are used, quantifiers on non-boolean variables should be adopted. Parallel to quantified
boolean CNF formulae, it is natural to introduce quantified generalized clause-sets (QCLS),
which can be considered as the generalization of quantified boolean CNF formulae. Because
of non-boolean variables and quantifiers, quantified generalized clause-sets might express
some problems more naturally. In Section 3, after the formal definition of quantified gener-
alized clause-sets, we will give an example which uses quantified generalized clause-sets to
express two-person coloring game problems.

One can define generalized k-clause-sets (k-CLS) naturally as the set of clauses-sets in
which each clause has at most k literals. It is well known that the satisfiability problem
for boolean 2-CNF and Q2-CNF is tractable ([1, 6, 11]). However, this is not true for
generalized 2-clause-sets and quantified generalized 2-clause-sets. From [14] it is easy to
see that 3-coloring problem can be reduced to 2-CLS, hence the satisfiability problem for
2-CLS is NP-complete. In section 3, we show that the satisfiability problem for quantified
generalized 2-clause-sets is PSPACE-complete.

In [14, 15, 16, 17], Kullmann defined several transformations from CLS to CNF. Besides
preserving the satisfiability, these transformations preserve structural properties. Therefore,
some results on CNF formulae (e.g., CNF formulae with fixed deficiency) can be adapted
directly to CLSs. However, due to the quantifiers (in particular, the universal quantifiers for
non-boolean variables), these transformations can not be extended to quantified generalized
clause-sets with structural properties (e.g, the deficiency) preserved. This motivates us to
investigate approaches on quantified generalized clause-sets. This paper is to introduce and
investigate resolution for quantified generalized clause-sets. The soundness and refutation
completeness of this kind of resolution will be proved.

The satisfiability problem for (boolean) Horn formulae can be solved in polynomial time,
and this is also true for quantified Horn formulae. Also for some signed formulae, especially
regular signed formulae, Horn structure has also been developed (e.g., [2]). These signed
formulae are build over variables whose domains have special structure, for example, totally
ordered. A literal is of the form ↑ i :v or ↓ i :v, where v is a variable and i is a value in the
domain of v. The literal ↑ i : v (resp. ↓ i : v) means that v must take a value larger (resp.
smaller) than i. By considering literals ↑ i :v (resp. ↓ i :v) as positive (resp. negative), one
can define signed Horn formulas in the usual way. However, domains of variables in CLS
do not have such special structure. For each variable v we select exactly one literal on v as
negative and all other literals as positive. Then we introduce generalized Horn clause-sets
(HCLS), and prove that the satisfiability problem for generalized Horn clause-sets can be
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solved in polynomial time. Further, we investigate quantified generalized Horn clause-sets
(QHCLS), that is, quantified generalized clause-sets with Horn structure as matrices. It will
be shown that a restricted resolution, called quantified positive unit resolution, is sufficient
to refute false quantified generalized Horn clause-sets. Further, the satisfiability problem
for quantified generalized Horn clause-sets is shown to be tractable.

The paper is organized as follows. In Section 2 we recall the definition of generalized
clause-sets and some terminologies which will be used in this paper. Section 3 introduces
quantified generalized clause-sets (QCLS). Besides an example which shows that it is quite
natural to use QCLS to encode game problem, some properties of QCLS are also presented.
Section 4 develops resolution for quantified generalized clause-sets, the soundness and refu-
tation completeness will be proved. Section 5 is mainly devoted to the study of generalized
Horn clause-sets and quantified generalized Horn clause-sets for which the satisfiability
problem is shown to be tractable. Finally, Section 6 concludes this paper.

2. Preliminaries

In this section we recall the definition of generalized clause-sets [14, 15, 16, 17] and some
terminology which will be used later on.

The universe of variables is a countably infinite set denoted by VA, and the universe
of domains is denoted by DOM. Each variable v ∈ VA has a non-empty (value-)domain
Dv ⊆ DOM. For each v ∈ VA and each ε ∈ Dv, the pair (v, ε) is called a literal. Usually,
we use x, y, z (also with subscripts) to denote literals. If x is the literal (v, ε), then we call
v the variable of x, denoted by var(x), while ε the value of x, denoted by val(x). That is,
var(v, ε) = v, val(v, ε) = ε. Two literals x, y are called clashing literals if var(x) = var(y)
but val(x) 6= val(y).

A clause C is a finite set of literals. Let CL be the set of all clauses. We write ⊥ to
represent the empty clause. For a clause C let var(C) := {var(x) : x ∈ C}. A generalized
clause-set is a finite set F ⊆ CL. Let var(F ) :=

⋃

{var(C) : C ∈ F}. For a variable v ∈ VA
we write valv(F ) := {ε ∈ Dv|∃C ∈ F : (v, ε) ∈ C}. The empty generalized clause-set is
denoted by ⊤.

A partial assignment is a map ϕ such that dom(ϕ) ⊆ VA and ϕ(v) ∈ Dv for all v ∈
dom(ϕ). Let n(ϕ) := |dom(ϕ)| be the number of elements in the domain of ϕ. ∅ is the empty
partial assignment. For convenience the partial assignment ϕ with dom(ϕ) = {v1, . . . , vm}
and ϕ(vi) = εi is written as 〈v1 → ε1, . . . , vm → εm〉. We shorten partial assignment to
assignment in this paper.

For a literal (v, ε) and a assignment ϕ with v ∈ dom(ϕ), we say (v, ε) is true (resp. false)
under ϕ if ϕ(v) 6= ε (resp. ϕ(v) = ε). For a clause C and a assignment ϕ, if there is a literal
x such that var(x) ∈ var(C)∩dom(ϕ) and x is true under ϕ (i.e., ϕ(var(x)) 6= val(x)), we say
ϕ satisfies C. If for all x ∈ C, either var(x) 6∈ dom(ϕ) or ϕ(var(x)) = val(x), then ϕ do not
satisfy C. In [14, 15, 16, 17], it is required that clauses should not contain clashing literals.
The reason is that if C contains clashing literals x, y, then C is satisfied by any assignment
ϕ such that var(x) ∈ dom(ϕ). That is, a clause with clashing literals can be considered as
a “tautology”. This paper also requires that clauses should not contain clashing literals.

For a assignment ϕ we write the clause {(v, ϕ(v)) : v ∈ dom(ϕ)} as Cϕ, that is, Cϕ

denote the literals of C which are false under ϕ. For a clause C we can define an associated
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assignment ϕC by dom(ϕC) := var(C), ϕC(v) := ε if (v, ε) ∈ C. For a generalized clause-set
F and a assignment ϕ the result of application of ϕ on F is defined as

ϕ ∗ F = {C
′

: ∃C ∈ F, C is not satisfied by ϕ and C
′

= C \ Cϕ},

Obviously ϕ ∗ F is obtained from F by first deleting all clauses which are satisfied by ϕ,
then deleting from the remaining clauses all literals which are false under ϕ. We say F is
satisfied by ϕ if ϕ ∗F is empty. A generalized clause-set is said to be satisfiable if it can be
satisfied by some assignments.

For two assignments ϕ and φ, we define φ◦ϕ as follows. dom(φ◦ϕ) := dom(φ)∪dom(ϕ).
For a variable v ∈ dom(φ◦ϕ), if v ∈ dom(ϕ), then φ◦ϕ(v) = ϕ(v), else φ◦ϕ(v) = φ(v). So for
a generalized clause-set F , (φ◦ϕ)∗F is the generalized clause-set obtained by first applying
ϕ on F then applying φ on the resulting clause-set. Obviously if var(ϕ) ∩ var(φ) = ∅, then
(ϕ ◦ φ) ∗ F = (φ ◦ ϕ) ∗ F .

3. Quantified Generalized Clause-sets

In this section, quantified generalized clause-sets will be introduced, and some properties
of them which will be used in later sections will be shown. Roughly speaking, quantified
generalized clause-sets are formulae obtained by adding a quantifier prefix to generalized
clause-sets.

Definition 1. The class of quantified generalized clause-sets (QCLS) is the least set sat-
isfying the following conditions:

1. Every generalized clause-set is a quantified generalized clause-set.

2. For a variable v ∈ VA and a quantified generalized clause-set Φ, both ∀vΦ and ∃vΦ
are quantified generalized clause-sets.

It is easy to see that quantified generalized clause-sets have structures like Q1v1 . . . Qnvnα,
where Qi ∈ {∃,∀} and α is a generalized clause-set. The part Q1v1 . . . Qnvn is called the
prefix, α is the matrix. We use upper case Greek letters such as Φ, Ψ (or with subscripts)
to denote quantified generalized clause-sets. Sometimes we use an abbreviation and write
Φ = Qα. The variables following ∃ (resp. ∀) directly are called existential (resp. universal)
variables, literals on existential (resp. universal) variables are called existential (resp. uni-
versal) literals. For a quantified generalized clause-set Φ = Q1v1 . . . Qnvnα, we use var(Φ)
to represent the set of variables occurring in Φ, that is, var(Φ) = {v1, . . . , vn} ∪ var(α).

For a quantified generalized clause-set Φ = Q1v1 . . . Qnvnα, if var(α) ⊆ {v1, . . . , vn}
we say that Φ is closed. If Φ is not closed, there must be some v ∈ var(α) such that
v /∈ {v1, . . . , vn}, and these variables are called free variables. The set of all free variables
in Φ is denoted by free(Φ), whereas variables occurring in the prefix are called bounded
variables. For our later purpose, we define an (partial) order “ < ” on variables of Φ. For
two bounded variables vi, vj , we say vi is smaller than vj if i < j, that is, vi is on the left of
vj in the prefix; free variables are always smaller than bounded variables (by convention).
This order can be extended to literals as follows: a literal x is smaller than a literal y if
var(x) is smaller than var(y).
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For a quantified generalized clause-set Φ = Qα and an assignment ϕ, we define the value
of Φ as follows.

Definition 2. Consider Φ ∈ QCLS and an assignment ϕ such that free(Φ) ⊆ dom(ϕ). The
value of Φ under ϕ, denoted by Vϕ(Φ), is defined inductively as follows:

1. If the prefix of Φ is empty, i.e., Φ is a generalized clause-set α, then

Vϕ(Φ) =

{

1, if ϕ ∗ α = ⊤
0, if ⊥ ∈ ϕ ∗ α

2. If Φ = ∃vΨ, then Vϕ(Φ) = max{Vϕ◦〈v→ε〉(Ψ) : ε ∈ Dv}.

3. If Φ = ∀vΨ, then Vϕ(Φ) = min{Vϕ◦〈v→ε〉(Ψ) : ε ∈ Dv}.

Where, in item 2. and 3. max(resp. min) is the operation which selects the maximal (resp.
minimal) element of a set.

We say Φ is satisfiable if there is some assignment ϕ such that Vϕ(Φ) = 1.

The next example shows that quantified generalized clause-sets can be used to encode
the two-person (∀ and ∃) coloring game problem, and player ∃ has a winning strategy if
and only if the quantified generalized clause-set coded for the game problem is satisfiable.

Example 3. Given a hypergraph G = (V, H) and a set Col of colors, where we equip
the set of vertices V = {v1, . . . , v2k} with a total order < such that vi < vj when i < j.
Two players, called ∀ and ∃, color vertices of G with colors in Col by the order of V in
turn, and player ∀ plays first. Player ∃ wins the game if and only if G is Col-colored,
that is, for each hyperedge hi ∈ H = {h1, . . . , hn}, there must be at least two vertices in
hi with different colors. We use V as the set of variables and Col as the domain of each
variable. Then this problem can be encoded naturally as a quantified generalized clause-set
Qα. The prefix Q is ∀v1∃v2, . . . ,∀v2k−1∃v2k, and α = α1 ∪ · · · ∪ αn, where αi is the clause
set representing that the hyperedge hi should be “monochromatic”, that is, αi is the set of
all clauses C = {(v, c)|v ∈ hi} for each c ∈ Col.

Consider a hypergraph (V, H) with V = {v1, v2, v3, v4}, H = {{v1, v2}, {v1, v3, v4}}, and
Col = {0, 1, 2}. Then the encoded formula Qα is ∀v1∃v2∀v3∃v4(α1 ∪ α2), where

α1 = {{(v1, 0), (v2, 0)}, {(v1, 1), (v2, 1)}, {(v1, 2), (v2, 2)}}, and
α2 = {{(v1, 0), (v3, 0), (v4, 0)}, {(v1, 1), (v3, 1), (v4, 1)}, {(v1, 2), (v3, 2), (v4, 2)}}.
It is not hard to see that Qα is satisfiable. Hence player ∃ has a winning strategy. More

precisely, whatever color is assigned to v1 by player ∀, player ∃ can assigned a different
color to v2. After player ∀ assigns a color to v3, player ∃ colors v4 differently.

In Example 3, if G is restricted to be a graph (i.e., each edge has two vertices), and Col
has k colors, the game is termed as GRAPH k-COLORING GAME problem in [4], which
has been proved to be PSPACE-complete for k ≥ 3 (see [4]). It is easy to see that the
encoding of GRAPH k-COLORING GAME problem is a quantified generalized clause-set
in which each clause consists of two literals.

From Definition 2 we can see that the values of bounded variables under an assignment
have no effect on the value of the quantified generalized clause-set. Especially, if Φ is a
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closed quantified generalized clause-set, then Φ has the same value under all assignments,
either 1 (true) or 0 (false). Thus, for closed quantified generalized clause-sets we call them
true or false instead of satisfiable or unsatisfiable.

For a quantified generalized clause-set Φ = Q1v1 . . . Qnvnα and an assignment ϕ such
that free(Φ) ⊆ dom(ϕ) and {v1, . . . , vn} ∩ dom(ϕ) = ∅, it is easy to see that

Vϕ(Φ) = 1 if and only if Q1v1 . . . Qnvn(ϕ ∗ α) is true.

For a variable v ∈ var(Φ), if Dv contains exactly one value ε, then any assignment with v
in its domain must assign ε to v, and hence any occurrence of (v, ε) can be removed without
changing the satisfiability. So, in this paper, we demand |Dv| ≥ 2 for any variable v.

Suppose Φ is a quantified generalized clause-set with free variables among {v1, . . . , vk}.
From Definition 2 it is easy to see that Φ is satisfiable if and only if ∃v1 . . .∃vkΦ is true.

Since each variable can only take a fixed number of values, it is easy to see that the
problem of determining the satisfiability of quantified generalized clause-sets is in PSPACE.
On the other hand, quantified boolean formulae are also quantified generalized clause-sets,
so we get the following proposition.

Proposition 4. The satisfiability problem for quantified generalized clause-sets is PSPACE-
complete.

It is well known that the satisfiability problem for boolean 2-CNF formulae (resp. quan-
tified boolean 2-CNF formulae) can be solved in polynomial time (e.g., [1, 6, 11]). How-
ever these results can not be extended to generalized clause-set and quantified generalized
clause-set. We denote by 2-CLS (resp. Q2-CLS) the subclass of generalized clause-sets
(resp. quantified generalized clause-sets) in which each clause has at most two literals. The
satisfiability problem becomes NP-complete for 2-CLS (in fact, 3-coloring problem can be
reduced to the satisfiability problem of 2-CLS). Next proposition states that the satisfiability
problem for Q2-CLS is PSPACE-complete.

Proposition 5. The satisfiability problem for Q2-CLS is PSPACE-complete.

Proof. We have mentioned in Example 3 that GRAPH k-COLOURING GAME problem,
which has been proved to be PSPACE-complete in [4] when k ≥ 3, can be encoded into a
quantified 2-clauses-set, in which each clause consists of two literals. The assertion follows.

Definition 6. Two quantified generalized clause-sets Φ and Ψ are equivalent, in symbols
Φ ≈ Ψ, if and only if for every assignment ϕ such that free(Φ)∪ free(Ψ) ⊆ dom(ϕ) we have
Vϕ(Φ) = Vϕ(Ψ).

The next proposition shows that equivalent transformations of the matrix do not affect
the satisfiability of the whole quantified generalized clause-set.

Proposition 7. Let Q be a prefix, Φ and Ψ quantified generalized clause-sets. Then Φ ≈
Ψ =⇒ QΦ ≈ QΨ
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Proof. We proceed by induction on the length of the prefix. If the prefix Q is empty then
the proposition holds trivially. Assume that for any prefix whose length is smaller than Q,
the proposition holds. Next we will prove that the proposition holds for Q, there are two
cases.

Suppose Q = ∃vQ′. For every assignment ϕ such that free(Φ) ∪ free(Ψ) ⊆ dom(ϕ) we
have:

Vϕ(QΦ) = Vϕ(∃vQ′Φ) = max{Vϕ◦〈v→ε〉(Q
′Φ) : ε ∈ Dv}.

Vϕ(QΨ) = Vϕ(∃vQ′Ψ) = max{Vϕ◦〈v→ε〉(Q
′Ψ) : ε ∈ Dv}.

By the induction hypothesis we have Vϕ◦〈v→ε〉(Q
′Φ) = Vϕ◦〈v→ε〉(Q

′Ψ) for every ε ∈ Dv. The
theorem follows.

For the case Q = ∀vQ′ we can show QΦ ≈ QΨ in the same way.

Given a quantified generalized clause-set Φ = Qα, let C = {x1, . . . , xk} be a clause in α
such that x1 < · · · < xk (for the order between literals please see the paragraph following
Definition 1). Please note that if xk is a universal literal then deleting xk from C will not
change the value of Φ. So the following proposition is obvious.

Proposition 8. Consider Φ = Qα ∈ QCLS, and C1, . . . , Cn are some non-tautological
clauses in α. For each i = 1, . . . , n, we remove all universal literals in Ci which are not
smaller than any existential literal in Ci, and the result clauses are denoted by C ′

i. We have
Φ ≈ Q((α \ {C1, . . . , Cn}) ∪ {C ′

1, . . . , C
′
n}).

From the above proposition, one might think that a clause should not contain largest uni-
versal literals because they can be removed without changing the satisfiability, but through
the application of partial assignment such largest universal literals can be created, thus
one had to alter the definition of application of partial assignments, which perhaps is too
cumbersome. Thus, we do not forbid occurrences of largest universal literals, but we will
removed them during Q-resolution (see Definition 10 in next section) .

4. Resolution for Quantified Generalized Clause-sets

Resolution is a powerful tool for investigating the satisfiability problem of boolean CNF
formulae, the idea is based on uniting two clauses (X ∨ z) and (Y ∨ ¬z) into one clause
(X∨Y ), where X and Y are disjunctions of boolean literals. In this section we introduce the
resolution for quantified generalized clause-sets and prove the soundness and refutational
completeness.

For a clause C and a variable v, we write {v} ∗C to denote the clause obtained from C
by deleting literals on v.

Definition 9. ([13, 14]) For a variable v and a group of non-tautological clauses C1,. . . ,

C|Dv |, if valv({C1, . . . , C|Dv |}) = Dv and the set R =
⋃|Dv |

i=1 {v} ∗ Ci is a non-tautological
clause, we say this group of clauses can be resolved on v, and C1, . . . , C|Dv | are called parent
clauses, while R is called the the resolvent.

From [13] we learn that the resolution defined above is sound and refutationally com-
plete. More precisely, for a generalized clause-set F , we have

• F is equivalent to any clause-set obtained by adding a resolvent.

23



J. Jin and X. Zhao

• F is unsatisfiable if and only if the empty set can be derived by a sequence of resolution
steps.

Now we extend the above definition to quantified generalized clause-sets. For simplicity,
we only consider closed quantified generalized clause-sets. This is not a restriction, because
we are concerned with satisfiability, and ∃v1 · · · ∃vkΦ has the same satisfiability with Φ, and
it is closed if free(Φ) = {v1, · · · , vk}.

Definition 10. For Φ = Qα ∈ QCLS, if there exists an existential variable v and a group
of non-tautological clauses C1, . . . , C|Dv | ∈ α such that valv({C1, . . . , C|Dv |}) = Dv, then we
define a set R of literals as follows.

1. From each Ci (i ∈ {1, . . . , |Dv|}) delete all universal literals which are bigger than all
existential literal in Ci. These new clauses are denoted by C

′

1, . . . , C
′

|Dv |
.

2. Construct a new set R :=
⋃|Dv |

i=1 {v} ∗ C
′

i .

If the new set R is a non-tautological clause, the operation above is called a Q-resolution
step, R is called the resolvent, and C1, . . . , C|Dv | are called the parent clauses. In symbols,

Φ | 1
Q-res

R.

Example 11. Let Φ = ∀v1∃v2∀v3∃v4{C1, C2, C3, C4, C5} be a quantified generalized clause-
set, where C1 = {(v1, 0), (v2, 0), (v4, 0)}, C2 = {(v3, 1), (v4, 1)}, C3 = {(v4, 2), }, C4 = {(v2, 1)},
C5 = {(v2, 2)}, and Dv1

= Dv2
= Dv3

= Dv4
= {0, 1, 2}. First we can resolve clauses

C1, C2, C3 on v4 and obtain the resolvent C6 := {(v1, 0), (v2, 0), (v3, 1)}, then resolve C4, C5, C6

on v2 and get the resolvent C7 := {(v1, 0)} which consists of only one universal literal. The
resolution steps are illustrated by Fig. 1 below.

C1 C2 C3

C6 = {(v1, 0), (v2, 0), (v3, 1)} C4 C5

C7 = {(v1, 0)}

Fig. 1

Next we show that adding the resolvent to a quantified generalized clause-set does not
affect the truth value.

Theorem 12. For Φ = Qα ∈ QCLS and a clause R, if Φ | 1
Q-res

R, then Qα ≈ Q(α∪{R}).
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Proof. Let C1, . . . , C|Dv | be parent clauses, and R =
⋃|Dv |

i=1 {v} ∗ C
′

i , where C ′
1, . . . , C ′

|Dv |

are clauses obtained as in Definition 10. Then by Proposition 8 we have Φ ≈ Qα′, where
α′ = (α \ {C1, . . . , C|Dv |}) ∪ {C ′

1, . . . , C
′
|Dv |

}.

Now we can apply a resolution step to derive R from C ′
1, . . . , C

′
|Dv |

which is on the same

variable as the Q-resolution step, then α′ | 1
Res

R (where | 1
Res

represents the derivability

by one resolution step for generalized clause-sets).

As mentioned above the resolution for generalized clause-sets is sound, so α′ ≈ α′∪{R}.
By Proposition 7, we have Qα′ ≈ Q(α′∪{R}). Again by Proposition 8 we have Q(α∪{R}) ≈
Q(α′ ∪ {R}), so Φ ≈ Q(α ∪ {R}).

Definition 13. Consider Φ = Qα ∈ QCLS and a sequence of clauses C1, . . . , Cn. If for
each i = 1, . . . , n, Ci is either a clause in α or the resolvent of some clauses before it in the
sequence, then we say C1, . . . , Cn is a Q-resolution sequence from Φ. We say Ci is derivable
from Φ by Q-resolution for i = 1, . . . , n, in symbols, Φ |

Q-res
Ci.

From Definition 13 it is easy to see that if C is a clause of Φ, then C is derivable from
Φ by Q-resolution. A clause without existential literals is called a universal clause. In
particular, the empty clause ⊥ is a universal clause. Obviously, a quantified generalized
clause-set with a non-tautological universal clause is always false.

Next we explain concepts of refutational completeness and soundness. A resolution
approach is said to be refutational complete for a subclass of quantified generalized clause-
sets if some universal clause can be derived by a sequence of resolution steps from any
unsatisfiable quantified clause-set in the class. Whereas, the soundness means that: for any
Φ in the class, if some universal clause can be derived by the resolution from Φ, then Φ is
unsatisfiable.

Remark 14. Consider Φ = Q′vQα, ε ∈ Dv, Q′ ∈ {∃,∀} and C1, . . . , Cn is a Q-resolution
sequence from the quantified generalized clause-set Q(〈v → ε〉∗α), denoted by Φε. Recall that
Φε is obtained from Qα by (1) deleting all clauses containing a literal (v, ε′) with ε′ 6= ε, and
(2) deleting all occurrences of the literals (v, ε) from the remaining clauses. Then we can
obtain a Q-resolution sequence C ′

1, . . . , C
′
n from Φ by inductively recovering the occurrences

of (v, ε) as follows. For each Ci, i ≤ n,

• if Ci is a clause in Φ then C ′
i = Ci,

• if Ci ∈ Φε, and {(v, ε)} ∪ Ci ∈ Φ, then C ′
i = {(v, ε)} ∪ Ci,

• if Ci is obtained from Ci1 , . . . , Cik (i1, . . . , ik < i) by a Q-resolution step, then C ′
i is

the resolvent of C ′
i1

, . . . , C ′
ik

The above “lifting” process is a quit common approach in proofs about resolution, e.g.
in first order logic.

We conclude this section by proving the refutational completeness and soundness of Q-
resolution for quantified generalized clause-sets. For simplicity we suppose that tautological
clauses do not occur in the (original) quantified generalized clause-set.
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Theorem 15. For any quantified generalized clause-set Φ,

Φ is false if and only if Φ |
Q-res

R for some universal clause R.

Proof. The direction from right to left follows from Theorem 12. Now we prove the inverse
direction by induction on the length of the prefix.

If Φ = ⊥, then the theorem holds trivially. Suppose Φ = ∃vα where α is a generalized
clause-set (please recall that Φ is closed). Since Φ is false, α is unsatisfiable. So, α must
contain clauses {(v, ε1)}, . . . , {(v, εn)}, where Dv = {ε1, . . . , εn}. It is easy to see that
Φ | 1

Q-res
⊥.

Suppose Φ = ∀vα where α is a generalized clause-set. Then all clauses in α are universal
clauses. Since Φ is false, α is non-empty. So, there is a clause C ∈ α, and we have
Φ |

Q-res
C.

Suppose Φ = ∃vQα, and assume that the theorem holds for quantified clause-sets with
prefix Q. Because Φ is false, for each εi ∈ Dv = {ε1, . . . , εn}, the quantified generalized
clause-set Q(〈v → εi〉 ∗ α), denoted by Φεi

, is false. By the induction hypothesis we have
Φεi

|
Q-res

Rεi
, Rεi

is a universal clause. That is, there is a Q-resolution sequence Πεi

of Rεi
from Φεi

. Then by Remark 14 we can obtain a Q-resolution sequence from Φ by
inductively recovering the occurrences of the literal (v, εi) to clauses in Πεi

. Thus, we have
either Φ |

Q-res
Rεi

or Φ |
Q-res

{(v, εi)} ∪ Rεi
. If Φ |

Q-res
Rεi

for some εi ∈ Dv, then

the theorem follows. So, we assume that Φ |
Q-res

{(v, εi)} ∪ Rεi
for each εi ∈ Dv. Then

we can obtain the empty clause ⊥ by resolving clauses {(v, ε1)} ∪ Rεi
, . . . , {(v, εn)} ∪ Rεn

.
Therefore, Φ |

Q-res
⊥. The theorem follows.

Suppose Φ = ∀vQα, and assume that the theorem holds for quantified clause-sets with
prefix Q. Because Φ is false, there must be a εi ∈ Dv such that the quantified generalized
clause-set Φεi

is false, where Φεi
is obtained by the same way as in the above paragraph. By

the induction hypothesis we have Φεi
|
Q-res

Rεi
for some universal clause Rεi

. By the same

argument as in the above paragraph, we have either Φ |
Q-res

Rεi
or Φ |

Q-res
{(v, εi)}∪Rεi

.

Both resolvents are universal clauses, and we complete the proof.

5. Quantified Generalized Horn Clause-sets

The class of boolean Horn formulae (in which each clause contains at most one positive
literal) is a well-known tractable class in propositional logic. Please note that a boolean
variable v is a variable with domain Dv = {0, 1}. The literal v can be considered as (v, 0)
while the literal ¬v can be considered as (v,1). For a boolean variable v, we always take ¬v
(i.e. (v, 1)) as a negative literal while v (i.e. (v, 0)) as a positive one (In fact, if we would
take (v, 0) as negative then we get the notion of dual Horn formulae). For each non-boolean
variable v we can specify exactly one value ε ∈ Dv and consider (v, ε) as negative and others
as positive. Then we can define generalized Horn formulae as those in which each clause
contains at most one positive literal.

Before the definition of generalized Horn clause-sets, we explain why we do not adopt the
alternative definition of h-Horn clause-sets by selecting (v, h(v)) as positive and all others
as negative. Considering a boolean Horn clause-sets F without the empty clause, the two
basic facts are:
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1. If F has no unit-clause, then the assignment φ which sets all variables to 0 satisfies
F .

2. If φ does not satisfy F , then there exists a positive unit-clause v in F , and after
deleting clauses containing v, removing all ¬v, the formula is still staying in the class
of (boolean) Horn clause-sets.

Suppose we declare (v, e) as positive if e = h(v) and negative otherwise, then the partial
assignment h plays the same role as φ above, i.e., they both set positive literals to be
false. If F is a Horn clause-sets with no unit-clause then h satisfies F. Unfortunately,
property 2 above fails. In fact we are able to show that, using this more liberal definition
of “generalized Horn clause-sets”, one actually obtains an NP-complete class. One can
reduce the satisfiability problem of boolean CNF formulae to the satisfiability problem of
generalized Horn clause-sets as follows: For each boolean CNF formula F , first we expand
the domain of boolean variables {0, 1} to {0, 1, 2}, and select (v, 2) as positive for each
variable v; then for each v ∈ var(F ) we change v to (v, 0), ¬v to (v, 1), and add positive unit
clauses {(v, 2)}. Obviously the resulting formula F ′ is clearly “Horn” and F ′ is satisfiable
if and only if F is satisfiable.

Definition 16. Let h : VA →
⋃

v∈VA Dv be a map such that h(v) ∈ Dv for every v ∈ VA.
Then (v, h(v)) is called an h-negative literal, whereas every literal (v, ε) with ε 6= h(v) is
called an h-positive literal.

A clause is called an h-Horn clause if it contains at most one h-positive literal or it is
⊥.

A generalized clause-set where all clauses are h-Horn clauses is called a generalized
h-Horn clause-set.

Definition 17. A generalized clause-set is called a generalized Horn clause-set if it is a
generalized h-Horn clause-set for some map h : VA →

⋃

v∈VA Dv

Lemma 18. The class of generalized Horn clause-sets is decidable in polynomial time.

Proof. Our approach to recognize generalized Horn clause-sets is similar to the algorithm
deciding whether a boolean CNF formula is renamable Horn. That is, we shall construct
a polynomial-time transformation T from generalized clause-sets F to boolean 2-CNF for-
mulae such that F is generalized Horn if and only if T (F ) is satisfiable.

For each variable v ∈ var(F ) and each ε ∈ Dv, we introduce a boolean variable pos(v, ε)
which means that (v, ε) is positive.

Consider an arbitrary clause C = {(v1, ε1), . . . , (vk, εk)} in F . Since any Horn clause
contains at most one positive literal, we need the following boolean formula

S(C) = {¬pos(vi, εi) ∨ ¬pos(vj , εj) | 1 ≤ i 6= j ≤ k}.

Please note that for each variable v, we can take only one literal with variable v as
negative. This can be expressed as

N(v) = {pos(v, ε1) ∨ pos(v, ε2) | ε1 6= ε2 ∈ Dv}, and
N ′(v) := {

∨

ε∈Dv
¬pos(v, ε)}.
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Please note that N ′(v) consists of only one clause which may contain more than two
literals. Fortunately, N ′(v) can be omitted for our purpose, because when N ′(v) can’t be
satisfied we can select arbitrary value as negative. Define

T (F ) :=

(

∧

C∈F

S(C)

)

∧





∧

v∈var(F )

N(v)



 .

Our next task is to prove that F is a generalized Horn clause-set if and only if T (F ) is
satisfiable.

For the direction from left to right we suppose F is generalized Horn. Then for some
mapping h : VA →

⋃

v∈VA Dv, F is h-Horn. Now we define a truth assignment ϕ on
variables like pos(v, ε) as follows.

ϕ(pos(v, ε)) = 1 if and only if (v, ε) is h-positive, i.e., h(v) 6= ε.
Since each clause C contains at most one h-positive literal, it follows that S(C) is

satisfied by ϕ. Similarly, N(v) is also satisfied by ϕ because for each v only the literal
(v, h(v)) is h-negative, that is, ϕ(pos(v, h(v)) = 0.

For the inverse direction we suppose T (F ) is satisfiable. Let ϕ be a satisfying truth
assignment on variables like pos(v, ε). For each variable v ∈ var(F ), due to the formula
N(v), there is at most one ε ∈ Dv such that ϕ(pos(v, ε)) = 0). Now we can define a mapping
h : VA →

⋃

v∈VA Dv as follows. For each v, if ϕ(pos(v, ε) = 0 for some ε ∈ Dv, then let
h(v) := ε; otherwise pick any one ε ∈ Dv and let h(v) = ε.

It is easy to see for each variable v ∈ var(F ) and ε ∈ Dv that (v, ε) is h-positive implies
ϕ(pos(v, ε)) = 1. Thus each clause C of F contains at most one h-positive literal since ϕ
satisfies S(C).

Obviously, the transformation S costs polynomial time. The theorem follows because
the satisfiability problem for boolean 2-CNF formulae is solvable in linear time.

From the proof of Lemma 18, we can see that if a generalized clause-set F is generalized
Horn, then a map h witnessing that F is h-Horn can be computed in polynomial time. So,
we will fix a map h : VA →

⋃

v∈VA Dv, and only consider generalized h-Horn clause-sets.

Let us recall a standard translation in [14, 15, 16, 17] from generalized clause-set to
boolean CNF formulae.

• For every literal (v, ε) we consider a boolean variable τ((v, ε)) expressing that v shall
not get value ε.

• Clauses C are translated to positive boolean clauses τ(C) by replacing each literals
x ∈ C with the positive boolean literals τ(x).

• Adding ALO clauses to require that each variable gets at least one value. For a
variable v with Dv = {ε1, . . . , εn} the ALOv clause is {¬τ((v, ε1))∨ · · · ∨¬τ((v, εn))}.

That is, a generalized clause-set F is translated to Θ(F ) = {τ(C) | C ∈ F} ∪ {ALOv |
v ∈ var(F )} which has the same satisfiability as F , where “the same satisfiability” means
F is satisfiable if and only if Θ(F ) is satisfiable. Suppose F is h-Horn, for every negative
literal x, we rename τ(x) to ¬τ(x). Clearly, for every C ∈ F , τ(C) becomes a Horn clause
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after renaming. Further, since there is exactly one literal on v is h-negative, after renaming
only one negative literal in ALOv = {¬τ((v, ε1)) ∨ · · · ∨ ¬τ((v, εn))} becomes positive.
Consequently, Θ(F ) is renameable Horn.

As an example, consider

F = {{(v, 0), (w, 0)}, {(v, 1), (w, 0)}, {(v, 0), (w, 2)}, {(w, 1)}, {(v, 2)}}

with Dv = Dw = {0, 1, 2}. For F we choose (v, 0), (w, 0) as negative and (v, 1), (v, 2),
(w, 1), (w, 2) as positive. For convenience we use xi (resp. yi) to represent τ((v, i)) (resp.
τ((w, i))), then τ(F ) = α ∧ β, where

α = (x0 ∨ y0) ∧ (x1 ∨ y0) ∧ (x0 ∨ y2) ∧ y1 ∧ x2,
β = ALOv ∧ ALOw = (¬x0 ∨ ¬x1 ∨ ¬x2) ∧ (¬y0 ∨ ¬y1 ∨ ¬y2).

Clearly, if replace x0, y0 by ¬x0,¬y0, respectively, then Θ(F ) becomes Horn.

The translation and the renaming cost polynomial time. Since the satisfiability for
boolean Horn formulae is decidable in linear time, we obtain the following lemma.

Lemma 19. The satisfiability problem for generalized h-Horn clause-sets can be solved in
polynomial time.

Now, we can test the satisfiability of an h-Horn clause-set F by at first translating it to
Θ(F ), then renaming Θ(F ) to a Horn formula, and then checking the satisfiability of the
Horn formula. However, we shall show that the satisfiability of Horn clause-sets can also
be decided by directly applying a restricted resolution.

A clause is called an h-positive unit clause if it contains only one literal, and the literal
is h-positive. Positive unit resolution (P-U-resolution) is the resolution defined in Definition
9 with all but one of the parent clauses are h-positive unit clauses.

Next we will prove that P-U-resolution is sound and refutationally complete for gener-
alized h-Horn clause-sets.

Lemma 20. For a generalized h-Horn clause-set F , F is unsatisfiable if and only if
F |

P-U-res
⊥, where |

P-U-res
represents the derivability by P-U-resolution.

Proof. The direction from right to left follows obviously, because P-U-resolution is also the
resolution defined in Definition 9. Now we prove the inverse direction by induction on the
number of the variables in F . For convenience we suppose that there are no tautological
clauses in F .

If F = ⊥, then the lemma holds trivially. Suppose there is only one variable in F . Since
F is unsatisfiable, it must contain a variable v with Dv = ε1, . . . εn and clauses{(v, ε1)}, . . . ,
{(v, εn)}. So we have F |

P-U-res
⊥.

Suppose the number of variables in F is bigger than one, and assume that the theorem
holds for generalized h-Horn clause-sets with fewer variables than F . Because F is unsatisfi-
able, there must be a variable v such that valv(F ) = Dv, and for each εi ∈ Dv = {ε1, . . . , εn},
the clause-set 〈v → εi〉 ∗ F , denoted by Fεi

, is unsatisfiable. Because Fεi
is still a gener-

alized h-Horn clause-set, by the induction hypothesis Fεi
|
P-U-res

⊥. That is, there is a

P-U-resolution refutation Πεi
from Fεi

. Then we can obtain a resolution sequence (maybe
not a P-U-resolution sequence) from F by recovering the occurrences of the literal (v, εi)
to clauses in Πεi

(see Remark 14). Since F is generalized h-Horn, if (v, εi) is h-positive,
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there is no chance to add (v, εi) to a clause with an h-positive literal, hence, the new reso-
lution sequence remains a P-U-resolution sequence. Without loss of generality we suppose
(v, ε1), . . . , (v, εn−1) are h-positive and (v, εn) is h-negative. Therefore, for each i < n, we
have either F |

P-U-res
⊥ or F |

P-U-res
{(v, εi)}. If the former case is true for some i < n,

then the lemma holds. So we assume that F |
P-U-res

{(v, εi)} for each i < n.
Now we consider Πεn

which is a P-U-resolution refutation from Fεn
. It is easy to see

that for each input clause C (i.e., clause in Fεn
) occurring in Πεn

, either C itself is a clause
in F or {(v, εn)} ∪ C is in F . If {(v, εn)} ∪ C ∈ F , we can obtain C by a P-U-resolution
step resolving clauses {(v, ε1)}, . . . , {(v, εn−1)} and {(v, εn)} ∪C. Then applying resolution
steps in Πεn

, we can obtain ⊥. The lemma holds.

Next we extend the above results to quantified generalized Horn clause-sets.

Definition 21. A quantified generalized clause-set Φ = Qα is called a quantified generalized
Horn clause-set if the matrix α is a generalized Horn clause-set. The set of all quantified
generalized Horn clause-sets is denoted by QHCLS.

Due to the quantifiers, Kullmanns’s translation can not be extended to one from quan-
tified Horn clause-sets to quantified boolean Horn formulae. In order to show the poly-time
solvability of the satisfiability of QHCLS, we introduce quantified positive unit resolution
(Q-P-U-resolution), and prove the soundness and refutational completeness for quantified
generalized Horn clause-sets. Before the definition we introduce some notions. A clause (of
a quantified generalized clause-set) is called a unit clause if it contains exactly one existen-
tial literal; if furthermore this literal is h-positive then the clause is called an h-positive unit
clause.

Definition 22. A Q-resolution step is called a Q-P-U-resolution step if all but one of parent
clauses are h-positive unit clauses, in symbols | 1

Q-P-U-res
.

A sequence C1, . . . , Cn is called a Q-P-U-resolution sequence from Φ = Qα ∈ QCLS if
for every Ci in the sequence we have either Ci ∈ α or Ci is obtained from some clauses
before it in the sequence by a Q-P-U-resolution step.

If a clause C occurs in a Q-P-U-resolution sequence form Φ, then we say C is derivable
from Φ, in symbols Φ |

Q-P-U-res
C.

The soundness of Q-P-U-resolution for quantified generalized Horn clause-sets is trivial,
because it is a special case of Q-resolution. Next we will prove that Q-P-U-resolution is
refutationally complete for quantified generalized Horn clause-sets. The proof is similar to
Lemma 20, and we use the same proof structure.

Theorem 23. For a quantified generalized Horn clause-set Φ, we have:

Φ is false =⇒ Φ |
Q-P-U-res

R for some universal clause R

Proof. We shall proceed by induction on the length of the prefix. By Proposition 8, we
assume w.l.o.g. that in each clause the largest literals is existential.

If Φ = ⊥, then the theorem holds trivially. When Φ contains only one quantifier, i.e.,
Φ = ∃vα or Φ = ∀vα, the proofs are the same as the corresponding parts in the proof of
Theorem 15.
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Suppose Φ = ∃vQα, and assume that the theorem holds for formulae with prefix Q.
Because Φ is false, for each εi ∈ Dv = {ε1, . . . , εn}, the quantified generalized clause-set
Q(〈v → εi〉∗α), denoted by Φεi

, is false. Please note that Φεi
is still a quantified generalized

Horn clause-set, so by the induction hypothesis Φεi
|
Q-P-U-res

Rεi
, Rεi

is a universal clause.

That is, there is a Q-P-U-resolution sequence Πεi
of Rεi

from Φεi
. Then we can obtain a

Q-resolution sequence (maybe not a Q-P-U-resolution sequence) from Φ by recovering the
occurrences of the literal (v, εi) to clauses in Πεi

. Since Φ is a quantified generalized Horn
clause-set, if (v, εi) is h-positive, there is no chance to add (v, εi) to a clause with an h-
positive literal, hence, the new resolution sequence remains a Q-P-U-resolution sequence.
Without loss of generality we suppose (v, ε1), . . . , (v, εn−1) are h-positive and (v, εn) is h-
negative. For each i < n, we have either Φ |

Q-P-U-res
Rεi

or Φ |
Q-P-U-res

{(v, εi)} ∪ Rεi
.

If the former case is true for some i < n, then the theorem follows. So we assume that
Φ |

Q-P-U-res
{(v, εi)} ∪ Rεi

for each i < n.

Now we consider Πεn
which is a Q-P-U-resolution sequence of a universal clause Rεn

from
Φεn

. Our next task is to prove Φ |
Q-P-U-res

Rεn
. It is easy to see that for each input clause C

(i.e., clause in Φεn
) occurring in Πεn

, either C itself is a clause in α or {(v, εn)}∪C is in α. If
{(v, εn)}∪C ∈ α, we can obtain C by resolving clauses {(v, ε1)}∪Rε1

, . . . , {(v, εn−1)}∪Rεn−1

and {(v, εn)} ∪ C (please note that by the assumption at the beginning of the proof, the
biggest literal in C is existential, thus no universal literal in C will be deleted during this
resolution step). Then applying resolution steps in Πεn

, we can obtain Rεn
. The theorem

follows.
Suppose Φ = ∀vQα. The proof is similar to the corresponding part in the proof of

Theorem 15, because after recovering a universal literal to a Q-P-U-resolution sequence the
result remains a Q-P-U-resolution sequence.

Altogether, we complete the proof of the theorem.

Next we prove that the satisfiability problem for quantified generalized Horn clause-sets
can be decided in polynomial time. Our proof is based on the above theorem (Theorem 23)
and we use the same ideas as the proof in [8].

Theorem 24. The satisfiability problem for quantified generalized Horn clause-sets can be
decided in polynomial time.

Proof. In a Q-P-U-resolution step if each of parent clauses contains an h-positive existential
literal the resolvent must contain an h-positive existential literal. Then, a Q-P-U-resolution
refutation for a false quantified generalized Horn clause-set Φ is indeed a process which re-
duces h-negative existential literals from a clause without h-positive literals until a universal
clause is obtained.

For a quantified generalized Horn clause-set Φ = Qα, let PΦ be the clause-set of all
clauses in Φ which contain h-positive existential literals, NΦ be the clause-set of all remaining
clauses, i.e., clauses without h-positive existential literals. As analyzed above, Φ is false if
and only if Q(PΦ ∪ {C}) is false for some clause C in NΦ. Thus, it is sufficient to consider
the satisfiability of Q(PΦ ∪ {C}) for all C ∈ NΦ.

For convenience we introduce a notation: for a quantified generalized clause-set Q′β we
use β|∃ to denote the clause-set obtained from β by removing all occurrences of universal
literals in β.
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Consider an arbitrary clause C in NΦ. Suppose there is no h-positive universal literal
in C. Then any universal literal occurring in Q(PΦ ∪ {C}) is h-negative. Because universal
literals can not block the resolution, Q(PΦ ∪ {C}) is false if and only if (PΦ ∪ {C})|∃ is
unsatisfiable. The satisfiability of (PΦ ∪ {C})|∃ can be decided in polynomial time.

So, we assume that C contains an h-positive universal literal, say (v, ε). Since in Q(PΦ∪
{C}) all universal literals on variables different from v are h-negative, we will disregard
them. Define the clauses-set UΦ,v as follows.

UΦ,v = {{(v′, ε′)} | (v′, ε′) is an h-positive existential literal, v < v′,
and (PΦ)|∃ |

P-U-res
{(v′, ε′)}}.

(Where, |
P-U-res

represents the derivability by P-U-resolution for generalized Horn clause-

sets).

Because (PΦ)|∃ is a generalized Horn clause-set, UΦ,v can be constructed in polynomial
time.

Please note that if a clause in PΦ contains the h-negative universal literal (v, ε′) with
ε′ 6= ε such that (v, ε′) is smaller than the h-positive existential literal in the clause, then
the clause has no contribution to derive a universal clause. Then we can delete all such
clauses without change the truth. Let Rest be the clause-set of the remaining clauses.

If Q(PΦ ∪ {C}) is false, to obtain a resolution refutation, we can at first obtain positive
unit clauses with their positive existential literals in UΦ,v, then resolve these unit clauses
with C until the positive universal literal (v, ε) becomes biggest, then we can delete (v, ε),
and resolve further without worrying about the universal literals. Now it is not hard to
see that Q(PΦ ∪ {C}) is false if and only if (UΦ,v ∪ Rest ∪ {C})|∃ is unsatisfiable. The
satisfiability of (UΦ,v ∪ Rest ∪ {C})|∃ can be decided in polynomial time because it is a
generalized Horn clause-set. The proof completes.

6. Conclusion and Future Work

In this paper, resolutions for quantified generalized clause-sets and quantified generalized
Horn clause-sets are introduced and studied. Soundness and refutational completeness have
been proved. Further, the satisfiability problem for generalized Horn clause-sets and quan-
tified generalized Horn clause-sets is shown to be decidable in polynomial time. On the one
hand, the work of this paper can be considered as a generalization of resolution for general-
ized clause-sets [14] to quantified generalized clause-sets. on the other hand, it also can be
considered as a generalization of Q-resolution [7, 11] for quantified boolean CNF formulae
to quantified generalized clause-sets. Unfortunately, the results on boolean 2-CNF formulae
and quantified boolean 2-CNF formulae can not be extended accordingly because the sat-
isfiability problem is NP-complete for generalized 2-clause-sets, and PSPACE-complete for
quantified generalized 2-clause-sets. The investigation of QHCLS is the first step to search
for tractable subclass of quantified generalized clause-sets. Yet QHCLS is a very restricted
subclass of quantified generalized clause-sets. Our future work is to identify some other
larger tractable subclass of quantified generalized clause-sets.
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